1
|
Dehban A, Kargari A, Ashtiani FZ. Fabrication and Characterization of PPSU/ PES Blend Nanofiltration Membrane via VIPS‐ NIPS Method for Effective Dye Rejection. POLYM ADVAN TECHNOL 2025; 36. [DOI: 10.1002/pat.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/03/2024] [Indexed: 01/05/2025]
Abstract
ABSTRACTIndustrial effluents, including dyes, pose a threat to the environment and human health, as they are resistant to reacting with oxygen; therefore, they are rarely biodegradable. Among the various processes, nanofiltration is an attractive process for separating dyes from water due to its economic efficiency. This work represents the fabrication of poly (phenyl sulfone) (PPSU)/poly (ether sulfone) (PES) blend nanofiltration membranes through vapor‐induced phase separation (VIPS) followed by immersion precipitation. The influence of polymer blend, exposure time, and coagulation bath composition on membrane characteristics and performance was studied. Results illustrate that an increment in exposure time caused a thinner top layer and changed the cross‐section morphology from finger‐like to sponge‐like. At PPSU:PES = 50:50 blend ratio, the pore radius significantly got larger than the neat polymers' fabricated membranes. The addition of N‐methyl‐2‐pyrrolidone (NMP) in the coagulation bath causes the formation of smaller finger‐like voids at the top layers and a sponge‐like structure in the sub‐layers of membranes. The optimal conditions for the nanofiltration membrane were determined at 28 s VIPS time, an equal ratio of polymers, and pure water as the coagulation bath. Under these conditions, the distilled water permeability and Rose Bengal rejection were determined as 63.6 L/m2 h and 77.11%, respectively.
Collapse
Affiliation(s)
- Amin Dehban
- Membrane Processes Research Laboratory (MPRL), Department of Chemical Engineering Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
| | - Ali Kargari
- Membrane Processes Research Laboratory (MPRL), Department of Chemical Engineering Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
- Department of Chemical Engineering Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
| | - Farzin Zokaee Ashtiani
- Department of Chemical Engineering Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
| |
Collapse
|
2
|
Burts K, Plisko T, Penkova A, Ermakov S, Bildyukevich A. Influence of PEG-PPG-PEG Block Copolymer Concentration and Coagulation Bath Temperature on the Structure Formation of Polyphenylsulfone Membranes. Polymers (Basel) 2024; 16:1349. [PMID: 38794542 PMCID: PMC11124811 DOI: 10.3390/polym16101349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
The effect of amphiphilic block copolymer polyethylene glycol (PEG)-polypropylene glycol (PPG)-PEG concentration in the polyphenylsulfone (PPSU) casting solution and coagulation bath temperature (CBT) on the structure, separation, and antifouling performance of PPSU ultrafiltration membranes was studied for the first time. According to the phase diagram obtained, PPSU/PEG-PPG-PEG/N-methyl-2-pyrrolidone (NMP) systems are characterized by a narrow miscibility gap. It was found that 20 wt.% PPSU solutions in NMP with the addition of 5-15 wt.% of PEG-PPG-PEG block copolymer feature upper critical solution temperature, gel point, and lower critical solution temperature. Membrane composition and structure were studied by Fourier-transform infrared spectroscopy, scanning electron and atomic force microscopies, and water contact angle measurements. The addition of PEG-PPG-PPG to the PPSU casting solution was found to increase the hydrophilicity of the membrane surface (water contact angle decreased from 78° for the reference PPSU membrane down to 50° for 20 wt.%PPSU/15 wt.% PEG-PPG-PEG membrane). It was revealed that the pure water flux increased with the rise of CBT from 18-20 L·m-2·h-1 for the reference PPSU membrane up to 38-140 L·m-2·h-1 for 20 wt.% PPSU/10-15 wt.% PEG-PPG-PEG membranes. However, the opposite trend was observed for 20 wt.% PPSU/5-7 wt.% PEG-PPG-PEG membranes: pure water flux decreased with an increase in CBT. This is due to the differences in the mechanism of phase separation (non-solvent-induced phase separation (NIPS) or a combination of NIPS and temperature-induced phase separation (TIPS)). It was shown that 20 wt.% PPSU/10 wt.% PEG-PPG-PEG membranes were characterized by significantly higher antifouling performance (FRR-81-89%, DRr-26-32%, DRir-10-20%, DT-33-45%) during the ultrafiltration of bovine serum albumin solutions compared to the reference PPSU membrane prepared at different CBTs (FRR-29-38%, DRr-6-14%, DRir-74-89%, DT-88-94%).
