1
|
Dizon GVC, Chang CL, Yeh CC, Chou CJ, Jhong JF, Zheng J, Chang Y. Bioinert Fibrous Polypropylene Membranes via In Situ Polymerization of Zwitterionic Poly(sulfobetaine methacrylate). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:4524-4532. [PMID: 39927842 DOI: 10.1021/acs.langmuir.4c04226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
This study reports the fabrication of a biocompatible polypropylene (PP) fibrous membrane via an in situ polymerization process, generating a dual network of PP fibers and poly(sulfobetaine methacrylate) (poly(SBMA)). In this method, the synthesis of the polymer and the modification process happen in a single step. Notably, the modification was achieved without the incorporation of hydrophobic groups in the modifying polymer, demonstrating that the physical entanglement of poly(SBMA) and PP was sufficient to produce a stable biocompatible membrane. The presence of the poly(SBMA) coating was confirmed through various characterization techniques. A reduction in the water contact angle indicated increased hydrophilicity, while Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses verified the presence of poly(SBMA) on the PP membrane surface. The PP membranes were modified with varying sulfobetaine methacrylate solid. The physical morphology of the modified membranes was observed via SEM, and it was seen that membranes modified with higher solid content (4.00, 7.50, 15.0, and 30.0 wt %) showed significant polymer aggregates, making the membranes significantly denser than the original PP membrane. Therefore, optimal modification was achieved with 1.00 wt % poly(SBMA), which balanced enhanced hydrophilicity with preservation of the structural integrity of the membrane. This modification resulted in a 70% reduction in bacterial (Escherichia coli) attachment and a 60% reduction in blood cell attachment compared to the unmodified PP membrane.
Collapse
Affiliation(s)
- Gian Vincent Canlas Dizon
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, 200 Chung Pei Rd, Taoyuan 32023, Taiwan
| | - Chiao-Ling Chang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, 200 Chung Pei Rd, Taoyuan 32023, Taiwan
| | - Chih-Chen Yeh
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, 200 Chung Pei Rd, Taoyuan 32023, Taiwan
| | - Chung-Jung Chou
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, 200 Chung Pei Rd, Taoyuan 32023, Taiwan
| | | | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Yung Chang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, 200 Chung Pei Rd, Taoyuan 32023, Taiwan
| |
Collapse
|
2
|
Chen Z, Zhao Q, Chen J, Mei T, Wang W, Li M, Wang D. N-Halamine-Based Polypropylene Melt-Blown Nonwoven Fabric with Superhydrophilicity and Antibacterial Properties for Face Masks. Polymers (Basel) 2023; 15:4335. [PMID: 37960015 PMCID: PMC10648686 DOI: 10.3390/polym15214335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/24/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
Polypropylene melt-blown nonwoven fabric (PP MNF) masks can effectively block pathogens in the environment from entering the human body. However, the adhesion of surviving pathogens to masks poses a risk of human infection. Thus, embedding safe and efficient antibacterial materials is the key to solving pathogen infection. In this study, stable chlorinated poly(methacrylamide-N,N'-methylenebisacrylamide) polypropylene melt-blown nonwoven fabrics (PP-P(MAA-MBAA)-Cl MNFs) have been fabricated by a simple UV cross-link and chlorination process, and the active chlorine content can reach 3500 ppm. The PP-P(MAA-MBAA)-Cl MNFs show excellent hydrophilic and antibacterial properties. The PP-P(MAA-MBAA)-Cl MNFs could kill all bacteria (both Escherichia coli and Staphylococcus aureus) with only 5 min of contact. Therefore, incorporating PP-P(MAA-MBAA)-Cl MNF as a hydrophilic antimicrobial layer into a four-layer PP-based mask holds great potential for enhancing protection and comfort.
Collapse
Affiliation(s)
- Zhuo Chen
- Key Laboratory of Textile Fiber and Products, Wuhan Textile University, Ministry of Education, Wuhan 430200, China; (Z.C.); (Q.Z.); (T.M.); (W.W.); (D.W.)
| | - Qinghua Zhao
- Key Laboratory of Textile Fiber and Products, Wuhan Textile University, Ministry of Education, Wuhan 430200, China; (Z.C.); (Q.Z.); (T.M.); (W.W.); (D.W.)
| | - Jiahui Chen
- Key Laboratory of Textile Fiber and Products, Wuhan Textile University, Ministry of Education, Wuhan 430200, China; (Z.C.); (Q.Z.); (T.M.); (W.W.); (D.W.)
- College of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Tao Mei
- Key Laboratory of Textile Fiber and Products, Wuhan Textile University, Ministry of Education, Wuhan 430200, China; (Z.C.); (Q.Z.); (T.M.); (W.W.); (D.W.)
| | - Wenwen Wang
- Key Laboratory of Textile Fiber and Products, Wuhan Textile University, Ministry of Education, Wuhan 430200, China; (Z.C.); (Q.Z.); (T.M.); (W.W.); (D.W.)
| | - Mufang Li
- Key Laboratory of Textile Fiber and Products, Wuhan Textile University, Ministry of Education, Wuhan 430200, China; (Z.C.); (Q.Z.); (T.M.); (W.W.); (D.W.)
| | - Dong Wang
- Key Laboratory of Textile Fiber and Products, Wuhan Textile University, Ministry of Education, Wuhan 430200, China; (Z.C.); (Q.Z.); (T.M.); (W.W.); (D.W.)
| |
Collapse
|
3
|
Duarte-Peña L, Magaña H, Bucio E. Catheters with Dual-Antimicrobial Properties by Gamma Radiation-Induced Grafting. Pharmaceutics 2023; 15:pharmaceutics15030960. [PMID: 36986822 PMCID: PMC10056229 DOI: 10.3390/pharmaceutics15030960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Dual antimicrobial materials that have a combination of antimicrobial and antifouling properties were developed. They were developed through modification using gamma radiation of poly (vinyl chloride) (PVC) catheters with 4-vinyl pyridine (4VP) and subsequent functionalization with 1,3-propane sultone (PS). These materials were characterized by infrared spectroscopy, thermogravimetric analysis, swelling tests, and contact angle to determine their surface characteristics. In addition, the capacity of the materials to deliver ciprofloxacin, inhibit bacterial growth, decrease bacterial and protein adhesion, and stimulate cell growth were evaluated. These materials have potential applications in the manufacturing of medical devices with antimicrobial properties, which can reinforce prophylactic potential or even help treat infections, through localized delivery systems for antibiotics.
