1
|
Zhi Y, Zhao X, Shuai A, Jia Y, Cheng X, Lin S, Xiao F, Han L, Chai H, He Q, Liu C. Enhancing rejection of short-chain per- and polyfluoroalkyl substances by tailoring the surface charge of nanofiltration membranes. WATER RESEARCH 2025; 272:122931. [PMID: 39667173 DOI: 10.1016/j.watres.2024.122931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/18/2024] [Accepted: 12/06/2024] [Indexed: 12/14/2024]
Abstract
Nanofiltration (NF) effectively removes per- and polyfluoroalkyl substances (PFAS) from water but struggles with short-chain PFAS (i.e., those containing less than 6 perfluorinated carbons) due to size exclusion inefficiency. In this study, we developed layer-by-layer assembled NF membranes with PDADMAC/PSS terminal bilayers varying in chain lengths, hydrophilicity, and charge, and systematically assessed their removal of 16 representative PFAS species. The mechanisms between long-chain and short-chain PFAS were investigated and optimal strategies for enhancing PFAS selectivity were developed. Results demonstrated that the (PDADMAC/PSS)3 membrane achieved the highest removal (86.1%-98.1%) for short-chain PFAS, including PFBA-PFHpA (C4-C6), PFBS (C4), PFMOPrA (C3), PFMOBA (C4), and GenX (C5), while effectively removing (>99.9%) long-chain counterparts (≥C7). As feed water pH increased from 3.5 to 9.0, average PFAS rejection rose from 16.6% to 32.0%, revealing more negative charged membrane surface endow stronger electrostatic repulsion, particularly for short-chain anionic PFAS. In addition, we also tested the PFAS removal efficacy of (PDADMAC/PSS)3 membrane using real sewage plant effluent. Compared to the pristine membrane, the (PDADMAC/PSS)3 membrane exhibited improved removal for most PFAS, with removal efficiencies ranging from 82.5% for PFOA to 96.7% for PFOS. The most significant improvements were observed in C4 compounds like PFBA and PFBS (increased by 6.0-11.5%). Our study suggests that PFAS removal efficiency by NF highly depends on size exclusion, with short-chain anionic PFAS more likely affected by electrostatic repulsion. Membrane surface manipulation can enhance selectivity, aiding in predicting NF treatment effectiveness for specific PFAS compounds.
Collapse
Affiliation(s)
- Yue Zhi
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Xiaoqing Zhao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Ao Shuai
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Yonghui Jia
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Xinyi Cheng
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Shihong Lin
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235-1831, United States; Department of Chemical and Bimolecular Engineering, Vanderbilt University, Nashville, TN 37235-1831, United States
| | - Feng Xiao
- Department of Civil and Environmental Engineering, The University of Missouri, Columbia, Missouri 65211, United States
| | - Le Han
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Hongxiang Chai
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Qiang He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Caihong Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
2
|
Lauwers S, Van Herreweghe M, Foubert K, Theunis M, Breynaert A, Tuenter E, Hermans N. Validation and optimisation of reduced glutathione quantification in erythrocytes by means of a coulometric high-performance liquid chromatography analytical method. Biomed Chromatogr 2024; 38:e6021. [PMID: 39353732 DOI: 10.1002/bmc.6021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024]
Abstract
Glutathione (GSH), a tripeptide that consists of cysteine, glutamate and glycine, is present in all mammalian tissues in the millimolar range. Besides having numerous cellular functions, GSH is an important antioxidant and is considered a valuable biomarker in evaluating oxidative stress. This paper provides a sensitive analytical method using HPLC-ECD to quantify GSH in erythrocytes, validated using the ICH guidelines for Bioanalytical Method Validation. The sample preparation was optimised using centrifugal filtration and a hypotonic phosphate buffer for extracting GSH from erythrocytes. HPLC-ECD parameters were adjusted to allow a fast, reversed phase, isocratic separation in 10 min. The detector response was linear between 0.3 and 9.5 μg/mL with a satisfactory regression coefficient and a LOQ of 0.11 μg/mL. Intra- and inter-day repeatability ranged between 1.10% and 8.57% with recoveries ranging from 94.3% to 106.0%. Dilution integrity, benchtop, freeze-thaw and long-term stability were investigated. Samples were stable for up to 6 months at -80°C. This method has a good linear response and is repeatable, precise and accurate. It minimises GSH auto-oxidation using a centrifugal filter during sample preparation, instead of acidification. Therefore, this analytical method is suitable for quantifying GSH in erythrocytes as a marker of oxidative stress.