Collapse
Affiliation(s)
- Katsiaryna Burts
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Tatiana Plisko
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Anastasia Penkova
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Sergey Ermakov
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Alexandr Bildyukevich
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, Surganov Str., 13, 220072 Minsk, Belarus
| |
Collapse
|
3
|
Ogbuoji EA, Myers A, Haycraft A, Escobar IC. Impact of common face mask regeneration processes on the structure, morphology and aerosol filtration efficiency of porous flat sheet polysulfone membranes fabricated via nonsolvent-induced phase separation (NIPS). Sep Purif Technol 2023; 324:124594. [DOI: 10.1016/j.seppur.2023.124594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
4
|
Anokhina TS, Ershova TO, Anisimov AA, Temnikov MN, Grushevenko EA, Borisov IL, Volkov AV, Muzafarov AM. Pervaporation and Gas Separation Properties of High-Molecular Ladder-like Polyphenylsilsesquioxanes. Polymers (Basel) 2023; 15:3277. [PMID: 37571171 PMCID: PMC10422331 DOI: 10.3390/polym15153277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/25/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
This paper presents the results of studies on the pervaporation properties (for benzene/hexane mixtures) and gas permeability (for He, H2, N2, O2, CO2, CH4, C2H6, and C4H10) of ladder-like polyphenylsesquioxanes (L-PPSQ) with improved physical and chemical properties. These polymers were obtained by condensation of cis-tetraphenylcyclotetrasiloxanetetraol in ammonia medium. The structure of L-PPSQ was fully confirmed by a combination of physicochemical analysis methods: 1H, 29Si NMR, IR spectroscopy, HPLC, powder XRD, and viscometry in solution. For the first time, a high molecular weight of the polymer (Mn = 238 kDa, Mw = 540 kDa) was achieved, which determines its improved mechanical properties and high potential for use in membrane separation. Using TGA and mechanical analysis methods, it was found that this polymer has high thermal (Td5% = 537 °C) and thermal-oxidative stability (Td5% = 587 °C) and good mechanical properties (Young's module (E) = 1700 MPa, ultimate tensile stress (σ) = 44 MPa, elongation at break (ε) = 6%), which is important for making membranes workable under various conditions. The polymer showed a high separation factor for a mixture of 10% wt. benzene in n-hexane (126) at a benzene flow of 33 g/(m2h).
Collapse
Affiliation(s)
- Tatiana S. Anokhina
- V. Topchiev Institute of Petrochemical Synthesis RAS, 119991 Moscow, Russia; (E.A.G.); (I.L.B.); (A.V.V.)
| | - Tatyana O. Ershova
- N. Nesmeyanov Institute of Organoelement Compounds RAS, 119334 Moscow, Russia; (T.O.E.); (A.M.M.)
- The Faculty of Natural Sciences, Tula State Lev Tolstoy Pedagogical University, 300026 Tula, Russia
| | - Anton A. Anisimov
- N. Nesmeyanov Institute of Organoelement Compounds RAS, 119334 Moscow, Russia; (T.O.E.); (A.M.M.)
- The Faculty of Natural Sciences, Tula State Lev Tolstoy Pedagogical University, 300026 Tula, Russia
- Moscow Institute of Physics and Technology, Faculty of Electronics, Photonics and Molecular Physics, National Research University, 141700 Dolgoprudny, Russia
| | - Maxim N. Temnikov
- N. Nesmeyanov Institute of Organoelement Compounds RAS, 119334 Moscow, Russia; (T.O.E.); (A.M.M.)
- The Faculty of Natural Sciences, Tula State Lev Tolstoy Pedagogical University, 300026 Tula, Russia
| | - Evgenia A. Grushevenko
- V. Topchiev Institute of Petrochemical Synthesis RAS, 119991 Moscow, Russia; (E.A.G.); (I.L.B.); (A.V.V.)
| | - Ilya L. Borisov
- V. Topchiev Institute of Petrochemical Synthesis RAS, 119991 Moscow, Russia; (E.A.G.); (I.L.B.); (A.V.V.)
| | - Alexey V. Volkov
- V. Topchiev Institute of Petrochemical Synthesis RAS, 119991 Moscow, Russia; (E.A.G.); (I.L.B.); (A.V.V.)
| | - Aziz M. Muzafarov
- N. Nesmeyanov Institute of Organoelement Compounds RAS, 119334 Moscow, Russia; (T.O.E.); (A.M.M.)