Collapse
Affiliation(s)
- Lorena Duarte-Peña
- Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de Mexico 04510, Mexico
- Correspondence: (L.D.-P.); (E.B.)
| | - Héctor Magaña
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial Internacional Tijuana, Tijuana 22390, Mexico
| | - Emilio Bucio
- Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de Mexico 04510, Mexico
- Correspondence: (L.D.-P.); (E.B.)
| |
Collapse
|
4
|
Yang Y, Behbahani HS, Morgan BF, Beyer FL, Hocken A, Green MD. Synthesis and thermomechanical characteristics of zwitterionic poly(arylene ether sulfone) copolymers. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Engineering sterilization-resistant and fouling-resistant porous membranes by the vapor-induced phase separation process using a sulfobetaine methacrylamide amphiphilic derivative. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Cihanoğlu A, Schiffman JD, Alsoy Altinkaya S. Biofouling-Resistant Ultrafiltration Membranes via Codeposition of Dopamine and Cetyltrimethylammonium Bromide with Retained Size Selectivity and Water Flux. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38116-38131. [PMID: 35947443 PMCID: PMC9412966 DOI: 10.1021/acsami.2c05844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Biofouling is a serious problem in ultrafiltration (UF) membrane applications. Modifying the surface of membranes with low molecular weight, commercially available antibacterial chemistries is an excellent strategy to mitigate biofouling. Herein, we report a new strategy to impart antibacterial and anti-biofouling behavior without changing the support membrane's size selectivity and pure water permeance (PWP). To this end, a strong antibacterial agent, cetyltrimethylammonium bromide (CTAB), was codeposited with dopamine onto commercial polyethersulfone (PES) UF membranes in the presence of nitrogen (N2) gas backflow. The PWP and pore size of the support membrane did not change with codeposition, confirming the benefit of N2 backflow in mitigating the solution intrusion phenomenon. X-ray photoelectron spectroscopy (XPS), surface ζ potentials, and contact angle measurements confirmed the successful codeposition of polydopamine (PDA) and CTAB onto the membrane. Among three different CTAB concentrations systematically investigated, the membrane functionalized with CTAB at the critical micelle concentration (CMC) provided the best anti-biofouling activity against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria and retained its surface ζ potential after being stored in 1 M NaCl (pH = 6.8) for 3 months. Our results demonstrate the potential of using a facile, one-step approach to modify commercial UF membranes without compromising their pore size or flux, while simultaneously endowing antibacterial activity.
Collapse
Affiliation(s)
- Aydın Cihanoğlu
- Faculty
of Engineering, Department of Chemical Engineering, İzmir Institute of Technology, 35430 Urla-İzmir, Turkey
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Jessica D. Schiffman
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Sacide Alsoy Altinkaya
- Faculty
of Engineering, Department of Chemical Engineering, İzmir Institute of Technology, 35430 Urla-İzmir, Turkey
| |
Collapse
|
7
|
Yu Y, Zhou Z, Huang G, Cheng H, Han L, Zhao S, Chen Y, Meng F. Purifying water with silver nanoparticles (AgNPs)-incorporated membranes: Recent advancements and critical challenges. WATER RESEARCH 2022; 222:118901. [PMID: 35933814 DOI: 10.1016/j.watres.2022.118901] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/19/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
In the face of the growing global water crisis, membrane technology is a promising means of purifying water and wastewater. Silver nanoparticles (AgNPs) have been widely used to improve membrane performance, for antibiofouling, and to aid in photocatalytic degradation, thermal response, and electro-conductivity. However, several critical issues such as short antimicrobial periods, trade-off effects and silver inactivation seriously restrict the engineering application of AgNPs-incorporated membranes. In addition, there is controversy around the use of AgNPs given the toxic preparation process and environmental/biological risks. Hence, it is of great significance to summarize and analyze the recent developments and critical challenges in the use of AgNPs-incorporated membranes in water and wastewater treatment, and to propose potential solutions. We reviewed the different properties and functions of AgNPs and their corresponding applications in AgNPs-incorporated membranes. Recently, multifunctional, novel AgNP-incorporated membranes combined with other functional materials have been developed with high-performance. We further clarified the synergistic mechanisms between AgNPs and these novel nanomaterials and/or polymers, and elucidated their functions and roles in membrane separation. Finally, the critical challenges of AgNPs-incorporated membranes and the proposed solutions were outlined: i) Prolonging the antimicrobial cycle through long-term and controlled AgNPs release; ii) Overcoming the trade-off effect and organic fouling of the AgNPs-incorporated membranes; iii) Preparation of sustainable AgNPs-incorporated membranes; iv) Addressing biotoxicity induced by AgNPs; and v) Deactivation of AgNPs-incorporated membrane. Overall, this review provides a comprehensive discussion of the advancements and challenges of AgNPs-incorporated membranes and guides the development of more robust, multi-functional and sustainable AgNPs-incorporated membranes.
