1
|
Chen G, Wan Y, Ghosh R. Bioseparation using membrane chromatography: Innovations, and challenges. J Chromatogr A 2025; 1744:465733. [PMID: 39893917 DOI: 10.1016/j.chroma.2025.465733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
The resin-based column continues to be the dominant incumbent in bioprocess chromatography. While alternative formats such as membrane-, monolith- and fiber-based chromatography are more visible than before, each still plays minor roles. The reasons for this are complex and some of these are explained in this paper. However, the fact remains that membrane chromatography has come a long way since its early days of development. The main advantage of membrane chromatography continues to be its convection dominant transport mechanism, the resultant benefit being fast and scalable separation. Also, resolution obtained with properly designed devices could be comparable or even better than resin-based chromatography. Significant progress has been made in new membrane development, membrane characterization, device design and novel applications development. A wider range of new membrane matrices, ligands, and ligand-matrix linking chemistries are now available. New membrane modules, formats, and process configurations have also helped improve membrane performance. However, some significant challenges still exist, and these need to be addressed if membrane chromatography is to become more mainstream in the field of bioprocessing. Also, membrane chromatography has significant potential for application in analytical separations and this space has hardly been explored. In this paper, the advances in the areas of membrane preparation, device design and process development are reviewed. A high-level cost analysis is presented and the role of process design in membrane chromatography is discussed.
Collapse
Affiliation(s)
- Guoqiang Chen
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yinhua Wan
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, PR China; Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, PR China
| | - Raja Ghosh
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada.
| |
Collapse
|
2
|
Steegmüller T, Kratky T, Gollwitzer L, Schwaminger SP, Berensmeier S. Development of a New Affinity Gold Polymer Membrane with Immobilized Protein A. MEMBRANES 2024; 14:31. [PMID: 38392658 PMCID: PMC10890041 DOI: 10.3390/membranes14020031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/08/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024]
Abstract
New and highly selective stationary phases for affinity membrane chromatography have the potential to significantly enhance the efficiency and specificity of therapeutic protein purification by reduced mass transfer limitations. This work developed and compared different immobilization strategies for recombinant Protein A ligands to a gold-sputtered polymer membrane for antibody separation in terms of functionalization and immobilization success, protein load, and stability. Successful, functionalization was validated via X-ray photoelectron spectroscopy (XPS). Here, a recombinant Protein A ligand was coupled by N-hydroxysuccinimide (NHS)/N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide (EDC) chemistry to carboxy-functionalized, gold-sputtered membranes. We achieved a binding capacity of up to 104 ± 17 mg of the protein ligand per gram of the gold-sputtered membrane. The developed membranes were able to successfully capture and release the monoclonal antibody (mAb) Trastuzumab, as well as antibodies from fresh frozen human blood plasma in both static and dynamic setups. Therefore, they demonstrated successful functionalization and immobilization strategies. The antibody load was tested using bicinchoninic acid (BCA), ultraviolet-visible spectroscopy (UV-vis) measurements, and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The outcome is a fully functional affinity membrane that can be implemented in a variety of different antibody purification processes, eliminating the need for creating individualized strategies for modifying the surface to suit different substrates or conditions.
Collapse
Affiliation(s)
- Tobias Steegmüller
- Chair of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
| | - Tim Kratky
- Associate Professorship Physical Chemistry with Focus on Catalysis, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Lena Gollwitzer
- Chair of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
| | - Sebastian Patrick Schwaminger
- Chair of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
- Division of Medicinal Chemistry, Otto-Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse 12, 8010 Graz, Austria
| | - Sonja Berensmeier
- Chair of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
- Munich Institute of Integrated Materials, Energy and Process Engineering, Technical University of Munich, Lichtenbergstraße 4a, 85748 Garching, Germany
| |
Collapse
|
3
|
Lin Z, Li L, Song K, Yang B, Zhou G, Zhang G, Teng J, Wang E, Liu X, Ling F, Wang G, Liu T. Boronic acid-modified bacterial cellulose microspheres as packing materials for enveloped virus removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160341. [PMID: 36414067 DOI: 10.1016/j.scitotenv.2022.160341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Viruses are the most abundant microorganisms on the earth, their existence in contaminated waters possesses a significant threat to humans. Waterborne viral infections could be fatal to sensitive population including young child, the elderly, and the immune-compromised. It is imperative to remove viruses during water treatment to better protect public health, especially in the light of evidence of detection of coronaviruses genetic fragments in raw sewage. We reported bench-scale experiments evaluating the extent and mechanisms of removal of a model virus (spring viremia of carp virus, SVCV) in water by adsorption. Microspheres made by boronic acid-modified bacterial cellulose with excellent mechanical strength were successfully fabricated as packing materials for the column to remove glycoproteins and enveloped viruses from water. The synthesized adsorbent was characterized by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), and Brunauer Emmett Teller (BET) measurement. The adsorption efficiency of glycoproteins was investigated by SDS-PAGE and the Broadford protein assay, while the binding capacity with the virus (spring viremia of carp virus) was monitored by cell culture to calculate the viral cytopathic effect and viral titer caused by the virus. The data obtained from the above experiments showed that ∼3-log removal of SVCV in 3 h, which significantly reduced the virus concentration from microspheres packed column. The present study provides substantial evidence to prove beyond doubt that material based on bacterial cellulose seems to have the potential for virus removal from water which can be extended to systems of significant importance.