- Enikolopov Institute of Synthetic Polymeric Materials RAS, 117393 Moscow, Russia
| |
Collapse
|
5
|
Zhansitov A, Kurdanova Z, Shakhmurzova K, Slonov A, Borisov I, Khashirova S. Effect of Solvent and Monomer Ratio on the Properties of Polyphenylene Sulphone. Polymers (Basel) 2023; 15:polym15102279. [PMID: 37242854 DOI: 10.3390/polym15102279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
For the first time, the effect of the solvent and monomer ratio on molecular weight, chemical structure, and mechanical, thermal, and rheological characteristics of polyphenylene sulfone has been studied. When dimethylsulfoxide (DMSO) is used as a solvent, cross-linking occurs during the processing of the polymer, which is accompanied by an increase in melt viscosity. This fact sets a pressing need for the complete removal of DMSO from the polymer. The best solvent used for the production of PPSU is N,N-dimethylacetamide. This study of the molecular weight characteristics of polymers by gel permeation chromatography showed the stability of the polymers practically does not change with a decrease in molecular weight. The synthesized polymers correspond in tensile modulus to the commercial analog Ultrason-P, while exceeding it in terms of tensile strength and relative elongation at break. Thus, the developed polymers are promising for spinning hollow fiber membranes with a thin selective layer.
Collapse
Affiliation(s)
- Azamat Zhansitov
- Collective usage center "Polymers and Composites", Kabardino-Balkarian State University Named after H.M. Berbekov, St. Chernyshevsky, 173, 360004 Nalchik, Russia
| | - Zhanna Kurdanova
- Collective usage center "Polymers and Composites", Kabardino-Balkarian State University Named after H.M. Berbekov, St. Chernyshevsky, 173, 360004 Nalchik, Russia
| | - Kamila Shakhmurzova
- Collective usage center "Polymers and Composites", Kabardino-Balkarian State University Named after H.M. Berbekov, St. Chernyshevsky, 173, 360004 Nalchik, Russia
| | - Azamat Slonov
- Collective usage center "Polymers and Composites", Kabardino-Balkarian State University Named after H.M. Berbekov, St. Chernyshevsky, 173, 360004 Nalchik, Russia
| | - Ilya Borisov
- Collective usage center "Polymers and Composites", Kabardino-Balkarian State University Named after H.M. Berbekov, St. Chernyshevsky, 173, 360004 Nalchik, Russia
| | - Svetlana Khashirova
- Collective usage center "Polymers and Composites", Kabardino-Balkarian State University Named after H.M. Berbekov, St. Chernyshevsky, 173, 360004 Nalchik, Russia
| |
Collapse
|
6
|
Intermolecular cross-linked polymer of intrinsic microporosity-1 (PIM-1)-based thin-film composite hollow fiber membrane for organic solvent nanofiltration. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
7
|
A novel polysulfate hollow fiber membrane with antifouling property for ultrafiltration application. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Jonkers WA, Cornelissen ER, de Grooth J, de Vos WM. Hollow fiber nanofiltration: From lab-scale research to full-scale applications. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Anokhina T, Raeva A, Sokolov S, Storchun A, Filatova M, Zhansitov A, Kurdanova Z, Shakhmurzova K, Khashirova S, Borisov I. Effect of Composition and Viscosity of Spinning Solution on Ultrafiltration Properties of Polyphenylene Sulfone Hollow-Fiber Membranes. MEMBRANES 2022; 12:1113. [PMID: 36363668 PMCID: PMC9697300 DOI: 10.3390/membranes12111113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 06/01/2023]
Abstract
In this work, PPSUs with different molecular weights were synthesized for the development of highly permeable ultrafiltration hollow fiber membranes for the first time. The MW of the synthesized polymers was controlled by varying the monomers molar ratio within 1:1-1.15 under the same synthesis conditions. Based on the study of the rheological properties of polymer solutions, a high molecular weight PPSU (MW 102,000 g/mol) was chosen for the formation of hollow fiber membranes. The addition of PEG400 to the spinning solution led to an increase in viscosity, which makes it possible to work in the region of lower PPSU concentrations (18-20 wt. %) and to form membranes with a less dense porous structure. With the addition of PEG400 to the spinning solution, the membrane permeance increased sharply by more than two orders of magnitude (from 0.2 to 96 L/m2 h bar). At the same time, the membranes had high rejection coefficients (99.9%) of Blue Dextran model filtered substance (MW = 69,000 g/mol).