Collapse
Affiliation(s)
- Stef Lauwers
- Department of Pharmaceutical Sciences, Natural Products & Food Research and Analysis - Pharmaceutical Technology (NatuRAPT), University of Antwerp, Antwerp, Belgium
| | - Maxim Van Herreweghe
- Department of Pharmaceutical Sciences, Natural Products & Food Research and Analysis - Pharmaceutical Technology (NatuRAPT), University of Antwerp, Antwerp, Belgium
| | - Kenn Foubert
- Department of Pharmaceutical Sciences, Natural Products & Food Research and Analysis - Pharmaceutical Technology (NatuRAPT), University of Antwerp, Antwerp, Belgium
| | - Mart Theunis
- Department of Pharmaceutical Sciences, Natural Products & Food Research and Analysis - Pharmaceutical Technology (NatuRAPT), University of Antwerp, Antwerp, Belgium
| | - Annelies Breynaert
- Department of Pharmaceutical Sciences, Natural Products & Food Research and Analysis - Pharmaceutical Technology (NatuRAPT), University of Antwerp, Antwerp, Belgium
| | - Emmy Tuenter
- Department of Pharmaceutical Sciences, Natural Products & Food Research and Analysis - Pharmaceutical Technology (NatuRAPT), University of Antwerp, Antwerp, Belgium
| | - Nina Hermans
- Department of Pharmaceutical Sciences, Natural Products & Food Research and Analysis - Pharmaceutical Technology (NatuRAPT), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
3
|
Tandel AM, Agarwal M, Deng E, Zhu L, Friedman K, Yu M, Cheng C, Lin H. Scalable Graphene Oxide Hollow Fiber Membranes for Dye Desalination Enabled by Multi-Purpose Polyamine Functionalization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403620. [PMID: 39221703 DOI: 10.1002/smll.202403620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/09/2024] [Indexed: 09/04/2024]
Abstract
2D nanosheets such as graphene oxide (GO) can be stacked to construct membranes with fine-tuned nanochannels to achieve molecular sieving ability. These membranes are often thin to achieve high water permeance, but their fabrication with consistent nanostructures on a large scale presents an enormous challenge. Herein, GO-based hollow fiber membranes (HFMs) are developed for dye desalination by synergistically combining chemical etching to form in-plane nanopores (10-30 nm) to increase water permeance and polyamine functionalization to improve underwater stability and enable facile large-scale production using existing membrane manufacturing processes. HFM modules with areas of 88 cm2 and GO layer thicknesses of ≈500 nm are fabricated, and they exhibited a stable dye water permeance of 75 L m-2 h-1 bar-1, rejection of >99.5% for Direct red and Congo red, and Na2SO4/dye separation factor of 300-500, superior to state-of-the-art commercial membranes. The versatility of this approach is also demonstrated using different short polyamines and porous substrates. This study reveals a scalable way of designing 2D materials into high-performance robust membranes for practical applications.
Collapse
Affiliation(s)
- Ameya Manoj Tandel
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Manas Agarwal
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Erda Deng
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Lingxiang Zhu
- Department of Energy, National Energy Technology Laboratory, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, PA, 15236, USA
- NETL Support Contractor, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, PA, 15236, USA
| | - Kaleb Friedman
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Miao Yu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Chong Cheng
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Haiqing Lin
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| |
Collapse
|
4
|
Verbeke R, Nulens I, Thijs M, Lenaerts M, Bastin M, Van Goethem C, Koeckelberghs G, Vankelecom IF. Solutes in solvent resistant and solvent tolerant nanofiltration: How molecular interactions impact membrane rejection. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
5
|
Wang A, Chen W, Xu H, Xie Z, Zheng X, Liu M, Wang Y, Geng N, Mu X, Ding M. Heterostructured MoS2 quantum dot/GO lamellar membrane with improved transport efficiency for organic solvents inspired by the Namib Desert beetle. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Sadare OO, Yoro KO, Moothi K, Daramola MO. Lignocellulosic Biomass-Derived Nanocellulose Crystals as Fillers in Membranes for Water and Wastewater Treatment: A Review. MEMBRANES 2022; 12:320. [PMID: 35323795 PMCID: PMC8951035 DOI: 10.3390/membranes12030320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 12/29/2022]
Abstract
The improvement of membrane applications for wastewater treatment has been a focal point of research in recent times, with a wide variety of efforts being made to enhance the performance, integrity and environmental friendliness of the existing membrane materials. Cellulose nanocrystals (CNCs) are sustainable nanomaterials derived from microorganisms and plants with promising potential in wastewater treatment. Cellulose nanomaterials offer a satisfactory alternative to other environmentally harmful nanomaterials. However, only a few review articles on this important field are available in the open literature, especially in membrane applications for wastewater treatment. This review briefly highlights the circular economy of waste lignocellulosic biomass and the isolation of CNCs from waste lignocellulosic biomass for membrane applications. The surface chemical functionalization technique for the preparation of CNC-based materials with the desired functional groups and properties is outlined. Recent uses of CNC-based materials in membrane applications for wastewater treatment are presented. In addition, the assessment of the environmental impacts of CNCs, cellulose extraction, the production techniques of cellulose products, cellulose product utilization, and their end-of-life disposal are briefly discussed. Furthermore, the challenges and prospects for the development of CNC from waste biomass for application in wastewater treatment are discussed extensively. Finally, this review unraveled some important perceptions on the prospects of CNC-based materials, especially in membrane applications for the treatment of wastewater.
