1
|
Li D, Jiang H, Luo Z, Geng W, Zhu J. Preparation and Adsorption Performance of Boron Adsorbents Derived from Modified Waste Feathers. Polymers (Basel) 2024; 16:1365. [PMID: 38794557 PMCID: PMC11125364 DOI: 10.3390/polym16101365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
This research focuses on modifying discarded feathers by grafting glycidyl methacrylate (GMA) onto their surface through thiolation, followed by an epoxy ring-opening reaction with N-methyl-D-glucamine (NMDG) to synthesize feather-based boron adsorbents. Optimization of the adsorbent preparation conditions was achieved through single-factor experiments, varying temperature, time, GMA concentration, and initiator dosage. The synthesized adsorbent (F-g-GMA-NMDG) underwent characterization using Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The adsorption behavior of the adsorbent was studied, and its boron adsorption capacity at different temperatures was determined through static adsorption kinetic curves. Analysis of adsorption isotherms, kinetics, and thermodynamics was conducted. Results indicate that the boron adsorption process by F-g-GMA-NMDG follows a pseudo-second-order model. The adsorption process is endothermic, with higher temperatures promoting adsorption efficiency. Gibbs free energy (ΔG) confirms the spontaneity of the adsorption process. Enhanced adsorption efficacy was observed under neutral and acidic pH conditions. After four cycles, the adsorbent maintained its adsorption efficiency, demonstrating its stability and potential for reuse. This study provides novel insights into both the treatment of discarded feathers and the development of boron adsorbents.
Collapse
Affiliation(s)
- Dongxing Li
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (D.L.); (Z.L.)
| | - Hui Jiang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China; (H.J.); (J.Z.)
| | - Zhengwei Luo
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (D.L.); (Z.L.)
| | - Wenhua Geng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China; (H.J.); (J.Z.)
| | - Jianliang Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China; (H.J.); (J.Z.)
| |
Collapse
|
2
|
Yu N, Jiang H, Luo Z, Geng W, Zhu J. Boron Adsorption Using NMDG-Modified Polypropylene Melt-Blown Fibers Induced by Ultraviolet Grafting. Polymers (Basel) 2023; 15:polym15102252. [PMID: 37242826 DOI: 10.3390/polym15102252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Boron is in high demand in many sectors, yet there are significant flaws in current boron resource utilization. This study describes the synthesis of a boron adsorbent based on polypropylene (PP) melt-blown fiber using ultraviolet (UV)-induced grafting of Glycidyl methacrylate (GMA) onto PP melt-blown fiber, followed by an epoxy ring-opening reaction with N-methyl-D-glucosamine (NMDG). Using single-factor studies, grafting conditions such as the GMA concentration, benzophenone dose, and grafting duration were optimized. Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray diffraction (XRD), and water contact angle were used to characterize the produced adsorbent (PP-g-GMA-NMDG). The PP-g-GMA-NMDG adsorption process was examined by fitting the data with different adsorption settings and models. The results demonstrated that the adsorption process was compatible with the pseudo-second-order model and the Langmuir model; however, the internal diffusion model suggested that the process was impacted by both extra- and intra-membrane diffusion. According to thermodynamic simulations, the adsorption process was exothermic. At pH 6, the greatest saturation adsorption capacity to boron was 41.65 mg·g-1 for PP-g-GMA-NMDG. The PP-g-GMA-NMDG preparation process is a feasible and environmentally friendly route, and the prepared PP-g-GMA-NMDG has the advantages of high adsorption capacity, outstanding selectivity, good reproducibility, and easy recovery when compared to similar adsorbents, indicating that the reported adsorbent is promising for boron separation from water.
Collapse
Affiliation(s)
- Ning Yu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Hui Jiang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhengwei Luo
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Wenhua Geng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jianliang Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
3
|
Abstract
Membrane chromatography (MC) is an emerging bioseparation technology combining the principles of membrane filtration and chromatography. In this process, one type of molecule is adsorbed in the stationary phase, whereas the other type of molecule is passed through the membrane pores without affecting the adsorbed molecule. In subsequent the step, the adsorbed molecule is recovered by an elution buffer with a unique ionic strength and pH. Functionalized microfiltration membranes are usually used in radial flow, axial flow, and lateral flow membrane modules in MC systems. In the MC process, the transport of a solute to a stationary phase is mainly achieved through convection and minimum pore diffusion. Therefore, mass transfer resistance and pressure drop become insignificant. Other characteristics of MC systems are a minimum clogging tendency in the stationary phase, the capability of operating with a high mobile phase flow rate, and the disposable (short term) application of stationary phase. The development and application of MC systems for the fractionation of individual proteins from whey for investigation and industrial-scale production are promising. A significant income from individual whey proteins together with the marketing of dairy foods may provide a new commercial outlook in dairy industry. In this review, information about the development of a MC system and its applications for the fractionation of individual protein from whey are presented in comprehensive manner.
