1
|
Tang X, Wei Y, Pang J, Xu L, Cui H, Liu X, Hu Y, Ju M, Tang Y, Long B, Liu W, Su M, Zhang T, Wang J. Identifying neurobiological heterogeneity in clinical high-risk psychosis: a data-driven biotyping approach using resting-state functional connectivity. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2025; 11:13. [PMID: 39905003 PMCID: PMC11794858 DOI: 10.1038/s41537-025-00565-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/14/2025] [Indexed: 02/06/2025]
Abstract
To explore the neurobiological heterogeneity within the Clinical High-Risk (CHR) for psychosis population, this study aimed to identify and characterize distinct neurobiological biotypes within CHR using features from resting-state functional networks. A total of 239 participants from the Shanghai At Risk for Psychosis (SHARP) program were enrolled, consisting of 151 CHR individuals and 88 matched healthy controls (HCs). Functional connectivity (FC) features that were correlated with symptom severity were subjected to the single-cell interpretation through multikernel learning (SIMLR) algorithm in order to identify latent homogeneous subgroups. The cognitive function, clinical symptoms, FC patterns, and correlation with neurotransmitter systems of biotype profiles were compared. Three distinct CHR biotypes were identified based on 646 significant ROI-ROI connectivity features, comprising 29.8%, 19.2%, and 51.0% of the CHR sample, respectively. Despite the absence of overall FC differences between CHR and HC groups, each CHR biotype demonstrated unique FC abnormalities. Biotype 1 displayed augmented somatomotor connection, Biotype 2 shown compromised working memory with heightened subcortical and network-specific connectivity, and Biotype 3, characterized by significant negative symptoms, revealed extensive connectivity reductions along with increased limbic-subcortical connectivity. The neurotransmitter correlates differed across biotypes. Biotype 2 revealed an inverse trend to Biotype 3, as increased neurotransmitter concentrations improved functional connectivity in Biotype 2 but reduced it in Biotype 3. The identification of CHR biotypes provides compelling evidence for the early manifestation of heterogeneity within the psychosis spectrum, suggesting that distinct pathophysiological mechanisms may underlie these subgroups.
Collapse
Affiliation(s)
- Xiaochen Tang
- Neuromodulation Center, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
- School of Psychology, Shanghai Normal University, Shanghai, China
| | - Yanyan Wei
- Neuromodulation Center, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiaoyan Pang
- School of Government, Shanghai University of Political Science and Law, Shanghai, China
| | - Lihua Xu
- Neuromodulation Center, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Huiru Cui
- Neuromodulation Center, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xu Liu
- Neuromodulation Center, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yegang Hu
- Neuromodulation Center, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Mingliang Ju
- Neuromodulation Center, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yingying Tang
- Neuromodulation Center, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bin Long
- Neuromodulation Center, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei Liu
- School of Psychology, Shanghai Normal University, Shanghai, China
| | - Min Su
- Ningde Rehabilitation Hospital, Ningde, China.
| | - Tianhong Zhang
- Neuromodulation Center, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Jijun Wang
- Neuromodulation Center, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Nantong Fourth People's Hospital and Nantong Brain Hospital, NanTong, China.
| |
Collapse
|
2
|
Cortes N, Ladret HJ, Abbas-Farishta R, Casanova C. The pulvinar as a hub of visual processing and cortical integration. Trends Neurosci 2024; 47:120-134. [PMID: 38143202 DOI: 10.1016/j.tins.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/26/2023] [Accepted: 11/26/2023] [Indexed: 12/26/2023]
Abstract
The pulvinar nucleus of the thalamus is a crucial component of the visual system and plays significant roles in sensory processing and cognitive integration. The pulvinar's extensive connectivity with cortical regions allows for bidirectional communication, contributing to the integration of sensory information across the visual hierarchy. Recent findings underscore the pulvinar's involvement in attentional modulation, feature binding, and predictive coding. In this review, we highlight recent advances in clarifying the pulvinar's circuitry and function. We discuss the contributions of the pulvinar to signal modulation across the global cortical network and place these findings within theoretical frameworks of cortical processing, particularly the global neuronal workspace (GNW) theory and predictive coding.