Collapse
Affiliation(s)
- Olawumi O. Sadare
- Department of Chemical Engineering, Faculty of Engineering the Built Environment, Doornfontein Campus, University of Johannesburg, P.O. Box 17011, Johannesburg 2028, South Africa;
| | - Kelvin O. Yoro
- Energy Technologies Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA;
| | - Kapil Moothi
- Department of Chemical Engineering, Faculty of Engineering the Built Environment, Doornfontein Campus, University of Johannesburg, P.O. Box 17011, Johannesburg 2028, South Africa;
| | - Michael O. Daramola
- Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Hatfield, Pretoria 0028, South Africa;
| |
Collapse
|
7
|
Asymmetric and bi-continuously structured polyethersulfone (PES) membranes with superior water flux for ultrafiltration application. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02867-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
8
|
Wang K, Wang X, Januszewski B, Liu Y, Li D, Fu R, Elimelech M, Huang X. Tailored design of nanofiltration membranes for water treatment based on synthesis-property-performance relationships. Chem Soc Rev 2021; 51:672-719. [PMID: 34932047 DOI: 10.1039/d0cs01599g] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tailored design of high-performance nanofiltration (NF) membranes is desirable because the requirements for membrane performance, particularly ion/salt rejection and selectivity, differ among the various applications of NF technology ranging from drinking water production to resource mining. However, this customization greatly relies on a comprehensive understanding of the influence of membrane fabrication methods and conditions on membrane properties and the relationships between the membrane structural and physicochemical properties and membrane performance. Since the inception of NF, much progress has been made in forming the foundation of tailored design of NF membranes and the underlying governing principles. This progress includes theories regarding NF mass transfer and solute rejection, further exploitation of the classical interfacial polymerization technique, and development of novel materials and membrane fabrication methods. In this critical review, we first summarize the progress made in controllable design of NF membrane properties in recent years from the perspective of optimizing interfacial polymerization techniques and adopting new manufacturing processes and materials. We then discuss the property-performance relationships based on solvent/solute mass transfer theories and mathematical models, and draw conclusions on membrane structural and physicochemical parameter regulation by modifying the fabrication process to improve membrane separation performance. Next, existing and potential applications of these NF membranes in water treatment processes are systematically discussed according to the different separation requirements. Finally, we point out the prospects and challenges of tailored design of NF membranes for water treatment applications. This review bridges the long-existing gaps between the pressing demand for suitable NF membranes from the industrial community and the surge of publications by the scientific community in recent years.
Collapse
Affiliation(s)
- Kunpeng Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China.
| | - Xiaomao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China.
| | - Brielle Januszewski
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
| | - Yanling Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China. .,State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Danyang Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China.
| | - Ruoyu Fu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China.
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China.
| |
Collapse
|
9
|
Sokhandan F, Homayoonfal M, Hajheidari M. Sodium alginate coating: A strategy to fabricate a membrane surface resistant against sodium alginate fouling. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Merlet R, Winnubst L, Nijmeijer A, Amirilargani M, Sudhölter EJR, de Smet LCPM, Salvador Cob S, Vandezande P, Dorbec M, Sluijter S, van Veen H, VanDelft Y, Wienk I, Cuperus P, Behera S, Hartanto Y, Vankelecom IFJ, de Wit P. Comparing the Performance of Organic Solvent Nanofiltration Membranes in Non‐Polar Solvents. CHEM-ING-TECH 2021. [DOI: 10.1002/cite.202100032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Renaud Merlet
- University of Twente Inorganic Membranes, Membrane Science and Technology Cluster P.O. Box 217 7500 AE Enschede The Netherlands
| | - Louis Winnubst
- University of Twente Inorganic Membranes, Membrane Science and Technology Cluster P.O. Box 217 7500 AE Enschede The Netherlands
| | - Arian Nijmeijer
- University of Twente Inorganic Membranes, Membrane Science and Technology Cluster P.O. Box 217 7500 AE Enschede The Netherlands
| | - Mohammad Amirilargani
- Delft University of Technology Organic Materials and Interfaces, Department of Chemical Engineering Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Ernst J. R. Sudhölter