Collapse
|
4
|
Electrospun Weak Anion-exchange Fibrous Membranes for Protein Purification. MEMBRANES 2020; 10:membranes10030039. [PMID: 32121609 PMCID: PMC7143834 DOI: 10.3390/membranes10030039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 01/19/2023]
Abstract
Membrane based ion-exchange (IEX) and hydrophobic interaction chromatography (HIC) for protein purification is often used to remove impurities and aggregates operated under the flow-through mode. IEX and HIC are also limited by capacity and recovery when operated under bind-and-elute mode for the fractionation of proteins. Electrospun nanofibrous membrane is characterized by its high surface area to volume ratio and high permeability. Here tertiary amine ligands are grafted onto the electrospun polysulfone (PSf) and polyacrylonitrile (PAN) membrane substrates using UV-initiated polymerization. Static and dynamic binding capacities for model protein bovine serum albumin (BSA) were determined under appropriate bind and elute buffer conditions. Static and dynamic binding capacities in the order of ~100 mg/mL were obtained for the functionalized electrospun PAN membranes whereas these values reached ~200 mg/mL for the functionalized electrospun PSf membranes. Protein recovery of over 96% was obtained for PAN-based membranes. However, it is only 56% for PSf-based membranes. Our work indicates that surface modification of electrospun membranes by grafting polymeric ligands can enhance protein adsorption due to increased surface area-to-volume ratio.
Collapse
|
5
|
Pinem J, Wardani A, Aryanti P, Khoiruddin K, Wenten IG. Hydrophilic Modification of Polymeric Membrane using Graft Polymerization Method: A Mini Review. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/1757-899x/547/1/012054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
Khan MK, Luo J, Wang Z, Khan R, Chen X, Wan Y. Alginate dialdehyde meets nylon membrane: a versatile platform for facile and green fabrication of membrane adsorbers. J Mater Chem B 2018; 6:1640-1649. [DOI: 10.1039/c7tb02966g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Alginate dialdehyde, a biocompatible polymer, is used as an intermediate layer on a nylon membrane to readily fabricate different membrane adsorbers.
Collapse
Affiliation(s)
- M. Kamran Khan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences
- Beijing 100190
- P. R. China
- University of Chinese Academy of Sciences
- Beijing 100049
| | - Jianquan Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences
- Beijing 100190
- P. R. China
- University of Chinese Academy of Sciences
- Beijing 100049
| | - Zhaoshuai Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences
- Beijing 100190
- P. R. China
- University of Chinese Academy of Sciences
- Beijing 100049
| | - Rashid Khan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences
- Beijing 100190
- P. R. China
- University of Chinese Academy of Sciences
- Beijing 100049
| | - Xiangrong Chen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Yinhua Wan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences
- Beijing 100190
- P. R. China
- University of Chinese Academy of Sciences
- Beijing 100049
| |
Collapse
|
7
|
Rajesh S, Schneiderman S, Crandall C, Fong H, Menkhaus TJ. Synthesis of Cellulose-graft-Polypropionic Acid Nanofiber Cation-Exchange Membrane Adsorbers for High-Efficiency Separations. ACS APPLIED MATERIALS & INTERFACES 2017; 9:41055-41065. [PMID: 29111637 DOI: 10.1021/acsami.7b13459] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Fabrication of membrane adsorbers with elevated binding capacity and high throughput is highly desired for simplifying and improving purification efficiencies of bioproducts (biotherapeutics, vaccines, etc.) in the biotechnological and biopharmaceutical industries. Here we demonstrate the preparation of a novel class of self-supported, cellulose-graft-polypropionic acid (CL-g-PPA) cation-exchange nanofiber membrane adsorbers under mild reaction conditions for the purification of positively charged therapeutic proteins. In our fabrication method, acrylonitrile was first polymerized and surface grafted onto cellulose nanofibers using cerium ammonium nitrate as a redox initiator to form cellulose-g-polyacrylonitrile (CL-g-PAN). CL-g-PAN was then submitted to a hydrolyzation reaction to form CL-g-PPA cationic membrane adsorbers. Morphology and structural characterization illustrated the formation of CL-g-PPA membranes with uniform coating of polyacid nanolayers along the individual nanofibers without disturbing the nanofiber structure. Benefiting from these numerous cationic polyacid binding sites and inherent large surface area and open porous structure, CL-g-PPA nanofiber membrane adsorbers showed a lysozyme static adsorption capacity of 1664 mg/g of nanofibers. These membranes showed a lysozyme dynamic binding capacity of 508 mg/g of nanofibers at 10% breakthrough (equivalent to 206 g/L capacity), with a residence time of less than 6 s. Moreover, CL-g-PPA self-supported nanofibers displayed excellent structural stability and reversibility after several cycles of protein binding studies. This dynamic binding capacity of the CL-g-PPA nanofiber membranes was 3.2 times higher than that of macroporous cellulose membranes and 8.5 times higher than that of the Sartobind S commercial membrane adsorber. Considering the simple fabrication method employed, excellent protein adsorption capacity, remarkable structural stability, and reusability, CL-g-PPA nanofiber membranes provided a versatile platform for the chromatographic separations of biomolecules (e.g., proteins, nucleic acids, and viral vaccines) as well as water purification and similar ion-exchange applications.