Collapse
Affiliation(s)
- Yuanyuan Yu
- College of Resources and Environment, Southwest University, Chongqing, 400715, China; Chongqing Engineering Research Center of Rural Cleaner Production, Chongqing, 400715, China
| | - Zhongbo Zhou
- College of Resources and Environment, Southwest University, Chongqing, 400715, China; Chongqing Engineering Research Center of Rural Cleaner Production, Chongqing, 400715, China.
| | - Guocheng Huang
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian, 350108, China
| | - Hong Cheng
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Le Han
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Shanshan Zhao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yucheng Chen
- College of Resources and Environment, Southwest University, Chongqing, 400715, China; Chongqing Engineering Research Center of Rural Cleaner Production, Chongqing, 400715, China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
8
|
Tyubaeva PM, Tyubaev MA, Podmasterev VV, Bolshakova AV, Arzhakova OV. Hydrophilization of Hydrophobic Mesoporous High-Density Polyethylene Membranes via Ozonation. MEMBRANES 2022; 12:733. [PMID: 35893451 PMCID: PMC9330096 DOI: 10.3390/membranes12080733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 12/04/2022]
Abstract
This work addresses hydrophilization of hydrophobic mesoporous membranes based on high-density polyethylene (HDPE) via ozonation. Mesoporous HDPE membranes were prepared by intercrystallite environmental crazing. Porosity was 50%, and pore dimensions were below 10 nm. Contact angle of mesoporous membranes increases from 96° (pristine HDPE) to 120° due to the formation of nano/microscale surface relief and enhanced surface roughness. The membranes are impermeable to water (water entry threshold is 250 bar). The prepared membranes were exposed to ozonation and showed a high ozone uptake. After ozonation, the membranes were studied by different physicochemical methods, including DSC, AFM, FTIR spectroscopy, etc. Due to ozonation, wettability of the membranes was improved: their contact angle decreased from 120° down to 60°, and they became permeable to water. AFM micrographs revealed a marked smoothening of the surface relief, and the FTIR spectra indicated the development of new functionalities due to ozonolysis. Both factors contribute to hydrophilization and water permeability of the ozonated HDPE membranes. Hence, ozonation was proved to be a facile and efficient instrument for surface modification of hydrophobic mesoporous HDPE membranes and can also provide their efficient sterilization for biomedical purposes and water treatment.
Collapse
Affiliation(s)
- Polina M. Tyubaeva
- Academic Department of Innovative Materials and Technologies, Plekhanov Russian University of Economics, Stremyanny Per. 36, 117997 Moscow, Russia;
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, ul.Kosygina 4, 119334 Moscow, Russia;
| | - Mikhail A. Tyubaev
- Academic Department of Innovative Materials and Technologies, Plekhanov Russian University of Economics, Stremyanny Per. 36, 117997 Moscow, Russia;
| | - Vyacheslav V. Podmasterev
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, ul.Kosygina 4, 119334 Moscow, Russia;
| | - Anastasia V. Bolshakova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskiye Gory 1/3, 119991 Moscow, Russia; (A.V.B.); (O.V.A.)
| | - Olga V. Arzhakova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskiye Gory 1/3, 119991 Moscow, Russia; (A.V.B.); (O.V.A.)
| |
Collapse
|
9
|
Santoro S, Avci AH, Politano A, Curcio E. The advent of thermoplasmonic membrane distillation. Chem Soc Rev 2022; 51:6087-6125. [PMID: 35789347 DOI: 10.1039/d0cs00097c] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Freshwater scarcity is a vital societal challenge related to climate change, population pressure, and agricultural and industrial demands. Therefore, sustainable desalination/purification of salty/contaminated water for human uses is particularly relevant. Membrane distillation is an emerging hybrid thermal-membrane technology with the potential to overcome the drawbacks of conventional desalination by a synergic exploitation of the water-energy nexus. Although membrane distillation is considered a green technology, efficient heat management remains a critical concern affecting the cost of the process and hindering its viability at large scale. A multidisciplinary approach that involves materials chemistry, physical chemistry, chemical engineering, and materials and polymer science is required to solve this problem. The combination of solar energy with membrane distillation is considered a potentially feasible low-cost approach for providing high-quality freshwater with a low carbon footprint. In particular, recent discoveries about efficient light-to-heat conversion in nanomaterials have opened unprecedented perspectives for the implementation of sunlight-based renewable energy in membrane distillation. The integration of nanofillers enabling photothermal effects into membranes has been demonstrated to be able to significantly enhance the energy efficiency without impacting on economic costs. Here, we provide a comprehensive overview on the state of the art, the opportunities, open challenges and pitfalls of the emerging field of solar-driven membrane distillation. We also assess the peculiar physicochemical properties and synthesis scalability of photothermal materials, as well as the strategies for their integration into polymeric nanocomposite membranes enabling efficient light-to-heat conversion and freshwater.
Collapse
Affiliation(s)
- Sergio Santoro
- University of Calabria - Department of Environmental and Chemical Engineering, Cubo 44 A, Via Pietro Bucci, 87036 Rende CS, Italy.
| | - Ahmet H Avci
- University of Calabria - Department of Environmental and Chemical Engineering, Cubo 44 A, Via Pietro Bucci, 87036 Rende CS, Italy.
| | - Antonio Politano
- Department of Physical and Chemical Sciences, University of L'Aquila, via Vetoio, 67100 L'Aquila (AQ), Italy.
| | - Efrem Curcio
- University of Calabria - Department of Environmental and Chemical Engineering, Cubo 44 A, Via Pietro Bucci, 87036 Rende CS, Italy.