- Delft University of Technology Organic Materials and Interfaces, Department of Chemical Engineering Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Louis C. P. M. de Smet
- Wageningen University Laboratory of Organic Chemistry Stippeneng 4 6708 WE Wageningen The Netherlands
| | - Sara Salvador Cob
- Flemish Institute for Technological Research (VITO) Unit Separation and Conversion Technology (SCT) Boeretang 200 2400 Mol Belgium
| | - Pieter Vandezande
- Flemish Institute for Technological Research (VITO) Unit Separation and Conversion Technology (SCT) Boeretang 200 2400 Mol Belgium
| | - Matthieu Dorbec
- Janssen Pharmaceutica NV Turnhoutseweg 30 2340 Beerse Belgium
| | - Soraya Sluijter
- TNO unit ECN part of TNO Westerduinweg 3 1755 LE Petten The Netherlands
| | - Henk van Veen
- TNO unit ECN part of TNO Westerduinweg 3 1755 LE Petten The Netherlands
| | - Yvonne VanDelft
- TNO unit ECN part of TNO Westerduinweg 3 1755 LE Petten The Netherlands
| | - Ingrid Wienk
- SolSep B.V. Robust Membrane Technologies St. Eustatius 65 7333 NW Apeldoorn The Netherlands
| | - Petrus Cuperus
- SolSep B.V. Robust Membrane Technologies St. Eustatius 65 7333 NW Apeldoorn The Netherlands
| | - Subhalaxmi Behera
- KU Leuven Membrane Technology Group, cMACS division Faculty of Bioscience Engineering Celestijnenlaan 200F B-3001 Heverlee Belgium
| | - Yusak Hartanto
- KU Leuven Membrane Technology Group, cMACS division Faculty of Bioscience Engineering Celestijnenlaan 200F B-3001 Heverlee Belgium
| | - Ivo F. J. Vankelecom
- KU Leuven Membrane Technology Group, cMACS division Faculty of Bioscience Engineering Celestijnenlaan 200F B-3001 Heverlee Belgium
| | - Patrick de Wit
- University of Twente EMI Twente, Membrane Science and Technology Cluster P.O. Box 217 7500 AE Enschede The Netherlands
| |
Collapse
|
11
|
Amura IF, Shahid S, Sarihan A, Shen J, Patterson DA, Emanuelsson EAC. Fabrication of self-doped sulfonated polyaniline membranes with enhanced antifouling ability and improved solvent resistance. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2019.117712] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Investigation of novel molecularly tunable thin-film nanocomposite nanofiltration hollow fiber membranes for boron removal. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118887] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Polisetti V, Ray P. Nano
SiO
2
and
TiO
2
embedded polyacrylonitrile/polyvinylidene fluoride ultrafiltration membranes: Improvement in flux and antifouling properties. J Appl Polym Sci 2021. [DOI: 10.1002/app.49606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Veerababu Polisetti
- Membrane Science and Separation Technology Division Central Salt and Marine Chemicals Research Institute, Council of Scientific & Industrial Research Bhavnagar Gujarat India
| | - Paramita Ray
- Membrane Science and Separation Technology Division Central Salt and Marine Chemicals Research Institute, Council of Scientific & Industrial Research Bhavnagar Gujarat India
| |
Collapse
|
14
|
Intrinsically antibacterial thin film composite membranes with supramolecularly assembled lysozyme nanofilm as selective layer for molecular separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Karimi R, Homayoonfal M. The supplement role of iron oxide and zirconium oxide nanoparticles as an advanced composite compound for enhancing the efficiency of thin‐film nanocomposite membranes. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rezvan Karimi
- Department of Chemical Engineering College of Engineering, University of Isfahan Isfahan Iran
| | - Maryam Homayoonfal
- Department of Chemical Engineering College of Engineering, University of Isfahan Isfahan Iran
| |
Collapse
|
16
|
Helali N, Rastgar M, Farhad Ismail M, Sadrzadeh M. Development of underwater superoleophobic polyamide-imide (PAI) microfiltration membranes for oil/water emulsion separation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116451] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
|
18
|
Kong S, Lim MY, Shin H, Baik JH, Lee JC. High-flux and antifouling polyethersulfone nanocomposite membranes incorporated with zwitterion-functionalized graphene oxide for ultrafiltration applications. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.12.028] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
19
|
Wang Z, Guo S, Zhang B, Zhu L. Hydrophilic polymers of intrinsic microporosity as water transport nanochannels of highly permeable thin-film nanocomposite membranes used for antibiotic desalination. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117375] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Reurink D, te Brinke E, Achterhuis I, Roesink HDW, de Vos WM. Nafion-Based Low-Hydration Polyelectrolyte Multilayer Membranes for Enhanced Water Purification. ACS APPLIED POLYMER MATERIALS 2019; 1:2543-2551. [PMID: 31544172 PMCID: PMC6748121 DOI: 10.1021/acsapm.9b00689] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 08/19/2019] [Indexed: 05/12/2023]
Abstract