Collapse
Affiliation(s)
- Sahadevan Rajesh
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology , Rapid City, South Dakota 57701, United States
| | - Steven Schneiderman
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology , Rapid City, South Dakota 57701, United States
| | - Caitlin Crandall
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology , Rapid City, South Dakota 57701, United States
| | - Hao Fong
- Department of Chemistry and Applied Biological Sciences, South Dakota School of Mines and Technology , Rapid City, South Dakota 57701, United States
| | - Todd J Menkhaus
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology , Rapid City, South Dakota 57701, United States
| |
Collapse
|
8
|
Keating JJ, Imbrogno J, Belfort G. Polymer Brushes for Membrane Separations: A Review. ACS APPLIED MATERIALS & INTERFACES 2016; 8:28383-28399. [PMID: 27709877 DOI: 10.1021/acsami.6b09068] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The fundamentals and applications of polymer brush-modified membranes are reviewed. This new class of synthetic membranes is explored with an emphasis on tuning the membrane performance through polymer brush grafting. This work highlights the intriguing performance characteristics of polymer brush-modified membranes in a variety of separations. Polymer brushes are a versatile and effective means in designing membranes for applications in protein adsorption and purification, colloid stabilization, sensors, water purification, pervaporation of organic compounds, gas separations, and as stimuli responsive materials.
Collapse
Affiliation(s)
- John J Keating
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Joseph Imbrogno
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Georges Belfort
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| |
Collapse
|
9
|
Schwellenbach J, Kosiol P, Sölter B, Taft F, Villain L, Strube J. Controlling the polymer-nanolayer architecture on anion-exchange membrane adsorbers via surface-initiated atom transfer radical polymerization. REACT FUNCT POLYM 2016. [DOI: 10.1016/j.reactfunctpolym.2016.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Himma NF, Anisah S, Prasetya N, Wenten IG. Advances in preparation, modification, and application of polypropylene membrane. JOURNAL OF POLYMER ENGINEERING 2016. [DOI: 10.1515/polyeng-2015-0112] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Polypropylene (PP) is one of the most used polymers for microporous membrane fabrication due to its good thermal stability, chemical resistance, mechanical strength, and low cost. There have been numerous studies reporting the developments and applications of PP membranes. However, PP membrane with high performance is still a challenge. Thus, this article presents a comprehensive overview of the advances in the preparation, modification and application of PP membrane. The preparation methods of PP membrane are firstly reviewed, followed by the modification approaches of PP membrane. The modifications includes hydrophilic and superhydrophobic modification so that the PP membranes become more suitable to be applied either in aqueous applications or in non-aqueous ones. The fouling resistant of hydrophilized PP membrane and the wetting resistant of superhydrophobized PP membrane are then reviewed. Finally, special attention is given to the various potential applications and industrial outlook of the PP membranes.