Collapse
Affiliation(s)
- Tatyana Anokhina
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky Prospekt, 119991 Moscow, Russia
| | - Alisa Raeva
- Progressive Materials and Additive Technologies Center, Kabardino-Balkarian State University Named after H.M. Berbekov, St. Chernyshevsky, 173, 360004 Nalchik, Russia
| | - Stepan Sokolov
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky Prospekt, 119991 Moscow, Russia
| | - Alexandra Storchun
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky Prospekt, 119991 Moscow, Russia
| | - Marina Filatova
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky Prospekt, 119991 Moscow, Russia
| | - Azamat Zhansitov
- Progressive Materials and Additive Technologies Center, Kabardino-Balkarian State University Named after H.M. Berbekov, St. Chernyshevsky, 173, 360004 Nalchik, Russia
| | - Zhanna Kurdanova
- Progressive Materials and Additive Technologies Center, Kabardino-Balkarian State University Named after H.M. Berbekov, St. Chernyshevsky, 173, 360004 Nalchik, Russia
| | - Kamila Shakhmurzova
- Progressive Materials and Additive Technologies Center, Kabardino-Balkarian State University Named after H.M. Berbekov, St. Chernyshevsky, 173, 360004 Nalchik, Russia
| | - Svetlana Khashirova
- Progressive Materials and Additive Technologies Center, Kabardino-Balkarian State University Named after H.M. Berbekov, St. Chernyshevsky, 173, 360004 Nalchik, Russia
| | - Ilya Borisov
- Progressive Materials and Additive Technologies Center, Kabardino-Balkarian State University Named after H.M. Berbekov, St. Chernyshevsky, 173, 360004 Nalchik, Russia
| |
Collapse
|
10
|
Wang Z, Wang X, Zheng T, Mo B, Xu H, Huang Y, Wang J, Gao C, Gao X. High Flux Nanofiltration Membranes with Double-Walled Carbon Nanotube (DWCNT) as the Interlayer. MEMBRANES 2022; 12:1011. [PMID: 36295770 PMCID: PMC9609115 DOI: 10.3390/membranes12101011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/06/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Nanofiltration (NF) membranes with a high permeability and rejection are of great interest in desalination, separation and purification. However, how to improve the permeation and separation performance still poses a great challenge in the preparation of NF membranes. Herein, the novel composite NF membrane was prepared through the interfacial polymerization of M-phenylenediamine (MPD) and trimesoyl chloride (TMC) on a double-walled carbon nanotube (DWCNT) interlayer supported by PES substrate. The DWCNT interlayer had a great impact on the polyamide layer formation. With the increase of the DWCNT dosage, the XPS results revealed an increase in the number of carboxyl groups, which decreased the crosslinking degree of the polyamide layer. Additionally, the AFM results showed that the surface roughness and specific surface area increased gradually. The water flux of the prepared membrane increased from 25.4 L/(m2·h) and 26.6 L/(m2·h) to 109 L/(m2·h) and 104.3 L/(m2·h) with 2000 ppm Na2SO4 and NaCl solution, respectively, under 0.5 MPa. Meanwhile, the rejection of Na2SO4 and NaCl decreased from 99.88% and 99.38% to 96.48% and 60.47%. The proposed method provides a novel insight into the rational design of the multifunctional interlayer, which shows great potential in the preparation of high-performance membranes.