Collapse
Affiliation(s)
- Zhiyang Lin
- College of Animal Science and Technology, Northwest A & F University, Xinong 22nd Road, Yangling, Shaanxi 712100, PR China
| | - Linhan Li
- College of Animal Science and Technology, Northwest A & F University, Xinong 22nd Road, Yangling, Shaanxi 712100, PR China
| | - Kaige Song
- College of Animal Science and Technology, Northwest A & F University, Xinong 22nd Road, Yangling, Shaanxi 712100, PR China
| | - Bin Yang
- College of Animal Science and Technology, Northwest A & F University, Xinong 22nd Road, Yangling, Shaanxi 712100, PR China
| | - Guoqing Zhou
- College of Animal Science and Technology, Northwest A & F University, Xinong 22nd Road, Yangling, Shaanxi 712100, PR China
| | - Gengrong Zhang
- College of Veterinary Medicine, Northwest A & F University, Xinong 22nd Road, Yangling, Shaanxi 712100, PR China
| | - Jiang Teng
- College of Veterinary Medicine, Northwest A & F University, Xinong 22nd Road, Yangling, Shaanxi 712100, PR China
| | - Erlong Wang
- College of Animal Science and Technology, Northwest A & F University, Xinong 22nd Road, Yangling, Shaanxi 712100, PR China
| | - Xiaoqiang Liu
- College of Veterinary Medicine, Northwest A & F University, Xinong 22nd Road, Yangling, Shaanxi 712100, PR China
| | - Fei Ling
- College of Animal Science and Technology, Northwest A & F University, Xinong 22nd Road, Yangling, Shaanxi 712100, PR China
| | - Gaoxue Wang
- College of Animal Science and Technology, Northwest A & F University, Xinong 22nd Road, Yangling, Shaanxi 712100, PR China.
| | - Tianqiang Liu
- College of Animal Science and Technology, Northwest A & F University, Xinong 22nd Road, Yangling, Shaanxi 712100, PR China; Shenzhen Research Institute, Northwest A & F University, Gaoxin South 4th Road, Shenzhen Virtual University Park Building, High-Tech Industrial Park, Shenzhen 518057, PR China.
| |
Collapse
|
4
|
Xue A, Fan S. Matrices and Affinity Ligands for Antibody Purification and Corresponding Applications in Radiotherapy. Biomolecules 2022; 12:biom12060821. [PMID: 35740946 PMCID: PMC9221399 DOI: 10.3390/biom12060821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 02/05/2023] Open
Abstract
Antibodies have become an important class of biological products in cancer treatments such as radiotherapy. The growing therapeutic applications have driven a demand for high-purity antibodies. Affinity chromatography with a high affinity and specificity has always been utilized to separate antibodies from complex mixtures. Quality chromatographic components (matrices and affinity ligands) have either been found or generated to increase the purity and yield of antibodies. More importantly, some matrices (mainly particles) and affinity ligands (including design protocols) for antibody purification can act as radiosensitizers or carriers for therapeutic radionuclides (or for radiosensitizers) either directly or indirectly to improve the therapeutic efficiency of radiotherapy. This paper provides a brief overview on the matrices and ligands used in affinity chromatography that are involved in antibody purification and emphasizes their applications in radiotherapy to enrich potential approaches for improving the efficacy of radiotherapy.