Collapse
|
11
|
Polydopamine meets porous membrane: A versatile platform for facile preparation of membrane adsorbers. J Chromatogr A 2016; 1448:121-126. [DOI: 10.1016/j.chroma.2016.04.063] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 11/23/2022]
|
12
|
Liu H, Gurgel PV, Carbonell RG. Preparation and characterization of anion exchange adsorptive nonwoven membranes with high protein binding capacity. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2015.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
13
|
Dong J, Bruening ML. Functionalizing Microporous Membranes for Protein Purification and Protein Digestion. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2015; 8:81-100. [PMID: 26001953 DOI: 10.1146/annurev-anchem-071114-040255] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This review examines advances in the functionalization of microporous membranes for protein purification and the development of protease-containing membranes for controlled protein digestion prior to mass spectrometry analysis. Recent studies confirm that membranes are superior to bead-based columns for rapid protein capture, presumably because convective mass transport in membrane pores rapidly brings proteins to binding sites. Modification of porous membranes with functional polymeric films or TiO₂ nanoparticles yields materials that selectively capture species ranging from phosphopeptides to His-tagged proteins, and protein-binding capacities often exceed those of commercial beads. Thin membranes also provide a convenient framework for creating enzyme-containing reactors that afford control over residence times. With millisecond residence times, reactors with immobilized proteases limit protein digestion to increase sequence coverage in mass spectrometry analysis and facilitate elucidation of protein structures. This review emphasizes the advantages of membrane-based techniques and concludes with some challenges for their practical application.
Collapse
Affiliation(s)
- Jinlan Dong
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824;
| | | |
Collapse
|
14
|
Farjadian F, Schwark S, Ulbricht M. Novel functionalization of porous polypropylene microfiltration membranes: via grafted poly(aminoethyl methacrylate) anchored Schiff bases toward membrane adsorbers for metal ions. Polym Chem 2015. [DOI: 10.1039/c4py01521e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A comb-like grafted functional polymer layer with Schiff base side groups provides an efficient porous membrane adsorber for copper ions.
Collapse
Affiliation(s)
- Fatemeh Farjadian
- Lehrstuhl für Technische Chemie II
- Universität Duisburg-Essen
- 45141 Essen
- Germany
- Center for Nanotechnology in Drug Delivery
| | - Sebastian Schwark
- Lehrstuhl für Technische Chemie II
- Universität Duisburg-Essen
- 45141 Essen
- Germany
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II
- Universität Duisburg-Essen
- 45141 Essen
- Germany
| |
Collapse
|
15
|
Zhao K, Lin B, Cui W, Feng L, Chen T, Wei J. Preparation and adsorption of bovine serum albumin-imprinted polyacrylamide hydrogel membrane grafted on non-woven polypropylene. Talanta 2014; 121:256-62. [DOI: 10.1016/j.talanta.2014.01.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/03/2014] [Accepted: 01/06/2014] [Indexed: 10/25/2022]
|
16
|
Interfacially polymerized thin-film composite membrane on UV-induced surface hydrophilic-modified polypropylene support for nanofiltration. Polym Bull (Berl) 2013. [DOI: 10.1007/s00289-013-1068-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Roman MJ, Tian F, Decker EA, Goddard JM. Iron chelating polypropylene films: Manipulating photoinitiated graft polymerization to tailor chelating activity. J Appl Polym Sci 2013. [DOI: 10.1002/app.39948] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Maxine J. Roman
- Department of Food Science; University of Massachusetts; Amherst Massachusetts 01003
| | - Fang Tian
- Department of Food Science; University of Massachusetts; Amherst Massachusetts 01003
| | - Eric A. Decker
- Department of Food Science; University of Massachusetts; Amherst Massachusetts 01003
| | - Julie M. Goddard
- Department of Food Science; University of Massachusetts; Amherst Massachusetts 01003
| |
Collapse
|
18
|
Orr V, Zhong L, Moo-Young M, Chou CP. Recent advances in bioprocessing application of membrane chromatography. Biotechnol Adv 2013; 31:450-65. [DOI: 10.1016/j.biotechadv.2013.01.007] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/20/2013] [Indexed: 01/03/2023]
|
19
|
Preparation and modification of thin film PA membranes with improved antifouling property using acrylic acid and UV irradiation. J Memb Sci 2013. [DOI: 10.1016/j.memsci.2012.11.065] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Wei Y, Ma J, Wang C. Preparation of high-capacity strong cation exchange membrane for protein adsorption via surface-initiated atom transfer radical polymerization. J Memb Sci 2013. [DOI: 10.1016/j.memsci.2012.09.053] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Schwark S, Ulbricht M. Toward protein-selective membrane adsorbers: A novel surface-selective photo-grafting method. Eur Polym J 2012. [DOI: 10.1016/j.eurpolymj.2012.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