The increase of micropollutant concentration in both surface and groundwater is an emerging concern for the environment and human health. Most of such small organic molecules (medicines, hormones, and plasticizers) enter the environment via our wastewater, because they are not sufficiently removed by the current techniques applied in wastewater treatment plants. A possible solution to remove micropollutants is the usage of polyelectrolyte multilayer (PEM) based membranes. PEM membranes have received a growing interest in the past decade due to their high chemical and physical stability and their high permeability and selectivity. A popular polyelectrolyte pair to make dense PEM membranes with high salt retentions is the combination of poly(allylamine hydrochloride) (PAH) and poly(sodium 4-styrenesulfonate) (PSS). Unfortunately, smaller micropollutants (such as bisphenol A, sulfamethoxazole, naproxen, and bezafibrate) still show significant permeation through this membrane. In this study, for the first time, a single final layer of Nafion is applied on the PEM to increase the density of the PEM membrane. It is shown that when terminating with Nafion, the swelling of the multilayer decreases by 50%. These pronounced changes in layer structure are reflected by changes in membrane performance, such as a lower molecular weight cutoff (MWCO) and an increasing hydraulic membrane resistance. Furthermore, we show that the Nafion content of the multilayer can be increased by constructing a Nafion/PAH multilayer on top of the existing PSS/PAH multilayer, thereby lowering the MWCO. Although hydraulic resistance increases, these PSS/PAH/Nafion-based multilayers show excellent performance in rejecting difficult-to-remove micropollutants that have low molecular weight (200-650 Da) and different charges. Overall, a cocktail of eight small micropollutants can be removed up to 97% by these membranes, allowing strongly enhanced water purification.
Collapse
|
21
|
Ganj M, Asadollahi M, Mousavi SA, Bastani D, Aghaeifard F. Surface modification of polysulfone ultrafiltration membranes by free radical graft polymerization of acrylic acid using response surface methodology. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1832-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Sarihan A, Shahid S, Shen J, Amura I, Patterson DA, Emanuelsson EAC. Exploiting the electrical conductivity of poly-acid doped polyaniline membranes with enhanced durability for organic solvent nanofiltration. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.02.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
23
|
Investigation on electrical tuneable separation properties for phase inversion polyaniline membranes doped in various acids. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1796-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Fabrication of a highly permeable composite nanofiltration membrane via interfacial polymerization by adding a novel acyl chloride monomer with an anhydride group. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.10.061] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Shen J, Shahid S, Sarihan A, Patterson DA, Emanuelsson EA. Effect of polyacid dopants on the performance of polyaniline membranes in organic solvent nanofiltration. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.04.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
26
|
Liu YL, Wei W, Wang XM, Yang HW, Xie YF. Relating the rejections of oligomeric ethylene glycols and saccharides by nanofiltration: Implication for membrane pore size determination. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.05.042] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Song W, Shen YX, Lang C, Saha P, Zenyuk IV, Hickey RJ, Kumar M. Unique selectivity trends of highly permeable PAP[5] water channel membranes. Faraday Discuss 2018; 209:193-204. [PMID: 29999507 DOI: 10.1039/c8fd00043c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Artificial water channels are a practical alternative to biological water channels for achieving exceptional water permeability and selectivity in a stable and scalable architecture. However, channel-based membrane fabrication faces critical barriers such as: (1) increasing pore density to achieve measurable gains in permeability while maintaining selectivity, and (2) scale-up to practical membrane sizes for applications. Recently, we proposed a technique to prepare channel-based membranes using peptide-appended pillar[5]arene (PAP[5]) artificial water channels, addressing the above challenges. These multi-layered PAP[5] membranes (ML-PAP[5]) showed significantly improved water permeability compared to commercial membranes with similar molecular weight cut-offs. However, due to the distinctive pore structure of water channels and the layer-by-layer architecture of the membrane, the separation behavior is unique and was still not fully understood. In this paper, two unique selectivity trends of ML-PAP[5] membranes are discussed from the perspectives of channel geometry, ion exclusion, and linear molecule transport.