Collapse
|
5
|
Zheng D, Hua D, Hong Y, Ibrahim AR, Yao A, Pan J, Zhan G. Functions of Ionic Liquids in Preparing Membranes for Liquid Separations: A Review. MEMBRANES 2020; 10:E395. [PMID: 33291472 PMCID: PMC7762167 DOI: 10.3390/membranes10120395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 11/17/2022]
Abstract
Membranes are widely used for liquid separations such as removing solute components from solvents or liquid/liquid separations. Due to negligible vapor pressure, adjustable physical properties, and thermal stability, the application of ionic liquids (ILs) has been extended to fabricating a myriad of membranes for liquid separations. A comprehensive overview of the recent developments in ILs in fabricating membranes for liquid separations is highlighted in this review article. Four major functions of ILs are discussed in detail, including their usage as (i) raw membrane materials, (ii) physical additives, (iii) chemical modifiers, and (iv) solvents. Meanwhile, the applications of IL assisted membranes are discussed, highlighting the issues, challenges, and future perspectives of these IL assisted membranes in liquid separations.
Collapse
Affiliation(s)
- Dayuan Zheng
- Integrated Nanocatalysts Institute (INCI), College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, China; (D.Z.); (Y.H.); (A.Y.); (J.P.)
| | - Dan Hua
- Integrated Nanocatalysts Institute (INCI), College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, China; (D.Z.); (Y.H.); (A.Y.); (J.P.)
| | - Yiping Hong
- Integrated Nanocatalysts Institute (INCI), College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, China; (D.Z.); (Y.H.); (A.Y.); (J.P.)
| | - Abdul-Rauf Ibrahim
- Department of Mechanical Engineering, Faculty of Engineering and Built Environment, Tamale Technical University, Education Ridge Avenue, Sagnarigu District, Tamale, Ghana;
| | - Ayan Yao
- Integrated Nanocatalysts Institute (INCI), College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, China; (D.Z.); (Y.H.); (A.Y.); (J.P.)
| | - Junyang Pan
- Integrated Nanocatalysts Institute (INCI), College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, China; (D.Z.); (Y.H.); (A.Y.); (J.P.)
| | - Guowu Zhan
- Integrated Nanocatalysts Institute (INCI), College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, China; (D.Z.); (Y.H.); (A.Y.); (J.P.)
| |
Collapse
|
6
|
Zhou F, Luo J, Song S, Wan Y. Nanostructured Polyphenol-Mediated Coating: a Versatile Platform for Enzyme Immobilization and Micropollutant Removal. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b05708] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Fangfang Zhou
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jianquan Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Siqing Song
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yinhua Wan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
7
|
Experimental designs for optimizing the purification of immunoglobulin G by mixed-mode chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1125:121719. [DOI: 10.1016/j.jchromb.2019.121719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 07/03/2019] [Accepted: 07/13/2019] [Indexed: 11/22/2022]
|
8
|
Demir EF, Kuru CI, Uygun M, Aktaş Uygun D, Akgöl S. Antibody separation using lectin modified poly(HEMA-EDMA) hydrogel membranes. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 29:344-359. [DOI: 10.1080/09205063.2017.1417197] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Esra Feyzioğlu Demir
- Medical Laboratory Technique, Vocational School of Health Services, Izmir University of Economics, Izmir, Turkey
| | - Cansu Ilke Kuru
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Ege University, Izmir, Turkey
| | - Murat Uygun
- Department of Chemistry, Faculty of Science and Arts, Adnan Menderes University, Aydın, Turkey
- Nanotechnology Application and Research Center, Adnan Menderes University, Aydın, Turkey
| | - Deniz Aktaş Uygun
- Department of Chemistry, Faculty of Science and Arts, Adnan Menderes University, Aydın, Turkey
- Nanotechnology Application and Research Center, Adnan Menderes University, Aydın, Turkey
| | - Sinan Akgöl
- Department of Biochemistry, Faculty of Science, Ege University, Izmir, Turkey
| |
Collapse
|
9
|
Szałata K, Gumi T. BioArtificial polymers. PHYSICAL SCIENCES REVIEWS 2017. [DOI: 10.1515/psr-2017-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractNowadays, the polymer science has impact in practically all life areas. Countless benefits coming from the usage of materials with high mechanical and chemical resistance, variety of functionalities and potentiality of modification drive to the development of new application fields. Novel approaches of combining these synthetic substances with biomolecules lead to obtain multifunctional hybrid conjugates which merge the bioactivity of natural component with outstanding properties of artificial polymer. Over the decades, an immense progress in bioartificial composites domain allowed to reach a high level of knowledge in terms of natural-like systems engineering, leading to diverse strategies of biomolecule immobilization. Together with different available options, including covalent and noncovalent attachment, come various challenges, related mainly with maintaining the biological activity of fixed molecules. Even though the amount of applications that achieve commercial status is still not substantial, and is expanding continuously in the disciplines like “smart materials,” biosensors, delivery systems, nanoreactors and many others. A huge number of remarkable developments reported in the literature present a potential of bioartificial conjugates as a fabrics with highly controllable structure and multiple functionalities, serving as a powerful nanotechnological tool. This novel approach brings closer biologists, chemists and engineers, who sharing their effort and complementing the knowledge can revolutionize the field of bioartificial polymer science.