22
|
van Beijeren P, Kreis P, Zeiner T. Ion exchange membrane adsorption of bovine serum albumin—Impact of operating and buffer conditions on breakthrough curves. J Memb Sci 2012. [DOI: 10.1016/j.memsci.2012.05.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Wang C, Zhao S, Wei Y. Hydrophilic Modification of Microporous Polysulfone Membrane via Surface-Initiated Atom Transfer Radical Polymerization and Hydrolysis of Poly(glycidylmethacrylate). CHINESE J CHEM 2012. [DOI: 10.1002/cjoc.201200443] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
Bakeri G, Ismail AF, Rana D, Matsuura T, Shariaty M. Investigation on the effects of fabrication parameters on the structure and properties of surface-modified membranes using response surface methodology. J Appl Polym Sci 2011. [DOI: 10.1002/app.34802] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
Golden AL, Battrell CF, Pennell S, Hoffman AS, Lai JJ, Stayton PS. Simple fluidic system for purifying and concentrating diagnostic biomarkers using stimuli-responsive antibody conjugates and membranes. Bioconjug Chem 2011; 21:1820-6. [PMID: 20845976 DOI: 10.1021/bc100169y] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a simple fluidic system that can purify and concentrate diagnostic biomarkers through the capture and triggered release of stimuli-responsive polymer-antibody conjugates at porous membranes that are grafted with the same stimuli-responsive polymer. This technique is applied here to the capture and detection of a model streptavidin antigen and subsequently to clinical ranges of the malaria antigen Plasmodium falciparum histidine-rich protein 2 (PfHRP2) from spiked human plasma. The carboxyl end-groups of semi-telechelic poly(N-isopropylacrylamide) (pNIPAAm) synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization were modified with tetrafluorophenol to yield amine-reactive ester groups for conjugation to amine groups of anti-streptavidin and anti-PfHRP2 antibodies. Stimuli-responsive membranes were constructed from 1.2 μm pore-size, hydroxylated, nylon-6,6 filters (Loprodyne, from Pall Corporation). The surface hydroxyl groups on the filters were conjugated to a 2-ethylsulfanylthiocarbonylsulfanyl-2-methyl propionic acid (EMP) RAFT chain transfer agent, and the surface-grafted pNIPAAm was obtained by subsequent polymerization. The number average molecular weight (Mn) and polydispersity indices (PDI) of the surface grafts were characterized, and membranes with either 4100 and 8400 dalton pNIPAAm grafts showed greater than 80% anti-streptavidin capture efficiency. The 8400 dalton-graft membrane showed the highest release efficiency, and it was demonstrated that at 0.2 nM starting concentration the streptavidin could be concentrated approximately 40-fold by releasing into a small 50 μL volume. This concentrator system was applied to the capture and concentration of the PfHRP2 antigen, and results showed that the PfHRP2 antigen could be processed and detected at clinically relevant concentrations of this malaria biomarker.
Collapse
Affiliation(s)
- Allison L Golden
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | |
Collapse
|
26
|
Yang Q, Adrus N, Tomicki F, Ulbricht M. Composites of functional polymeric hydrogels and porous membranes. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c0jm02234a] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
27
|
Surface hydrophilization of microporous polypropylene membrane by grafting zwitterionic polymer for anti-biofouling. J Memb Sci 2010. [DOI: 10.1016/j.memsci.2010.06.048] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Wang C, Wu J, Xu ZK. High-density glycosylation of polymer membrane surfaces by click chemistry for carbohydrate-protein recognition. Macromol Rapid Commun 2010; 31:1078-1082. [PMID: 21590858 DOI: 10.1002/marc.200900866] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 01/01/2010] [Indexed: 02/05/2023]
Abstract
To biologically mimic the carbohydrate-protein interactions in artificial systems, one of the challenges is to construct a glycosylated surface with a high glycosyl density to yield a notable 'glycoside cluster effect'. A novel strategy is presented for high density glycosylation of the surface of a microporous poly(propylene) membrane (MPPM) by click chemistry. It is promising that the surface glycosyl density can be well controlled over a wide range and the maximum value is over 10 µmol · cm(-2) . The recognition capability of these glycosylated MPPMs to lectins indicates the occurrence of the 'glycoside cluster effect' when the glycosyl density on the membrane surface exceeds 0.20 µmol · cm(-2) .