Collapse
Affiliation(s)
- Woochul Song
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802 USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Taavoni-Gilan A, Taheri-Nassaj E, Shamsipur M. Synthesis of nanostructured titania/zirconia membrane and investigation of its physical separation and photocatalytic properties in treatment of textile industries wastewater. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1463-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Shen YX, Song W, Barden DR, Ren T, Lang C, Feroz H, Henderson CB, Saboe PO, Tsai D, Yan H, Butler PJ, Bazan GC, Phillip WA, Hickey RJ, Cremer PS, Vashisth H, Kumar M. Achieving high permeability and enhanced selectivity for Angstrom-scale separations using artificial water channel membranes. Nat Commun 2018; 9:2294. [PMID: 29895901 PMCID: PMC5997692 DOI: 10.1038/s41467-018-04604-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 05/09/2018] [Indexed: 01/05/2023] Open
Abstract
Synthetic polymer membranes, critical to diverse energy-efficient separations, are subject to permeability-selectivity trade-offs that decrease their overall efficacy. These trade-offs are due to structural variations (e.g., broad pore size distributions) in both nonporous membranes used for Angstrom-scale separations and porous membranes used for nano to micron-scale separations. Biological membranes utilize well-defined Angstrom-scale pores to provide exceptional transport properties and can be used as inspiration to overcome this trade-off. Here, we present a comprehensive demonstration of such a bioinspired approach based on pillar[5]arene artificial water channels, resulting in artificial water channel-based block copolymer membranes. These membranes have a sharp selectivity profile with a molecular weight cutoff of ~ 500 Da, a size range challenging to achieve with current membranes, while achieving a large improvement in permeability (~65 L m-2 h-1 bar-1 compared with 4-7 L m-2 h-1 bar-1) over similarly rated commercial membranes.
Collapse
Affiliation(s)
- Yue-Xiao Shen
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Woochul Song
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - D Ryan Barden
- Department of Chemical Engineering, University of New Hampshire, Durham, NH, 03824, USA
| | - Tingwei Ren
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Chao Lang
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Hasin Feroz
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Codey B Henderson
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Patrick O Saboe
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Daniel Tsai
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Hengjing Yan
- Center for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Peter J Butler
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Guillermo C Bazan
- Center for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
| | - William A Phillip
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Robert J Hickey
- Department of Material Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Paul S Cremer
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Harish Vashisth
- Department of Chemical Engineering, University of New Hampshire, Durham, NH, 03824, USA
| | - Manish Kumar
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
30
|
Yusoff II, Rohani R, Khairul Zaman N, Junaidi MUM, Mohammad AW, Zainal Z. Durable pressure filtration membranes based on polyaniline-polyimide P84 blends. POLYM ENG SCI 2018. [DOI: 10.1002/pen.24862] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Izzati Izni Yusoff
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment; Universiti Kebangsaan Malaysia, UKM Bangi; Selangor 43600 Malaysia
| | - Rosiah Rohani
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment; Universiti Kebangsaan Malaysia, UKM Bangi; Selangor 43600 Malaysia
| | - Nadiah Khairul Zaman
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment; Universiti Kebangsaan Malaysia, UKM Bangi; Selangor 43600 Malaysia
| | - Mohd Usman Mohd Junaidi
- Department of Chemical Engineering, Faculty of Engineering; University of Malaya; Kuala Lumpur 50603 Malaysia
| | - Abdul Wahab Mohammad
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment; Universiti Kebangsaan Malaysia, UKM Bangi; Selangor 43600 Malaysia
| | - Zamardina Zainal
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment; Universiti Kebangsaan Malaysia, UKM Bangi; Selangor 43600 Malaysia
| |
Collapse
|
31
|
Xu L, Shahid S, Holda AK, Emanuelsson EAC, Patterson DA. Stimuli responsive conductive polyaniline membrane: In-filtration electrical tuneability of flux and MWCO. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.01.070] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Sabzi Dizajikan B, Asadollahi M, Musavi SA, Bastani D. Preparation of poly(vinyl chloride) (PVC) ultrafiltration membranes from PVC/additive/solvent and application of UF membranes as substrate for fabrication of reverse osmosis membranes. J Appl Polym Sci 2018. [DOI: 10.1002/app.46267] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Behnam Sabzi Dizajikan
- Department of Chemical and Petroleum Engineering; Sharif University of Technology; Tehran Iran
| | - Mahdieh Asadollahi
- Department of Chemical and Petroleum Engineering; Sharif University of Technology; Tehran Iran
| | - Seyyed Abbas Musavi
- Department of Chemical and Petroleum Engineering; Sharif University of Technology; Tehran Iran
| | - Dariush Bastani
- Department of Chemical and Petroleum Engineering; Sharif University of Technology; Tehran Iran
| |
Collapse
|
33
|
Park M, Snyder SA. Sample handling and data processing for fluorescent excitation-emission matrix (EEM) of dissolved organic matter (DOM). CHEMOSPHERE 2018; 193:530-537. [PMID: 29169128 DOI: 10.1016/j.chemosphere.2017.11.069] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/14/2017] [Accepted: 11/15/2017] [Indexed: 06/07/2023]
Abstract
In environmental engineering and science, fluorescent excitation-emission matrix (EEM) has increasingly been utilized to characterize chromophoric dissolved organic matter (CDOM). This study aims to delineate EEM data processing, including calculation of total fluorescence (TF) which is an emerging water quality parameter often used as a surrogate for micropollutant removal by advanced water treatment processes. In addition, sample handling procedures such as storage, use of preservatives, and oxidant quenching agents were evaluated. In this study, three antimicrobial preservatives were tested: sodium azide, sodium omadine, and thymol. All the tested preservatives altered optical properties of samples, and were therefore not suitable for the preservation of EEM samples. Without preservative, storage of samples at 4 °C maintained TF within 7.5% of its original value for 21 days, while TF of samples stored at the room temperature more drastically changed (up to 15%). The impacts of three oxidant quenching agents including ascorbic acid, sodium bisulfite, and sodium thiosulfate on EEM were also tested. Among the quenching agents, sodium bisulfite was found to be suitable since it little influenced optical properties of samples while the other two were not favorable due to interference. We also scrutinized the use of TF as surrogate to monitor micropollutant rejection by nanofiltration membrane.