Collapse
|
10
|
Lin L, Sun H, Zhang K, Zhong Y, Cheng Q, Bian X, Xin Q, Cheng B, Feng X, Zhang Y. Novel affinity membranes with macrocyclic spacer arms synthesized via click chemistry for lysozyme binding. JOURNAL OF HAZARDOUS MATERIALS 2017; 327:97-107. [PMID: 28043047 DOI: 10.1016/j.jhazmat.2016.12.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/22/2016] [Accepted: 12/23/2016] [Indexed: 06/06/2023]
Abstract
Affinity membrane has great potential for applications in bioseparation and purification. Disclosed herein is the design of a novel affinity membrane with macrocyclic spacer arms for lysozyme binding. The clickable azide-cyclodextrin (CD) arms and clickable alkyne ethylene-vinyl alcohol (EVAL) chains are designed and prepared. By the azide-alkyne click reaction, the EVAL-CD-ligands affinity membranes with CD spacer arms in three-dimensional micro channels have been successfully fabricated. The FT-IR, XPS, NMR, SEM and SEM-EDS results give detailed information of structure evolution. The abundant pores in membrane matrix provide efficient working channels, and the introduced CD arms with ligands (affinity sites) provide supramolecular atmosphere. Compared with that of raw EVAL membrane, the adsorption capacity of EVAL-CD-ligands membrane (26.24mg/g) show a triple increase. The study indicates that three effects (inducing effect, arm effect, site effect) from CD arms render the enhanced performance. The click reaction happened in membrane matrix in bulk. The effective lysozyme binding and higher adsorption performance of affinity membranes described herein compared with other reported membranes are markedly related with the proposed strategy involving macrocyclic spacer arms and supramolecular working channels.
Collapse
Affiliation(s)
- Ligang Lin
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, PR China.
| | - Hui Sun
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, PR China
| | - Kaiyu Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, PR China
| | - Yonghui Zhong
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, PR China
| | - Qi Cheng
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, PR China
| | - Xihui Bian
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, PR China
| | - Qingping Xin
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, PR China; Department of Chemical Engineering, University of Waterloo, Waterloo, ONT., N2L 3G1, Canada
| | - Bowen Cheng
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, PR China; Department of Chemical Engineering, University of Waterloo, Waterloo, ONT., N2L 3G1, Canada
| | - Xianshe Feng
- Department of Chemical Engineering, University of Waterloo, Waterloo, ONT., N2L 3G1, Canada
| | - Yuzhong Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, PR China
| |
Collapse
|
11
|
Raghunathan SP, Narayanan S, Joseph R. Carbon nanotube reinforced flexible multifunctional regenerated cellulose films for nonlinear optical application. RSC Adv 2016. [DOI: 10.1039/c6ra21126g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Carbon nanotube reinforced flexible multifunctional regenerated cellulose films for nonlinear optical application.