Collapse
Affiliation(s)
- Zhen Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiaojuan Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Tao Zheng
- SEPCOIII Electric Power Construction Co., Ltd., Qingdao 266100, China
| | - Bing Mo
- SEPCOIII Electric Power Construction Co., Ltd., Qingdao 266100, China
| | - Huacheng Xu
- Quanzhou Lanshen Environmental Protection Research Institute Co., Ltd., Quanzhou 362000, China
| | - Yijun Huang
- Quanzhou Lanshen Environmental Protection Research Institute Co., Ltd., Quanzhou 362000, China
| | - Jian Wang
- The Institute of Seawater Desalination and Multipurpose Utilization, SOA, Tianjin 300192, China
| | - Congjie Gao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Xueli Gao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
11
|
Liu L, Liu S, Wang E, Su B. Hollow Fiber Membrane for Organic Solvent Nanofiltration: A Mini Review. MEMBRANES 2022; 12:membranes12100995. [PMID: 36295754 PMCID: PMC9607374 DOI: 10.3390/membranes12100995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 06/03/2023]
Abstract
Organic solvents take up 80% of the total chemicals used in pharmaceutical and related industries, while their reuse rate is less than 50%. Traditional solvent treatment methods such as distillation and evaporation have many disadvantages such as high cost, environmental unfriendliness, and difficulty in recovering heat-sensitive, high-value molecules. Organic solvent nanofiltration (OSN) has been a prevalent research topic for the separation and purification of organic solvent systems since the beginning of this century with the benefits of no-phase change, high operational flexibility, low cost, as well as environmental friendliness. Especially, hollow fiber (HF) OSN membranes have gained a lot of attention due to their high packing density and easy scale-up as compared with flat-sheet OSN membranes. This paper critically reviewed the recent research progress in the preparation of HF OSN membranes with high performance, including different materials, preparation methods, and modification treatments. This paper also predicts the future direction of HF OSN membrane development.
Collapse
Affiliation(s)
- Liyang Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ocean University of China, Ministry of Education, 238 Songling Road, Qingdao 266100, China
- College of Chemistry & Chemical Engineering, Ocean University of China, 238 Songling Road, Qingdao 266100, China
| | - Shaoxiao Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ocean University of China, Ministry of Education, 238 Songling Road, Qingdao 266100, China
- College of Chemistry & Chemical Engineering, Ocean University of China, 238 Songling Road, Qingdao 266100, China
| | - Enlin Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ocean University of China, Ministry of Education, 238 Songling Road, Qingdao 266100, China
- College of Chemistry & Chemical Engineering, Ocean University of China, 238 Songling Road, Qingdao 266100, China
| | - Baowei Su
- Key Laboratory of Marine Chemistry Theory and Technology, Ocean University of China, Ministry of Education, 238 Songling Road, Qingdao 266100, China
- College of Chemistry & Chemical Engineering, Ocean University of China, 238 Songling Road, Qingdao 266100, China
| |
Collapse
|
12
|
Aristizábal SL, Upadhyaya L, Falca G, Gebreyohannes AY, Aijaz MO, Karim MR, Nunes SP. Acid-free fabrication of polyaryletherketone membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
13
|
Modified sulfonated polyphenylsulfone proton exchange membrane with enhanced fuel cell performance: A review. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Crosslinked polyethersulfone membranes for organic solvent nanofiltration in polar aprotic and halogenated solvents. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Gao ZF, Liu J, Chung T. Rapid in-situ growth of covalent organic frameworks on hollow fiber substrates with Janus-like characteristics for efficient organic solvent nanofiltration. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Zha Z, He P, Zhao S, Guo R, Wang Z, Wang J. Interlayer-modulated polyamide composite membrane for organic solvent nanofiltration. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Roos CJ, Weber DJ, Jang HY, Lively RP. Matching Analysis of Mixed Matrix Membranes for Organic Solvent Reverse Osmosis. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Conrad J. Roos
- School of Chemical and Biomolecular Engineering, College of Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Dylan J. Weber
- School of Chemical and Biomolecular Engineering, College of Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Hye Youn Jang
- School of Chemical and Biomolecular Engineering, College of Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ryan P. Lively
- School of Chemical and Biomolecular Engineering, College of Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
18
|
Shukla AK, Alam J, Alhoshan M. Recent Advancements in Polyphenylsulfone Membrane Modification Methods for Separation Applications. MEMBRANES 2022; 12:247. [PMID: 35207168 PMCID: PMC8876851 DOI: 10.3390/membranes12020247] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023]
Abstract
Polyphenylsulfone (PPSU) membranes are of fundamental importance for many applications such as water treatment, gas separation, energy, electronics, and biomedicine, due to their low cost, controlled crystallinity, chemical, thermal, and mechanical stability. Numerous research studies have shown that modifying surface properties of PPSU membranes influences their stability and functionality. Therefore, the modification of the PPSU membrane surface is a pressing issue for both research and industrial communities. In this review, various surface modification methods and processes along with their mechanisms and performance are considered starting from 2002. There are three main approaches to the modification of PPSU membranes. The first one is bulk modifications, and it includes functional groups inclusion via sulfonation, amination, and chloromethylation. The second is blending with polymer (for instance, blending nanomaterials and biopolymers). Finally, the third one deals with physical and chemical surface modifications. Obviously, each method has its own limitations and advantages that are outlined below. Generally speaking, modified PPSU membranes demonstrate improved physical and chemical properties and enhanced performance. The advancements in PPSU modification have opened the door for the advance of membrane technology and multiple prospective applications.