Collapse
Affiliation(s)
- Cang Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | | | | |
Collapse
|
29
|
von Lieres E, Wang J, Ulbricht M. Model Based Quantification of Internal Flow Distributions from Breakthrough Curves of Flat Sheet Membrane Chromatography Modules. Chem Eng Technol 2010. [DOI: 10.1002/ceat.200900614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Yu H, Cao Y, Kang G, Liu J, Li M, Yuan Q. Enhancing antifouling property of polysulfone ultrafiltration membrane by grafting zwitterionic copolymer via UV-initiated polymerization. J Memb Sci 2009. [DOI: 10.1016/j.memsci.2009.05.041] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Wang J, Faber R, Ulbricht M. Influence of pore structure and architecture of photo-grafted functional layers on separation performance of cellulose-based macroporous membrane adsorbers. J Chromatogr A 2009; 1216:6490-501. [PMID: 19665716 DOI: 10.1016/j.chroma.2009.07.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 07/15/2009] [Accepted: 07/23/2009] [Indexed: 10/20/2022]
Abstract
New weak cation-exchange membrane adsorbers were prepared via UV-initiated heterogeneous graft copolymerization on Hydrosart macroporous regenerated cellulose membranes. The dynamic performance was investigated in detail with respect to the pore size and pore size distribution of the base membranes, ion-exchange capacity and architecture of the grafted functional layers as well as binding of target proteins. Main characterization methods were pore analysis (BET and permporometry), titration, analysis of protein binding under static conditions including visualization by confocal laser scanning microscopy and chromatographic analysis of dynamic protein binding and system dispersion. The trade-off between static binding capacity of the membrane adsorber and its permeability has partially been overcome by adapted architecture of the grafted functional layer achieved via the introduction of uncharged moieties as spacers and via stabilization of the binding layer by chemical cross-linking. The resulting membranes show only negligible effects of flow rate on dynamic binding capacity. There is no considerable size exclusion effect for large proteins due to mesh size of functional cross-linked layers. Investigation of system dispersion based on breakthrough curves confirms that the adapted grafted layer architecture has drastically reduced the contribution of the membrane to total system dispersion. The optimum pore structure of base membranes in combination with the best suited architecture of functional layers was identified in this study.
Collapse
Affiliation(s)
- Jun Wang
- Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, 45117 Essen, Germany
| | | | | |
Collapse
|
32
|
Tailored “Grafting-From” Functionalization of Microfiltration Membrane Surface Photo-Initiated by Immobilized Iniferter. MACROMOL CHEM PHYS 2009. [DOI: 10.1002/macp.200900069] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
33
|
Yang YF, Wan LS, Xu ZK. Surface hydrophilization of microporous polypropylene membrane by the interfacial crosslinking of polyethylenimine. J Memb Sci 2009. [DOI: 10.1016/j.memsci.2009.03.023] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
|
35
|
Jain P, Baker GL, Bruening ML. Applications of polymer brushes in protein analysis and purification. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2009; 2:387-408. [PMID: 20636068 DOI: 10.1146/annurev-anchem-060908-155153] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
This review examines the application of polymer brush-modified flat surfaces, membranes, and beads for protein immobilization and isolation. Modification of porous substrates with brushes yields membranes that selectively bind tagged proteins to give 99% pure protein at capacities as high as 100 mg of protein per cubic centimeter of membrane. Moreover, enrichment of phosphopeptides on brush-modified matrix-assisted laser desorption/ionization (MALDI) plates allows detection and characterization of femtomole levels of phosphopeptides by MALDI mass spectrometry. Because swollen hydrophilic brushes can resist nonspecific protein adsorption while immobilizing a high density of proteins, they are attractive as substrates for protein microarrays. This review highlights the advantages of polymer brush-modified surfaces over self-assembled monolayers and identifies some research needs in this area.
Collapse
Affiliation(s)
- Parul Jain
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | |
Collapse
|
36
|
El-Sawy NM, Ismail SA, Ali AEH. Polymerization of Prepared 3-N-Acryloylamidobenzonitrile by Gamma Irradiation and Its Use in Adsorption of Chromium Ions. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2008. [DOI: 10.1080/10601320802511729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
37
|
Preparation of high-capacity, weak anion-exchange membranes for protein separations using surface-initiated atom transfer radical polymerization. J Memb Sci 2008. [DOI: 10.1016/j.memsci.2008.07.028] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
He D, Ulbricht M. Preparation and characterization of porous anion-exchange membrane adsorbers with high protein-binding capacity. J Memb Sci 2008. [DOI: 10.1016/j.memsci.2008.02.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|