Collapse
Affiliation(s)
- Sreejesh Poikavila Raghunathan
- Polymer Science and Rubber Technology
- Cochin University of Science and Technology
- Cochin-22
- India
- Federal Institute of Science and Technology
| | | | - Rani Joseph
- Polymer Science and Rubber Technology
- Cochin University of Science and Technology
- Cochin-22
- India
| |
Collapse
|
12
|
Wu M, Zhang F, Liang Y, Wang R, Chen Z, Lin J, Yang L. Isolation and purification of immunoglobulin G from bovine colostrums by hydrophobic charge-induction chromatography. J Dairy Sci 2015; 98:2973-81. [DOI: 10.3168/jds.2014-9142] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 01/24/2015] [Indexed: 11/19/2022]
|
13
|
Fernandes CSM, Gonçalves B, Sousa M, Martins DL, Barroso T, Pina AS, Peixoto C, Aguiar-Ricardo A, Roque ACA. Biobased monoliths for adenovirus purification. ACS APPLIED MATERIALS & INTERFACES 2015; 7:6605-6612. [PMID: 25756920 DOI: 10.1021/am508907b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Adenoviruses are important platforms for vaccine development and vectors for gene therapy, increasing the demand for high titers of purified viral preparations. Monoliths are macroporous supports regarded as ideal for the purification of macromolecular complexes, including viral particles. Although common monoliths are based on synthetic polymers as methacrylates, we explored the potential of biopolymers processed by clean technologies to produce monoliths for adenovirus purification. Such an approach enables the development of disposable and biodegradable matrices for bioprocessing. A total of 20 monoliths were produced from different biopolymers (chitosan, agarose, and dextran), employing two distinct temperatures during the freezing process (-20 °C and -80 °C). The morphological and physical properties of the structures were thoroughly characterized. The monoliths presenting higher robustness and permeability rates were further analyzed for the nonspecific binding of Adenovirus serotype 5 (Ad5) preparations. The matrices presenting lower nonspecific Ad5 binding were further functionalized with quaternary amine anion-exchange ligand glycidyltrimethylammonium chloride hydrochloride by two distinct methods, and their performance toward Ad5 purification was assessed. The monolith composed of chitosan and poly(vinyl) alcohol (50:50) prepared at -80 °C allowed 100% recovery of Ad5 particles bound to the support. This is the first report of the successful purification of adenovirus using monoliths obtained from biopolymers processed by clean technologies.
Collapse
Affiliation(s)
- Cláudia S M Fernandes
- †UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Bianca Gonçalves
- †UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Margarida Sousa
- †UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- §LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Duarte L Martins
- ‡Instituto de Biologia Experimental Tecnológica, Avenida da República, Quinta do Marquês, Edificio IBET/ITQB, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal
| | - Telma Barroso
- †UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- §LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Ana Sofia Pina
- †UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Cristina Peixoto
- ‡Instituto de Biologia Experimental Tecnológica, Avenida da República, Quinta do Marquês, Edificio IBET/ITQB, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal
| | - Ana Aguiar-Ricardo
- §LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - A Cecília A Roque
- †UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
14
|
Soheilmoghaddam M, Wahit MU, Tuck Whye W, Ibrahim Akos N, Heidar Pour R, Ali Yussuf A. Bionanocomposites of regenerated cellulose/zeolite prepared using environmentally benign ionic liquid solvent. Carbohydr Polym 2014; 106:326-34. [DOI: 10.1016/j.carbpol.2014.02.085] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 02/27/2014] [Accepted: 02/27/2014] [Indexed: 10/25/2022]
|
15
|
Pavan GL, Bresolin ITL, Borsoi-Ribeiro M, Vijayalakshmi M, Bueno SMA. The effect of NaCl on the adsorption of human IgG onto CM-Asp–PEVA hollow fiber membrane-immobilized nickel and cobalt metal ions. ADSORPTION 2014. [DOI: 10.1007/s10450-014-9612-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Barroso T, Branco RJF, Aguiar-Ricardo A, Roque ACA. Structural evaluation of an alternative Protein A biomimetic ligand for antibody purification. J Comput Aided Mol Des 2014; 28:25-34. [DOI: 10.1007/s10822-013-9703-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/23/2013] [Indexed: 11/29/2022]
|
17
|
Phottraithip W, Lin DQ, Shi F, Yao SJ. New hydrophobic charge-induction resin with 2-mercaptoimidazole as the ligand and its separation characteristics for porcine IgG. BIOTECHNOL BIOPROC E 2014. [DOI: 10.1007/s12257-013-0223-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Abstract
The immobilization of biomolecules onto cellulose paper turns this environmentally friendly material into a platform for diagnostic devices.