Collapse
Affiliation(s)
- Arun Kumar Shukla
- King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Javed Alam
- King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Mansour Alhoshan
- King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
- Department of Chemical Engineering, College of Engineering, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- K.A. CARE Energy Research and Innovation Center at Riyadh, P.O. Box 2022, Riyadh 11451, Saudi Arabia
| |
Collapse
|
19
|
Effect of Polyphenylsulfone and Polysulfone Incompatibility on the Structure and Performance of Blend Membranes for Ultrafiltration. MATERIALS 2021; 14:ma14195740. [PMID: 34640136 PMCID: PMC8510054 DOI: 10.3390/ma14195740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/13/2021] [Accepted: 09/26/2021] [Indexed: 11/16/2022]
Abstract
This study deals with the modification of polyphenylsulfone ultrafiltration membranes by introduction of an incompatible polymer polysulfone to the polyphenylsulfone casting solution to improve the permeability. The correlation between properties of the blend polyphenylsulfone/polysulfone solutions and porous anisotropic membranes for ultrafiltration prepared from these solutions was revealed. The blend polyphenylsulfone/polysulfone solutions were investigated using a turbidity spectrum method, optical microscopy and measurements of dynamic viscosity and turbidity. The structure of the prepared blend flat sheet membranes was studied using scanning electron microscopy. Membrane separation performance was investigated in the process of ultrafiltration of human serum albumin buffered solutions. It was found that with the introduction of polysulfone to the polyphenylsulfone casting solution in N-methyl-2-pyrrolidone the size of supramolecular particles significantly increases with the maximum at (40–60):(60:40) polyphenylsulfone:polysulfone blend ratio from 76 nm to 196–354 nm. It was shown that polyphenylsulfone/polysulfone blend solutions, unlike the solutions of pristine polymers, are two-phase systems (emulsions) with the maximum droplet size and highest degree of polydispersity at polyphenylsulfone/polysulfone blend ratios (30–60):(70–40). Pure water flux of the blend membranes passes through a maximum in the region of the most heterogeneous structure of the casting solution, which is associated with the imposition of a polymer-polymer phase separation on the non-solvent induced phase separation upon membrane preparation. The application of polyphenylsulfone/polysulfone blends as membrane-forming polymers and polyethylene glycol (Mn = 400 g·mol−1) as a pore-forming agent to the casting solutions yields the formation of ultrafiltration membranes with high membrane pure water flux (270 L·m−2·h−1 at 0.1MPa) and human serum albumin rejection of 85%.