| |
Collapse
|
10
|
Mkpuma VO, Moheimani NR, Fischer K, Schulze A, Ennaceri H. Membrane surface zwitterionization for an efficient microalgal harvesting: A review. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Wang H, Guo X, Pei C, Dong W, Yao Y. Hydrophilic modification of polypropylene membrane via tannic and titanium complexation for high‐efficiency oil/water emulsion separation driven by self‐gravity. POLYM ENG SCI 2022. [DOI: 10.1002/pen.25994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Huanmin Wang
- Textile Institute, College of Biomass Science and Engineering Sichuan University Chengdu People's Republic of China
| | - Xiaoming Guo
- Textile Institute, College of Biomass Science and Engineering Sichuan University Chengdu People's Republic of China
| | - Cunbao Pei
- Textile Institute, College of Biomass Science and Engineering Sichuan University Chengdu People's Republic of China
| | - Wei Dong
- Textile Institute, College of Biomass Science and Engineering Sichuan University Chengdu People's Republic of China
| | - Yongyi Yao
- Textile Institute, College of Biomass Science and Engineering Sichuan University Chengdu People's Republic of China
| |
Collapse
|
12
|
Ma ZY, Xue YR, Yang HC, Wu J, Xu ZK. Surface and Interface Engineering of Polymer Membranes: Where We Are and Where to Go. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhao-Yu Ma
- MOE Key Lab of Macromolecular Synthesis and Functionalization, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- The “Belt and Road” Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Yu-Ren Xue
- MOE Key Lab of Macromolecular Synthesis and Functionalization, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- The “Belt and Road” Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Hao-Cheng Yang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Jian Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Zhi-Kang Xu
- MOE Key Lab of Macromolecular Synthesis and Functionalization, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- The “Belt and Road” Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
13
|
Shui T, Pan M, Lu Y, Zhang J, Liu Q, Nikrityuk PA, Tang T, Liu Q, Zeng H. High-efficiency and durable removal of water-in-heavy oil emulsions enabled by delignified and carboxylated basswood with zwitterionic nanohydrogel coatings. J Colloid Interface Sci 2022; 612:445-458. [PMID: 34999549 DOI: 10.1016/j.jcis.2021.12.146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/17/2022]
Abstract
HYPOTHESIS It is hypothesized that grafting zwitterionic nanohydrogel (ZNG) helps to achieve anti-asphaltene properties on cellulosic substrates, thus overcoming the fouling issue of natural cellulosic materials for treating oily emulsions. It is also hypothesized that ZNG coatings enhance the water-binding affinity of the substrates, resulting in an outstanding water-removal performance on asphaltene-stabilized emulsions with long-term stability. EXPERIMENTS A cellulosic substrate was derived from nature basswood via a sequence of delignification and carboxylation processes. The ZNG-DBS composite was then developed by esterification to covalently graft ZNGs on the inner channels of the substrate. The water-binding affinity, wettability, water-removal performance for treating water in asphaltene-stabilized emulsions were evaluated via characterizing the filtration/absorption, and anti-fouling mechanism of the ZNG-DBS. FINDINGS ZNG coatings enhance the hydration capability of the basswood substrate, allowing it to absorb water emulsion droplets protected by asphaltenes in the oil medium without being contaminated. Moreover, superior and stable removal capabilities were achieved by using this unique material to treat asphaltenes-stabilized water-in-oil emulsions with the water residue content of <1.0 and ∼0.065 wt% via cyclic filtration and absorption tests, respectively. Our results demonstrate the successful conversion of widely accessible wood resources to functional materials with great potential in the practical treatment of oily wastewater.
Collapse
Affiliation(s)
- Tao Shui
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Mingfei Pan
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Yi Lu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Jiawen Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Qingxia Liu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Petr A Nikrityuk
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Tian Tang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Qi Liu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
14
|
Nazari S, Abdelrasoul A. Surface Zwitterionization of HemodialysisMembranesfor Hemocompatibility Enhancement and Protein-mediated anti-adhesion: A Critical Review. BIOMEDICAL ENGINEERING ADVANCES 2022. [DOI: 10.1016/j.bea.2022.100026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
15
|
Purushothaman M, Arvind V, Saikia K, Vaidyanathan VK. Fabrication of highly permeable and anti-fouling performance of Poly(ether ether sulfone) nanofiltration membranes modified with zinc oxide nanoparticles. CHEMOSPHERE 2022; 286:131616. [PMID: 34325268 DOI: 10.1016/j.chemosphere.2021.131616] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Membrane fouling is one of the challenging bottleneck problems in waste water treatment by membrane process. The present study constructed a nanofiltration membrane based on the zinc oxide nanoparticle (n-ZnO) integrated Poly(ether ether sulfone) (PEES) membranes. The developed membranes were characterized by X-ray diffraction (XRD), attenuated total reflectance - fourier transform infrared spectroscopy (AT-FTIR), atomic force microscopy (AFM) and scanning electron microscope (SEM) coupled with energy dispersive X-ray (EDX) analysis. Pure water flux, contact angle, molecular weight cut-off, mean pore size and porosity were determined to investigate the influence of n-ZnO on the properties of the membranes. The characterization showed asymmetric configuration of membranes after n-ZnO incorporation. This incorporation also enhanced the hydrophilicity of PEES membrane. The fouling-resistant potential of the membranes was investigated by the model foulant humic acid (HA) and an enhanced anti-fouling irreversible property with a corresponding flux recovery rate of 92.43 % was noted for the prepared membrane. The rejection performance and permeability of HA was 98.03 % and 166.73 L m-2 h-1, respectively, owing to the hydrophilic nature of ZnO particles. Further, modified PEES membrane exhibited superior separation performance for monovalent and divalent anions. PEES/n-ZnO hybrid membrane assisted nanofiltration is an effective process for the improvement of membrane performance and anti-fouling property, demonstrating its immense use in water reclamation.