Collapse
Affiliation(s)
- Julie Credou
- CEA Saclay
- IRAMIS
- NIMBE
- LICSEN (Laboratory of Innovation in Surface Chemistry and Nanosciences)
- F-91191 Gif sur Yvette, France
| | - Thomas Berthelot
- CEA Saclay
- IRAMIS
- NIMBE
- LICSEN (Laboratory of Innovation in Surface Chemistry and Nanosciences)
- F-91191 Gif sur Yvette, France
| |
Collapse
|
19
|
Barroso T, Lourenço A, Araújo M, Bonifácio VDB, Roque ACA, Aguiar-Ricardo A. A green approach toward antibody purification: a sustainable biomimetic ligand for direct immobilization on (bio)polymeric supports. J Mol Recognit 2013; 26:662-71. [DOI: 10.1002/jmr.2309] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/24/2013] [Accepted: 08/13/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Telma Barroso
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia; Universidade Nova de Lisboa; Caparica 2829-516 Portugal
| | - Anita Lourenço
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia; Universidade Nova de Lisboa; Caparica 2829-516 Portugal
| | - Marco Araújo
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia; Universidade Nova de Lisboa; Caparica 2829-516 Portugal
| | - Vasco D. B. Bonifácio
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia; Universidade Nova de Lisboa; Caparica 2829-516 Portugal
| | - Ana C. A. Roque
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia; Universidade Nova de Lisboa; Caparica 2829-516 Portugal
| | - Ana Aguiar-Ricardo
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia; Universidade Nova de Lisboa; Caparica 2829-516 Portugal
| |
Collapse
|
20
|
Orr V, Zhong L, Moo-Young M, Chou CP. Recent advances in bioprocessing application of membrane chromatography. Biotechnol Adv 2013; 31:450-65. [DOI: 10.1016/j.biotechadv.2013.01.007] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/20/2013] [Indexed: 01/03/2023]
|
21
|
Barroso T, Hussain A, Roque ACA, Aguiar-Ricardo A. Functional monolithic platforms: Chromatographic tools for antibody purification. Biotechnol J 2013; 8:671-81. [DOI: 10.1002/biot.201200328] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 03/11/2013] [Accepted: 04/10/2013] [Indexed: 12/19/2022]
|
22
|
Fasoli E, Reyes YR, Guzman OM, Rosado A, Cruz VR, Borges A, Martinez E, Bansal V. Para-aminobenzamidine linked regenerated cellulose membranes for plasminogen activator purification: effect of spacer arm length and ligand density. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 930:13-21. [PMID: 23703544 DOI: 10.1016/j.jchromb.2013.04.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 04/10/2013] [Accepted: 04/12/2013] [Indexed: 11/25/2022]
Abstract
Despite membrane-based separations offering superior alternative to packed bed chromatographic processes, there has been a substantial lacuna in their actual application to separation processes. One of the major reasons behind this is the lack of availability of appropriately modified or end-group modifiable membranes. In this paper, an affinity membrane was developed using a commercially available serine protease inhibitor, para-aminobenzamidine (pABA). The membrane modification was optimized for protein binding capacity by varying: (i) the length of the spacer arm (SA; 5-atoms, 7-atoms, and 14-atoms) linking the ligand to membrane surface; (ii) the affinity ligand (pABA) density on membrane surface (5-25nmol/cm(2)). Resulting membranes were tested for their ability to bind plasminogen activators (PAs) from mono- and multi-component systems in batch mode. The membrane containing pABA linked through 7-atoms SA but similar ligand density as in the case of 5- or 14-atoms long SA was found to bind up to 1.6-times higher amounts of PA per nmoles of immobilized ligand from conditioned HeLa cell culture media. However, membranes with similar ligand densities but different lengths of SA, showed comparable binding capacities in mono-component system. In addition, the length of SA did not affect the selectivity of the ligand for PA. A clear inverse linear correlation was observed between ligand density and binding capacity until the point of PA binding optima was reached (11±1.0nmol/cm(2)) in mono- and multi-component systems for 7- as well as 14-atoms SA. Up to 200-fold purification was achieved in a single step separation of PA from HeLa conditioned media using these affinity membranes. The issues of ligand leaching and reuse of the membranes were also investigated. An extensive regeneration procedure allowed the preservation of approximately 95% of the PA binding capacity of the membranes even after five cycles of use.