Collapse
Affiliation(s)
- Minkyu Park
- Department of Chemical & Environmental Engineering, University of Arizona, 1133 E James E Rogers Way, Harshbarger 108, Tucson, AZ 85721-0011, USA
| | - Shane A Snyder
- Department of Chemical & Environmental Engineering, University of Arizona, 1133 E James E Rogers Way, Harshbarger 108, Tucson, AZ 85721-0011, USA; National University of Singapore Environmental Research Institute, T-Lab Building #02-01, 5A Engineering Drive, Singapore 117411, Singapore.
| |
Collapse
|
34
|
Faneer KA, Rohani R, Mohammad AW, Ba-Abbad MM. Evaluation of the operating parameters for the separation of xylitol from a mixed sugar solution by using a polyethersulfone nanofiltration membrane. KOREAN J CHEM ENG 2017. [DOI: 10.1007/s11814-017-0186-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Xu L, Shahid S, Shen J, Emanuelsson EAC, Patterson DA. A wide range and high resolution one-filtration molecular weight cut-off method for aqueous based nanofiltration and ultrafiltration membranes. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2016.12.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Davey CJ, Low ZX, Wirawan RH, Patterson DA. Molecular weight cut-off determination of organic solvent nanofiltration membranes using poly(propylene glycol). J Memb Sci 2017. [DOI: 10.1016/j.memsci.2016.12.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
37
|
Li C, Ma Y, Li H, Peng G. A convenient method for the determination of molecular weight cut-off of ultrafiltration membranes. Chin J Chem Eng 2017. [DOI: 10.1016/j.cjche.2016.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
38
|
Influence of polydopamine deposition conditions on hydraulic permeability, sieving coefficients, pore size and pore size distribution for a polysulfone ultrafiltration membrane. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2016.07.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Davey CJ, Havill A, Leak D, Patterson DA. Nanofiltration and reverse osmosis membranes for purification and concentration of a 2,3-butanediol producing gas fermentation broth. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.06.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
Corobea MC, Muhulet O, Miculescu F, Antoniac IV, Vuluga Z, Florea D, Vuluga DM, Butnaru M, Ivanov D, Voicu SI, Thakur VK. Novel nanocomposite membranes from cellulose acetate and clay-silica nanowires. POLYM ADVAN TECHNOL 2016. [DOI: 10.1002/pat.3835] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Mihai Cosmin Corobea
- Polymer composites and nanocomposites team, Polymer Department; R&D National Institute for Chemistry and Petro chemistry - ICECHIM Bucharest; 6 Spy. Independence 202, district 6 Bucharest 060021 Romania
| | - Oana Muhulet
- Faculty of Applied Chemistry and Materials Science; University Polytechnic of Buchares; Str. Gheorghe Polis 1-7 Bucharest 011061 Romania
| | - Florin Miculescu
- Faculty of Materials Science; University Polytechnic of Bucharest; Splaiul Independentei 313 Bucharest Romania
| | - Iulian Vaile Antoniac
- Faculty of Materials Science; University Polytechnic of Bucharest; Splaiul Independentei 313 Bucharest Romania
| | - Zina Vuluga
- Polymer composites and nanocomposites team, Polymer Department; R&D National Institute for Chemistry and Petro chemistry - ICECHIM Bucharest; 6 Spy. Independence 202, district 6 Bucharest 060021 Romania
| | - Dorel Florea
- Polymer composites and nanocomposites team, Polymer Department; R&D National Institute for Chemistry and Petro chemistry - ICECHIM Bucharest; 6 Spy. Independence 202, district 6 Bucharest 060021 Romania
| | - Dumitru Mircea Vuluga
- Center for Organic Chemistry “C.D. Nenitescu” of Romanian Academy; 202B Splaiul Independentei 060023 Bucharest Romania
| | - Maria Butnaru
- Faculty of Medical Bioengineering; “Gr.T.Popa” University of Medicine and Pharmacy; 16 University Street 700115 Iasi Romania
| | - Daniela Ivanov
- “Petru Poni” Institute of Macromolecular Chemistry; Aleea Gr. Ghica Voda 41A 700487 Iasi Romania
| | - Stefan Ioan Voicu
- Faculty of Applied Chemistry and Materials Science; University Polytechnic of Buchares; Str. Gheorghe Polis 1-7 Bucharest 011061 Romania
| | - Vijay Kumar Thakur
- School of Mechanical and Materials Engineering; Washington State University; Pullman WA United States
| |
Collapse
|
41
|