Collapse
Affiliation(s)
- Maheswari Purushothaman
- Department of Chemistry, SRM Valliammai Engineering College, Kattankulathur, Chennai, 603203, Tamil Nadu, India.
| | - Varshni Arvind
- Integrated Bioprocessing Laboratory, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Tamil Nadu, 603 203, India
| | - Kongkona Saikia
- Integrated Bioprocessing Laboratory, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Tamil Nadu, 603 203, India
| | - Vinoth Kumar Vaidyanathan
- Integrated Bioprocessing Laboratory, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Tamil Nadu, 603 203, India.
| |
Collapse
|
16
|
An attempt to enhance water flux of hollow fiber polyamide composite nanofiltration membrane by the incorporation of hydrophilic and compatible PPTA/PSF microparticles. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Gungormus E, Alsoy Altinkaya S. Facile fabrication of Anti-biofouling polyaniline ultrafiltration membrane by green citric acid doping process. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
18
|
Surface charge control of poly(methyl methacrylate-co-dimethyl aminoethyl methacrylate)-based membrane for improved fouling resistance. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119778] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
19
|
MnO -mineralized oxidized-polypropylene membranes for highly efficient oil/water separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
20
|
Liu G, Tao R, Hu M, Liu X, Matindi C, Kadanyo S, Chen R, Mao L, Fang K, Li J. Zwitterionic copolymer modified polyethersulphone/sulfonated polysulphone membranes for enhancing dye/salt selective separation. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gansheng Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology Tiangong University Tianjin China
- School of Textile Science and Engineering Tiangong University Tianjin China
| | - Ran Tao
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology Tiangong University Tianjin China
- School of Materials Science and Engineering Tiangong University Tianjin China
| | - Mengyang Hu
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology Tiangong University Tianjin China
- School of Materials Science and Engineering Tiangong University Tianjin China
| | - Xiaowei Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology Tiangong University Tianjin China
- School of Materials Science and Engineering Tiangong University Tianjin China
| | - Christine Matindi
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology Tiangong University Tianjin China
- School of Materials Science and Engineering Tiangong University Tianjin China
| | - Sania Kadanyo
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology Tiangong University Tianjin China
- School of Materials Science and Engineering Tiangong University Tianjin China
| | - Rui Chen
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology Tiangong University Tianjin China
- School of Materials Science and Engineering Tiangong University Tianjin China
| | - Liuyong Mao
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology Tiangong University Tianjin China
- School of Materials Science and Engineering Tiangong University Tianjin China
| | - Kuanjun Fang
- Collaborative Innovation Center for Eco‐Textiles of Shandong Province Qingdao University Qingdao China
| | - Jianxin Li
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology Tiangong University Tianjin China
- School of Materials Science and Engineering Tiangong University Tianjin China
| |
Collapse
|
21
|
Xu T, Zhang J, Guo H, Zhao W, Li Q, Zhu Y, Yang J, Bai J, Zhang L. Antifouling Fibrous Membrane Enables High Efficiency and High-Flux Microfiltration for Water Treatment. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49254-49265. [PMID: 34633173 DOI: 10.1021/acsami.1c11316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Membrane biofouling has long been a major obstacle to highly efficient water treatment. The modification of the membrane surface with hydrophilic materials can effectively enhance biofouling resistance. However, the water flux of the membranes is often compromised for the improvement of antifouling properties. In this work, a composite membrane composed of a zwitterionic hydrogel and electrospinning fibers was prepared by a spin-coating and UV cross-linking process. At the optimum conditions, the composite membrane could effectively resist the biofouling contaminations, as well as purify polluted water containing bacteria or diatoms with a high flux (1349.2 ± 85.5 L m-2 h-1 for 106 CFU mL-1 of an Escherichia coli solution). Moreover, compared with the commercial poly(ether sulfone) (PES) membrane, the membrane displayed an outstanding long-term filtration performance with a lower water flux decline. Therefore, findings in this work provide an effective antifouling modification strategy for microfiltration membranes and hold great potential for developing antifouling membranes for water treatment.
Collapse
Affiliation(s)
- Tong Xu
- Collage of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, China
| | - Jiamin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Hongshuang Guo
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Weiqiang Zhao
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Qingsi Li
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Yingnan Zhu
- School of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Yang
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Jie Bai
- Collage of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, China
| | - Lei Zhang
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| |
Collapse
|
22
|
Zhou L, Xiao G, He Y, Wu J, Shi H, Zhong F, Yin X, Li Z, Chen J. Multifunctional filtration membrane with anti-viscous-oils-fouling capacity and selective dyes adsorption ability for complex wastewater remediation. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125379. [PMID: 33930952 DOI: 10.1016/j.jhazmat.2021.125379] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/29/2021] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Abstract
Multifunctional filtration membranes (MFMs), which can both effectively separate oil and selectively remove dyes from polluted aquatic system with robust anti-viscous-oil-fouling capacity, strong chemical/physical resistance, and long cycled stability, are highly required but still a challenge to be realized. Herein, a simple route has been demonstrated to address this challenge aforementioned by decorating both halloysite nanotubes (HNTs) and zwitterionic poly (sulfobetaine methyl methacrylate) (PSBMA) on the microporous polyvinylidene fluoride (PVDF) membrane surface via modified polydopamine (PDA) coating route. The as-prepared membrane exhibits super-hydrophilic/underwater super-oleophobic performance and high water permeation flux (32529 ± 278 L m-2 h-1 at 0.85 bar) to purify the diverse viscous oil-in-water emulsions from oily wastewater accompanying with good cycled stability (the recovery rate of permeate flux is close to 100% after 5 cycles). Moreover, the as-prepared MFM possesses not only strong chemical resistance under wide range of pH value (from 1 to 12) and high saline (NaCl: 10 wt%) environment, but also physical resistance against ultrasound bath for 30 min. Given the presence of HNTs, PDA, and PSBMA, our MFM shows enough active sites to adsorb the soluble dyes and metallic ions in wastewater. These excellent properties endow our MFM with great potential for the remediation of complex wastewater.