Collapse
Affiliation(s)
- Nelson Cortes
- Visual Neuroscience Laboratory, School of Optometry, Université de Montréal, Montreal, QC, Canada
| | - Hugo J Ladret
- Visual Neuroscience Laboratory, School of Optometry, Université de Montréal, Montreal, QC, Canada; Institut de Neurosciences de la Timone, UMR 7289, CNRS and Aix-Marseille Université, Marseille, 13005, France
| | - Reza Abbas-Farishta
- Visual Neuroscience Laboratory, School of Optometry, Université de Montréal, Montreal, QC, Canada
| | - Christian Casanova
- Visual Neuroscience Laboratory, School of Optometry, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
3
|
Wang W, Zhou T, Chen L, Huang Y. A subcortical magnocellular pathway is responsible for the fast processing of topological properties of objects: A transcranial magnetic stimulation study. Hum Brain Mapp 2023; 44:1617-1628. [PMID: 36426867 PMCID: PMC9921224 DOI: 10.1002/hbm.26162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/16/2022] [Accepted: 11/11/2022] [Indexed: 11/26/2022] Open
Abstract
Rapid object recognition has survival significance. The extraction of topological properties (TP) is proposed as the starting point of object perception. Behavioral evidence shows that TP processing takes precedence over other geometric properties and can accelerate object recognition. However, the mechanism of the fast TP processing remains unclear. The magnocellular (M) pathway is well known as a fast route to convey "coarse" information, compared with the slow parvocellular (P) pathway. Here, we hypothesize that the fast processing of TP occurs in a subcortical M pathway. We applied single-pulse transcranial magnetic stimulation (TMS) over the primary visual cortex to temporarily disrupt cortical processing. Besides, stimuli were designed to preferentially engage M or P pathways (M- or P-biased conditions). We found that, when TMS disrupted cortical function at the early stages of stimulus processing, non-TP shape discrimination was strongly impaired in both M- and P-biased conditions, whereas TP discrimination was not affected in the M-biased condition, suggesting that early M processing of TP is independent of the visual cortex, but probably occurs in a subcortical M pathway. Using an unconscious priming paradigm, we further found that early M processing of TP can accelerate object recognition by speeding up the processing of other properties, e.g., orientation. Our findings suggest that the human visual system achieves efficient object recognition by rapidly processing TP in the subcortical M pathway.
Collapse
Affiliation(s)
- Wenbo Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, CAS Center for Excellence in Brain Science and Intelligence Technology, Beijing, China
| | - Tiangang Zhou
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, CAS Center for Excellence in Brain Science and Intelligence Technology, Beijing, China.,Hefei Comprehensive National Science Center, Institute of Artificial Intelligence, Hefei, China
| | - Lin Chen
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, CAS Center for Excellence in Brain Science and Intelligence Technology, Beijing, China.,Hefei Comprehensive National Science Center, Institute of Artificial Intelligence, Hefei, China
| | - Yan Huang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences. University of Chinese Academy of Sciences, China, Shenzhen, China
| |
Collapse
|
4
|
Vlcek P, Bob P. Schizophrenia, Bipolar Disorder and Pre-Attentional Inhibitory Deficits. Neuropsychiatr Dis Treat 2022; 18:821-827. [PMID: 35422621 PMCID: PMC9005071 DOI: 10.2147/ndt.s352157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/09/2022] [Indexed: 11/25/2022] Open
Abstract
According to recent findings schizophrenia and bipolar disorder as separate disease entities manifest similarities in neuropsychological functioning. Typical disturbances in both disorders are related to sensory gating deficits characterized by decreased inhibitory functions in responses to various insignificant perceptual signals which are experimentally tested by event related potentials (ERP) and measured P50 wave. In this context, recent findings implicate that disrupted binding and disintegration of consciousness in schizophrenia and bipolar disorder that are related to inhibitory deficits reflected in P50 response may explain similarities in psychotic disturbances in both disorders. With this aim, this review summarizes literature about P50 in both schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Premysl Vlcek
- National Institute of Mental Health, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petr Bob
- Center for Neuropsychiatric Research of Traumatic Stress, Department of Psychiatry and UHSL, First Faculty of Medicine, Department of Psychiatry, & Faculty of Medicine Pilsen, Charles University, Prague, Czech Republic
| |
Collapse
|
5
|