Collapse
|
20
|
Sun Y, Sun T, Pang J, Cao N, Yue C, Wang J, Han X, Jiang Z. Poly(aryl ether ketone) membrane with controllable degree of sulfonation for organic solvent nanofiltration. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
21
|
Recent advances in nanomaterial-incorporated nanocomposite membranes for organic solvent nanofiltration. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118657] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Grünig LE, Meyer A, Emmler T, Abetz V, Handge UA. Solvent-Induced Crystallization of Poly(phenylene sulfone). Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lara E. Grünig
- Helmholtz-Zentrum hereon GmbH, Institute of Membrane Research, Max-Planck-Strasse 1, 21502 Geesthacht, Germany
| | - Andreas Meyer
- Universität Hamburg, Institute of Physical Chemistry, Grindelallee 117, 20146 Hamburg, Germany
| | - Thomas Emmler
- Helmholtz-Zentrum hereon GmbH, Institute of Membrane Research, Max-Planck-Strasse 1, 21502 Geesthacht, Germany
| | - Volker Abetz
- Helmholtz-Zentrum hereon GmbH, Institute of Membrane Research, Max-Planck-Strasse 1, 21502 Geesthacht, Germany
- Universität Hamburg, Institute of Physical Chemistry, Grindelallee 117, 20146 Hamburg, Germany
| | - Ulrich A. Handge
- Helmholtz-Zentrum hereon GmbH, Institute of Membrane Research, Max-Planck-Strasse 1, 21502 Geesthacht, Germany
| |
Collapse
|
23
|
Raza W, Wang J, Yang J, Tsuru T. Progress in pervaporation membranes for dehydration of acetic acid. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118338] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
24
|
Lee S, Kang T, Lee JY, Park J, Choi SH, Yu JY, Ok S, Park SH. Thin-Film Composite Nanofiltration Membranes for Non-Polar Solvents. MEMBRANES 2021; 11:184. [PMID: 33803122 PMCID: PMC8001804 DOI: 10.3390/membranes11030184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 11/16/2022]
Abstract
Organic solvent nanofiltration (OSN) has been recognized as an eco-friendly separation system owing to its excellent cost and energy saving efficiency, easy scale-up in the narrow area and mild operation conditions. Membrane properties are the key part in terms of determining the separation efficiency in the OSN system. In this review paper, the recently reported OSN thin-film composite (TFC) membranes were investigated to understand insight of membrane materials and performance. Especially, we highlighted the representative study concepts and materials of the selective layer of OSN TFC membranes for non-polar solvents. The proper choice of monomers and additives for the selective layer forms much more interconnected voids and the enhanced microporosity, which can improve membrane performance of the OSN TFC membrane with reducing the transport resistance. Therefore, this review paper could be an important bridge to connect with the next-generation OSN TFC membranes for non-polar solvents.
Collapse
Affiliation(s)
- Seungmin Lee
- Energy Materials and Components R&D Group, Korea Institute of Industrial Technology, Busan 46938, Korea;
| | - Taewon Kang
- Department of Chemical Engineering, Changwon National University (CNU), Changwon 51140, Korea; (T.K.); (J.Y.L.); (J.P.); (S.H.C.); (J.-Y.Y.); (S.O.)
| | - Jong Young Lee
- Department of Chemical Engineering, Changwon National University (CNU), Changwon 51140, Korea; (T.K.); (J.Y.L.); (J.P.); (S.H.C.); (J.-Y.Y.); (S.O.)
| | - Jiyu Park
- Department of Chemical Engineering, Changwon National University (CNU), Changwon 51140, Korea; (T.K.); (J.Y.L.); (J.P.); (S.H.C.); (J.-Y.Y.); (S.O.)
| | - Seoung Ho Choi
- Department of Chemical Engineering, Changwon National University (CNU), Changwon 51140, Korea; (T.K.); (J.Y.L.); (J.P.); (S.H.C.); (J.-Y.Y.); (S.O.)
| | - Jin-Yeong Yu
- Department of Chemical Engineering, Changwon National University (CNU), Changwon 51140, Korea; (T.K.); (J.Y.L.); (J.P.); (S.H.C.); (J.-Y.Y.); (S.O.)
| | - Serin Ok
- Department of Chemical Engineering, Changwon National University (CNU), Changwon 51140, Korea; (T.K.); (J.Y.L.); (J.P.); (S.H.C.); (J.-Y.Y.); (S.O.)
| | - Sang-Hee Park
- Department of Chemical Engineering, Changwon National University (CNU), Changwon 51140, Korea; (T.K.); (J.Y.L.); (J.P.); (S.H.C.); (J.-Y.Y.); (S.O.)