Collapse
Affiliation(s)
- Liang Zhou
- State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China; College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Guoqing Xiao
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China.
| | - Yi He
- State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China; College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China.
| | - Jingcheng Wu
- State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China; College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Heng Shi
- State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China; College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Fei Zhong
- State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China; College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Xiangying Yin
- State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China; College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Zhenyu Li
- School of Materials Science and Engineering, Southwest Petroleum University, Chengdu 610500, China; Chengdu Evermaterials Co., Ltd, Chengdu, Sichuan 610500, China
| | - Jingyu Chen
- Chengdu Evermaterials Co., Ltd, Chengdu, Sichuan 610500, China.
| |
Collapse
|
23
|
Liu W, Lin H, Wang J, Han Q, Liu F. Polytetrafluoroethylene (PTFE) hollow fibers modified by hydrophilic crosslinking network (HCN) for robust resistance to fouling and harsh chemical cleaning. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Gryta M. Surface modification of polypropylene membrane by helium plasma treatment for membrane distillation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119265] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Membrane Contactors for Maximizing Biomethane Recovery in Anaerobic Wastewater Treatments: Recent Efforts and Future Prospect. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Increasing demand for water and energy has emphasized the significance of energy-efficient anaerobic wastewater treatment; however, anaerobic effluents still containing a large portion of the total CH4 production are discharged to the environment without being utilized as a valuable energy source. Recently, gas–liquid membrane contactors have been considered as a promising technology to recover such dissolved methane from the effluent due to their attractive characteristics such as high specific mass transfer area, no flooding at high flow rates, and low energy requirement. Nevertheless, the development and further application of membrane contactors were still not fulfilled due to their inherent issues such as membrane wetting and fouling, which lower the CH4 recovery efficiency and thus net energy production. In this perspective, the topics in membrane contactors for dissolved CH4 recovery are discussed in the following order: (1) operational principle, (2) potential as waste-to-energy conversion system, and (3) technical challenges and recent efforts to address them. Then, future efforts that should be devoted to advancing gas–liquid membrane contactors are suggested as concluding remarks.
Collapse
|
26
|
Gu Y, Zhang B, Fu Z, Li J, Yu M, Li L, Li J. Poly (vinyl alcohol) modification of poly(vinylidene fluoride) microfiltration membranes for oil/water emulsion separation via an unconventional radiation method. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118792] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
27
|
Oshiba Y, Harada Y, Yamaguchi T. Precise surface modification of porous membranes with well-defined zwitterionic polymer for antifouling applications. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118772] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
28
|
Ho TTP, Doan VK, Tran NMP, Nguyen LKK, Le ANM, Ho MH, Trinh NT, Van Vo T, Tran LD, Nguyen TH. Fabrication of chitosan oligomer-coated electrospun polycaprolactone membrane for wound dressing application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111724. [DOI: 10.1016/j.msec.2020.111724] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/01/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022]
|
29
|
Pan XH, Zu JH. A highly hydrophilic cation exchange nonwoven with a further modifiable epoxy group prepared by radiation-induced graft polymerization. Polym Chem 2021. [DOI: 10.1039/d1py00866h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel cation exchange nonwoven PP-g-SSS/GMA containing epoxy and sulfonic groups was successfully prepared via radiation-induced simultaneous grafting polymerization by attaching GMA and SSS monomers onto PP nonwoven.
Collapse
Affiliation(s)
- Xiao-han Pan
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jian-hua Zu
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
30
|
Improving water flux and salt rejection by a tradeoff between hydrophilicity and hydrophobicity of sublayer in TFC FO membrane. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Zhang B, Skelly JD, Braun BM, Ayers DC, Song J. Surface-grafted zwitterionic polymers improve the efficacy of a single antibiotic injection in suppressing S. aureus periprosthetic infections. ACS APPLIED BIO MATERIALS 2020; 3:5896-5904. [PMID: 34368642 DOI: 10.1021/acsabm.0c00600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Implant-associated bacterial infections are difficult to treat due to the tendency of biofilm formation on implant surfaces, which protects embedded pathogens from host defense and impedes antibiotic penetration, rendering systemic antibiotic injections ineffective. Here, we test the hypothesis that implant coatings that reduce bacterial colonization would make planktonic bacteria within the periprosthetic environment more susceptible to conventional systemic antibiotic treatment. We covalently grafted zwitterionic polymer brushes poly(sulfobetaine methacryate) from Ti6Al4V surface to increase the substrate surface hydrophilicity and reduce staphylococcus aureus (S. aureus) adhesion. Using a mouse femoral intramedullary (IM) canal infection model, we showed that the anti-fouling coating applied to Ti6Al4V IM implants, when combined with a single vancomycin systemic injection, significantly suppressed both bacterial colonization on implant surfaces and the periprosthetic infections, outperforming either treatment alone. This work supports the hypothesis that grafting anti-fouling polymers to implant surfaces improves the efficacy of systemic antibiotic injections to combat periprosthetic infections.