Marcar VL, Battegay E, Schmidt D, Cheetham M. Parallel processing in human visual cortex revealed through the influence of their neural responses on the visual evoked potential. Vision Res 2021; 193:107994. [PMID: 34979298 DOI: 10.1016/j.visres.2021.107994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 10/19/2022]
Abstract
The neural response in the human visual system is composed of magno-, parvo- and koniocellular input from the retina. Signal differences from functional imaging between health and individuals with a cognitive weakness are attributed to a dysfunction of a specific retinal input. Yet, anatomical interconnections within the human visual system obscure individual contribution to the neural response in V1. Deflections in the visual evoked potential (VEP) arise from an interaction between electric dipoles, their strength determined by the size of the neural population active during temporal - and spatial luminance contrast processing. To investigate interaction between these neural responses, we recorded the VEP over visual cortex of 14 healthy adults viewing four series of windmill patterns. Within a series, the relative area white in a pattern varied systematically. Between series, the number of sectors across which this area was distributed doubled. These patterns were viewed as pattern alternating and on-/off stimuli. P100/P1 amplitude increased linearly with the relative area white in the pattern, while N135/N1 and P240/P2 amplitude increased with the number of sectors of which the area white was distributed. The decreases P100 amplitude with increasing number of sectors is attributed to an interaction between electric dipoles located in granular and supragranular layers of V1. Differences between the VEP components obtained during a pattern reversing display and following pattern onset are accounted for by the transient and sustained nature of neural responses processing temporal - and spatial luminance contrast and ability of these responses to manifest in the VEP.
Collapse
Affiliation(s)
- V L Marcar
- University Hospital Zurich, Department of Internal Medicine, Rämistrasse 100, CH-8091 Zürich, Switzerland; University Hospital Zürich, Comprehensive Cancer Centre Zurich, PO Box, 157, Rämistrasse 100, CH-8091 Zürich, Switzerland; University Hospital Zürich, Biomedical Optical Research Laboratory (BORL), Department of Neonatology, Frauenklinikstrasse 10, CH-8006 Zürich, Switzerland.
| | - E Battegay
- University Hospital Zurich, Department of Internal Medicine, Rämistrasse 100, CH-8091 Zürich, Switzerland; University Research Priority Program "Dynamics of Healthy Aging", University of Zürich, Zürich, Switzerland; International Center for Multimorbidity and Complexity in Medicine (ICMC), University Zurich, University Hospital Basel (Department of Psychosomatic Medicine), Merian Iselin Klinik Basel, Switzerland
| | - D Schmidt
- University Hospital Zurich, Department of Internal Medicine, Rämistrasse 100, CH-8091 Zürich, Switzerland
| | - M Cheetham
- University Hospital Zurich, Department of Internal Medicine, Rämistrasse 100, CH-8091 Zürich, Switzerland
| |
Collapse
|
6
|
Online Left-Hemispheric In-Phase Frontoparietal Theta tACS for the Treatment of Negative Symptoms of Schizophrenia. J Pers Med 2021; 11:jpm11111114. [PMID: 34834466 PMCID: PMC8625275 DOI: 10.3390/jpm11111114] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022] Open
Abstract
Negative symptoms represent an unmet need for schizophrenia treatment. The effect of theta frequency transcranial alternating current stimulation (theta-tACS) applied during working memory (WM) tasks on negative symptoms has not been demonstrated as of yet. We conducted a randomized, double-blind, sham-controlled trial of 36 stabilized schizophrenia patients, randomized to receive either twice daily, 6 Hz 2 mA, 20 min sessions of in-phase frontoparietal tACS or sham for five consecutive weekdays. Participants were concurrently engaged in WM tasks during stimulation. The primary outcome measure was the change over time in the Positive and Negative Syndrome Scale (PANSS) negative subscale score measured from baseline through to the 1-month follow-up. Secondary outcome measures were other symptom clusters, neurocognitive performance, and relevant outcomes. The intention-to-treat analysis demonstrated greater reductions in PANSS negative subscale scores at the end of stimulation in the active (−13.84%) than the sham (−3.78%) condition, with a large effect size (Cohen’s d = 0.96, p = 0.006). The positive effect endured for at least one month. Theta-tACS also showed efficacies for cognitive symptoms, WM capacity, and psychosocial functions. Online theta-tACS offers a novel approach to modulate frontoparietal networks to treat negative symptoms of schizophrenia. The promising results require large-scale replication studies in patients with predominantly negative symptoms.
Collapse
|