Collapse
Affiliation(s)
- Ezio Fasoli
- Department of Chemistry, University of Puerto Rico at Humacao, CUH Station, Humacao, PR 00792, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Property evaluations of dry-cast reconstituted bacterial cellulose/tamarind xyloglucan biocomposites. Carbohydr Polym 2013; 93:144-53. [DOI: 10.1016/j.carbpol.2012.04.062] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 03/30/2012] [Accepted: 04/24/2012] [Indexed: 11/20/2022]
|
24
|
Adikane HV, Iyer GJ. Chemical Modification of Ethyl Cellulose-Based Highly Porous Membrane for the Purification of Immunoglobulin G. Appl Biochem Biotechnol 2013; 169:1026-38. [DOI: 10.1007/s12010-012-0085-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 12/28/2012] [Indexed: 11/29/2022]
|
25
|
Santana SDF, Dhadge VL, Roque ACA. Dextran-coated magnetic supports modified with a biomimetic ligand for IgG purification. ACS APPLIED MATERIALS & INTERFACES 2012; 4:5907-5914. [PMID: 23098183 DOI: 10.1021/am301551n] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Dextran-coated iron oxide magnetic particles modified with ligand 22/8, a protein A mimetic ligand, were prepared and assessed for IgG purification. Dextran was chosen as the agent to modify the surface of magnetic particles by presenting a negligible level of nonspecific adsorption. For the functionalization of the particles with the affinity ligand toward antibodies, three methods have been explored. The optimum coupling method yielded a theoretical maximum capacity for human IgG calculated as 568 ± 33 mg/g and a binding affinity constant of 7.7 × 10⁴ M⁻¹. Regeneration, recycle and reuse of particles was also highly successful for five cycles with minor loss of capacity. Moreover, this support presented specificity and effectiveness for IgG adsorption and elution at pH 11 directly from crude extracts with a final purity of 95% in the eluted fraction.
Collapse
Affiliation(s)
- Sara D F Santana
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | | | | |
Collapse
|
26
|
Branco RJF, Dias AMGC, Roque ACA. Understanding the molecular recognition between antibody fragments and protein A biomimetic ligand. J Chromatogr A 2012; 1244:106-15. [PMID: 22621885 DOI: 10.1016/j.chroma.2012.04.071] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 04/23/2012] [Accepted: 04/26/2012] [Indexed: 10/28/2022]
Abstract
Affinity chromatography with protein A from Staphylococcus aureus (SpA) is the most widespread and accepted methodology for antibody capture during the downstream process of antibody manufacturing. A triazine based ligand (ligand 22/8) was previously developed as an inexpensive and robust alternative to SpA chromatography (Li et al. and Teng et al.). Despite the experimental success, there is no structural information on the binding modes of ligand 22/8 to antibodies, namely to Immunoglobulin G (IgG) molecules and fragments. In this work, we addressed this issue by a molecular docking approach allied to molecular dynamics simulations. Theoretical results confirmed the preference of the synthetic ligand to bind IgG through the binding site found in the crystallographic structure of the natural complex between SpA and the Fc fragment of IgG. Our studies also suggested other unknown "hot-spots" for specific binding of the affinity ligand at the hinge between V(H) and C(H)1 domains of Fab fragment. The best docking poses were further analysed by molecular dynamics studies at three different protonation states (pH 3, 7 and 11). The main interactions between ligand 22/8 and the IgG fragments found at pH 7 were weaker at pH 3 and pH 11 and in these conditions the ligand start losing tight contact with the binding site, corroborating the experimental evidence for protein elution from the chromatographic adsorbents at these pH conditions.
Collapse
Affiliation(s)
- Ricardo J F Branco
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | | | | |
Collapse
|
27
|
Barroso T, Roque ACA, Aguiar-Ricardo A. Bioinspired and sustainable chitosan-based monoliths for antibody capture and release. RSC Adv 2012. [DOI: 10.1039/c2ra21687f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
28
|
Che AF, Huang XJ, Xu ZK. Polyacrylonitrile-based nanofibrous membrane with glycosylated surface for lectin affinity adsorption. J Memb Sci 2011. [DOI: 10.1016/j.memsci.2010.10.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
|