Collapse
Affiliation(s)
- Ben Zhang
- Department of Orthopedics & Physical Rehabilitation, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jordan D Skelly
- Department of Orthopedics & Physical Rehabilitation, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Benjamin M Braun
- Department of Orthopedics & Physical Rehabilitation, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - David C Ayers
- Department of Orthopedics & Physical Rehabilitation, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jie Song
- Department of Orthopedics & Physical Rehabilitation, University of Massachusetts Medical School, Worcester, MA 01655, USA
| |
Collapse
|
32
|
Sun Y, Lin Y, Wang S, Yang Z, Zhang L, Matsuyama H. Facile modification of aliphatic polyketone‐based thin‐film composite membrane for three‐dimensional and comprehensive antifouling in active‐layer‐facing‐draw‐solution mode. J Appl Polym Sci 2020. [DOI: 10.1002/app.49711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yuchen Sun
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering Kobe University Kobe Japan
| | - Yuqing Lin
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering Kobe University Kobe Japan
| | - Shengyao Wang
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering Kobe University Kobe Japan
| | - Zhe Yang
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering Kobe University Kobe Japan
| | - Lei Zhang
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering Kobe University Kobe Japan
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering Kobe University Kobe Japan
| |
Collapse
|
33
|
Improved permeability and biofouling resistance of microfiltration membranes via quaternary ammonium and zwitterion dual-functionalized diblock copolymers. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
34
|
Yarysheva AY, Dolgova AA, Yarysheva LM, Arzhakova OV. Hydrophilization of polypropylene films by poly(ethylene oxide) via intercrystallite crazing. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.07.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Venault A, Chen LA, Maggay IV, Marie Yap Ang MB, Chang HY, Tang SH, Wang DM, Chou CJ, Bouyer D, Quémener D, Lee KR, Chang Y. Simultaneous amphiphilic polymer synthesis and membrane functionalization for oil/water separation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
36
|
Ching JY, Huang BJ, Hsu YT, Khung YL. Anti-Adhesion Behavior from Ring-Strain Amine Cyclic Monolayers Grafted on Silicon (111) Surfaces. Sci Rep 2020; 10:8758. [PMID: 32472042 PMCID: PMC7260185 DOI: 10.1038/s41598-020-65710-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/07/2020] [Indexed: 01/09/2023] Open
Abstract
In this manuscript, a series of amine tagged short cyclic molecules (cyclopropylamine, cyclobutylamine, cyclopentylamine and cyclohexylamine) were thermally grafted onto p-type silicon (111) hydride surfaces via nucleophilic addition. The chemistries of these grafting were verified via XPS, AFM and sessile droplet measurements. Confocal microscopy and cell viability assay was performed on these surfaces incubated for 24 hours with triple negative breast cancer cells (MDA-MB 231), gastric adenocarcinoma cells (AGS) endometrial adenocarcinoma (Hec1A). All cell types had shown a significant reduction when incubated on these ring-strain cyclic monolayer surfaces than compared to standard controls. The expression level of focal adhesion proteins (vinculin, paxilin, talin and zyxin) were subsequently quantified for all three cell types via qPCR analysis. Cells incubate on these surface grafting were observed to have reduced levels of adhesion protein expression than compared to positive controls (collagen coating and APTES). A potential application of these anti-adhesive surfaces is the maintenance of the chondrocyte phenotype during in-vitro cell expansion. Articular chondrocytes cultured for 6 days on ring strained cyclopropane-modified surfaces was able to proliferate but had maintained a spheroid/aggregated phenotype with higher COL2A1 and ACAN gene expression. Herein, these findings had help promote grafting of cyclic monolayers as an viable alternative for producing antifouling surfaces.
Collapse
Affiliation(s)
- Jing Yuan Ching
- Department of Biological Science and Technology, China Medical University, No.91 Hsueh-Shih Road, Taichung, Taiwan
| | - Brian J Huang
- Integrative Stem Cell Center, China Medical University Hospital, Taichung, 40447, Taiwan.,Institute of New Drug Development, China Medical University, No.91 Hsueh-Shih Road, Taichung, Taiwan
| | - Yu-Ting Hsu
- Department of Biological Science and Technology, China Medical University, No.91 Hsueh-Shih Road, Taichung, Taiwan
| | - Yit Lung Khung
- Department of Biological Science and Technology, China Medical University, No.91 Hsueh-Shih Road, Taichung, Taiwan.
| |
Collapse
|
37
|
Improving the performance of loose nanofiltration membranes by poly-dopamine/zwitterionic polymer coating with hydroxyl radical activation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116412] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
38
|
Zefirov VV, Pigaleva MA, Sergeyev VG, Gallyamov MO. Deposition of a Chitosan Coating on Celgard Porous Matrices in the Presence of Carbon Dioxide under Pressure. POLYMER SCIENCE SERIES A 2020. [DOI: 10.1134/s0965545x20020078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
39
|
Bandehali S, Parvizian F, Moghadassi A, Hosseini SM. High water permeable PEI nanofiltration membrane modified by L-cysteine functionalized POSS nanoparticles with promoted antifouling/separation performance. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116361] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
40
|
Preparation of a novel polyvinyl chloride (PVC) ultrafiltration membrane modified with Ag/TiO2 nanoparticle with enhanced hydrophilicity and antibacterial activities. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116374] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Tang SH, Venault A, Hsieh C, Dizon GV, Lo CT, Chang Y. A bio-inert and thermostable zwitterionic copolymer for the surface modification of PVDF membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117655] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
42
|
Wang X, Cheng P, Liu N, Wan Y, Guo Q, Cheng Q, Liu K, Lu Z, Li M, Wang D. Highly efficient nanofibrous sterile membrane with anti-BSA/RNA-fouling surface via plasma-assisted carboxylation process. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117935] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
43
|
Improved anti-biofouling performance of polyamide reverse osmosis membranes modified with a polyampholyte with effective carboxyl anion and quaternary ammonium cation ratio. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117529] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
44
|
Zhang X, Liu C, Yang J, Zhu CY, Zhang L, Xu ZK. Nanofiltration membranes with hydrophobic microfiltration substrates for robust structure stability and high water permeation flux. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117444] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
45
|
Effect of BSA and sodium alginate adsorption on decline of filtrate flux through polyethylene microfiltration membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117469] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Low Fouling, Peptoid-Coated Polysulfone Hollow Fiber Membranes-the Effect of Grafting Density and Number of Side Chains. Appl Biochem Biotechnol 2019; 191:824-837. [PMID: 31872336 DOI: 10.1007/s12010-019-03218-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/05/2019] [Indexed: 10/25/2022]
Abstract
The development of low fouling membranes to minimize protein adsorption has relevance in various biomedical applications. Here, electrically neutral peptoids containing 2-methoxyethyl glycine (NMEG) side chains were attached to polysulfone hollow fiber membranes via polydopamine. The number of side chains and grafting density were varied to determine the effect on coating properties and the ability to prevent fouling. NMEG peptoid coatings have high hydrophilicity compared to unmodified polysulfone membranes. The extent of biofouling was evaluated using bovine serum albumin, as well as platelet adhesion. The results suggest that both the number of side chains and grafting density play a role in the surface properties that drive biofouling. Protein adsorption decreased with increasing peptoid grafting density and is lowest above a critical grafting density specific to peptoid chain length. Our findings show that the optimization of grafting density and hydration of the surface are important factors for achieving the desired antifouling performance.