Permeability of dilute ionic liquid solutions through a nanofiltration membrane – Effect of ionic liquid concentration, filtration pressure and temperature. Sep Purif Technol 2016. [DOI: 10.1016/j.seppur.2016.02.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
42
|
Garcia-Ivars J, Iborra-Clar MI, Alcaina-Miranda MI, Van der Bruggen B. Comparison between hydrophilic and hydrophobic metal nanoparticles on the phase separation phenomena during formation of asymmetric polyethersulphone membranes. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2015.07.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
43
|
Ellouze F, Amar NB, Deratani A. Étude comparative de deux méthodes de caractérisation de membranes d’ultrafiltration et de nanofiltration : la porométrie bi-liquide et le transport de solutés neutres. CR CHIM 2015. [DOI: 10.1016/j.crci.2014.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
44
|
Preparation, characterization and performance study of cellulose acetate membranes modified by aliphatic hyperbranched polyester. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2014.09.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
45
|
Lv Z, Hu J, Zhang X, Wang L. Enhanced surface hydrophilicity of thin-film composite membranes for nanofiltration: an experimental and DFT study. Phys Chem Chem Phys 2015; 17:24201-9. [DOI: 10.1039/c5cp04105h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the current study, thin-film composite (TFC) nanofiltration membranes desirable for water softening were successfully developed through interfacial polymerization using N-(2-hydroxyethyl)ethylenediamine (HEDA) as the amine monomer in the aqueous phase.
Collapse
Affiliation(s)
- Zhiwei Lv
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse
- Nanjing University of Science & Technology
- Nanjing 210094
- China
| | - Jiahui Hu
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse
- Nanjing University of Science & Technology
- Nanjing 210094
- China
| | - Xuan Zhang
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse
- Nanjing University of Science & Technology
- Nanjing 210094
- China
| | - Lianjun Wang
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse
- Nanjing University of Science & Technology
- Nanjing 210094
- China
| |
Collapse
|
46
|
Developing nanocomposite PI membranes: Morphology and performance to glycerol removal at the downstream processing of biodiesel production. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2014.08.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
47
|
Marchetti P, Jimenez Solomon MF, Szekely G, Livingston AG. Molecular separation with organic solvent nanofiltration: a critical review. Chem Rev 2014; 114:10735-806. [PMID: 25333504 DOI: 10.1021/cr500006j] [Citation(s) in RCA: 854] [Impact Index Per Article: 77.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Patrizia Marchetti
- Department of Chemical Engineering and Chemical Technology, Imperial College London , Exhibition Road, London SW7 2AZ, United Kingdom
| | | | | | | |
Collapse
|
48
|
Safarpour M, Khataee A, Vatanpour V. Preparation of a Novel Polyvinylidene Fluoride (PVDF) Ultrafiltration Membrane Modified with Reduced Graphene Oxide/Titanium Dioxide (TiO2) Nanocomposite with Enhanced Hydrophilicity and Antifouling Properties. Ind Eng Chem Res 2014. [DOI: 10.1021/ie502407g] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mahdie Safarpour
- Research
Laboratory of Advanced Water and Wastewater Treatment Processes, Department
of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-14766 Tabriz, Iran
| | - Alireza Khataee
- Research
Laboratory of Advanced Water and Wastewater Treatment Processes, Department
of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-14766 Tabriz, Iran
| | - Vahid Vatanpour
- Faculty
of Chemistry, Kharazmi University, 15719-14911 Tehran, Iran
- Novel Technology
Research Group, Petrochemical Research and Technology Company, 14977-13115 Tehran, Iran
| |
Collapse
|
49
|
Application of the evaporative light scattering detector to analytical problems in polymer science. J Chromatogr A 2013; 1310:1-14. [DOI: 10.1016/j.chroma.2013.08.041] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/06/2013] [Accepted: 08/12/2013] [Indexed: 11/18/2022]
|
50
|
Rational design of phase inversion membranes by tailoring thermodynamics and kinetics of casting solution using polymer additives. J Memb Sci 2013. [DOI: 10.1016/j.memsci.2013.04.009] [Citation(s) in RCA: 206] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|