Collapse
|
47
|
Jiang Z, Chu L, Wu X, Wang Z, Jiang X, Ju X, Ruan X, He G. Membrane-based separation technologies: from polymeric materials to novel process: an outlook from China. REV CHEM ENG 2019. [DOI: 10.1515/revce-2017-0066] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Abstract
During the past two decades, research on membrane and membrane-based separation process has developed rapidly in water treatment, gas separation, biomedicine, biotechnology, chemical manufacturing and separation process integration. In China, remarkable progresses on membrane preparation, process development and industrial application have been made with the burgeoning of the domestic economy. This review highlights the recent development of advanced membranes in China, such as smart membranes for molecular-recognizable separation, ion exchange membrane for chemical productions, antifouling membrane for liquid separation, high-performance gas separation membranes and the high-efficiency hybrid membrane separation process design, etc. Additionally, the applications of advanced membranes, relevant devices and process design strategy in chemical engineering related fields are discussed in detail. Finally, perspectives on the future research directions, key challenges and issues in membrane separation are concluded.
Collapse
|
48
|
Bao Q, Xie L, Ohashi H, Hosomi M, Terada A. Inhibition of Agrobacterium tumefaciens biofilm formation by acylase I-immobilized polymer surface grafting of a zwitterionic group-containing polymer brush. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107372] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
49
|
Ye Q, He B, Zhang Y, Zhang J, Liu S, Zhou F. Grafting Robust Thick Zwitterionic Polymer Brushes via Subsurface-Initiated Ring-Opening Metathesis Polymerization for Antimicrobial and Anti-Biofouling. ACS APPLIED MATERIALS & INTERFACES 2019; 11:39171-39178. [PMID: 31559815 DOI: 10.1021/acsami.9b11946] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the present work, high-thickness zwitterionic polymer brushes based on imidazolium salts were successfully grafted via a novel subsurface-initiated ring-opening metathesis polymerization (subsurface-initiated ROMP) from polydimethylsiloxane (PDMS), and their antifouling performance was evaluated in detail. First, an initiator-embedded PDMS was prepared via copolymerization of PDMS prepolymer and ROMP initiator, and then zwitterionic polymer brushes were grafted via subsurface-initiated ROMP from surface to subsurface of the PDMS due to the implanted ROMP initiator. Results from a series of characterization methods such as infrared spectroscopy, X-ray photoelectron spectroscopy, contact angle, and atomic force microscopy proved the zwitterionic polymer brushes' successful grafting. The grafting thickness of zwitterionic polymer brushes via subsurface-initiated ROMP can reach the micron scale, and the as-prepared zwitterionic polymer based surfaces showed good lubricating properties compared to traditional surface-initiated ROMP, which hints that polymer brushes can be grafted not only on the surface but also on the subsurface of PDMS. The protein adhesion test and biofouling assay of zwitterionic polymer brushes were tested in the laboratory, and the results indicated that the zwitterionic polymer-functionalized PDMS can effectively resist the adhesion of bovine serum albumin and algae (Porphyridium and Dunaliella) and has good anti-bacterial activity against both Escherichia coli and Staphylococcus aureus.
Collapse
Affiliation(s)
- Qian Ye
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering , Northwestern Polytechnical University , No. 127, Youyi West Road , Xi'an 710072 , P. R. China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen , Shenzhen 518057 , P. R. China
| | - Baoluo He
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering , Northwestern Polytechnical University , No. 127, Youyi West Road , Xi'an 710072 , P. R. China
| | - Yun Zhang
- The Fourth Hospital of Xi'an , Xi'an Jiaotong University , No. 21, Jiefang Road , Xi'an 710004 , P. R. China
| | - Jin Zhang
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering , Northwestern Polytechnical University , No. 127, Youyi West Road , Xi'an 710072 , P. R. China
| | - Shujuan Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering , Northwestern Polytechnical University , No. 127, Youyi West Road , Xi'an 710072 , P. R. China
| | - Feng Zhou
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering , Northwestern Polytechnical University , No. 127, Youyi West Road , Xi'an 710072 , P. R. China
- State Key Laboratory of Solid Lubrication , Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences , No. 18, Tianshui Middle Road , Lanzhou 730000 , P. R. China
| |
Collapse
|
50
|
Zwitterionic grafting of sulfobetaine methacrylate (SBMA) on hydrophobic PVDF membranes for enhanced anti-fouling and anti-wetting in the membrane distillation of oil emulsions. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117196] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|