| |
Collapse
|
25
|
Feng Y, Weber M, Maletzko C, Chung TS. Delamination of single layer hollow fiber membranes induced by bi-directional phase separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Yousefi N, Jones M, Bismarck A, Mautner A. Fungal chitin-glucan nanopapers with heavy metal adsorption properties for ultrafiltration of organic solvents and water. Carbohydr Polym 2021; 253:117273. [PMID: 33278945 DOI: 10.1016/j.carbpol.2020.117273] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022]
Abstract
Membranes and filters are essential devices, both in the laboratory for separation of media, solvent recovery, organic solvent and water filtration purposes, and in industrial scale applications, such as the removal of industrial pollutants, e.g. heavy metal ions, from water. Due to their solvent stability, biologically sourced and renewable membrane or filter materials, such as cellulose or chitin, provide a low-cost, sustainable alternative to synthetic materials for organic solvent filtration and water treatment. Here, we investigated the potential of fungal chitin nanopapers derived from A. bisporus (common white-button mushrooms) as ultrafiltration membranes for organic solvents and aqueous solutions and hybrid chitin-cellulose microfibril papers as high permeance adsorptive filters. Fungal chitin constitutes a renewable, easily isolated, and abundant alternative to crustacean chitin. It can be fashioned into solvent stable nanopapers with pore sizes of 10-12 nm, as determined by molecular weight cut-off and rejection of gold nanoparticles, that exhibit high organic solvent permeance, making them a valuable material for organic solvent filtration applications. Addition of cellulose fibres to produce chitin-cellulose hybrid papers extended membrane functionality to water treatment applications, with considerable static and dynamic copper ion adsorption capacities and high permeances that outperformed other biologically derived membranes, while being simpler to produce, naturally porous, and not requiring crosslinking. The simple nanopaper production process coupled with the remarkable filtration properties of the papers for both organic solvent filtration and water treatment applications designates them an environmentally benign alternative to traditional membrane and filter materials.
Collapse
Affiliation(s)
- Neptun Yousefi
- Institute of Materials Chemistry and Research, Polymer and Composite Engineering (PaCE) Group, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Mitchell Jones
- Institute of Materials Chemistry and Research, Polymer and Composite Engineering (PaCE) Group, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria; School of Engineering, RMIT University, Bundoora East Campus, PO Box 71, Bundoora 3083, VIC, Australia
| | - Alexander Bismarck
- Institute of Materials Chemistry and Research, Polymer and Composite Engineering (PaCE) Group, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria; Department of Mechanical Engineering, Faculty of Engineering and the Built Environment, University of Johannesburg, South Africa; Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Andreas Mautner
- Institute of Materials Chemistry and Research, Polymer and Composite Engineering (PaCE) Group, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria.
| |
Collapse
|
27
|
Yue C, Sun T, Pang J, Han X, Cao N, Jiang Z. Synthesis and performance of comb-shape poly(arylene ether sulfone) with flexible aliphatic brush. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
28
|
Zou L, Gusnawan P, Zhang G, Yu J. Study of the effective thickness of the water-intrudable hydrophilic layer in dual-layer hydrophilic-hydrophobic hollow fiber membranes for direct contact membrane distillation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118552] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Tham HM, Chung TS. One-step cross-linking and tannic acid modification of polyacrylonitrile hollow fibers for organic solvent nanofiltration. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118294] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
30
|
Mahalingam DK, Falca G, Upadhya L, Abou-Hamad E, Batra N, Wang S, Musteata V, da Costa PM, Nunes SP. Spray-coated graphene oxide hollow fibers for nanofiltration. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
Xu S, Wang ZY, Li S, Tian L, Su B. Fabrication of polyimide-based hollow fiber membrane by synergetic covalent-crosslinking strategy for organic solvent nanofiltration (OSN) application. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
Aramid nanofiber and modified ZIF-8 constructed porous nanocomposite membrane for organic solvent nanofiltration. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118002] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Malakhov AO, Volkov AV. Modification of Polymer Membranes for Use in Organic Solvents. RUSS J APPL CHEM+ 2020. [DOI: 10.1134/s1070427220010024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Molecularly tunable thin-film nanocomposite membranes with enhanced molecular sieving for organic solvent forward osmosis. Nat Commun 2020; 11:1198. [PMID: 32139689 PMCID: PMC7057969 DOI: 10.1038/s41467-020-15070-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 02/17/2020] [Indexed: 12/14/2022] Open
Abstract
Thin-film nanocomposites (TFN) functionalized with tunable molecular-sieving nanomaterials have been employed to tailor membranes, with an enhanced permeability and selectivity. Herein, water-soluble hollow cup-like macrocyclic molecules, sulfothiacalix[4]arene (STCAss) and sulfocalix[4]arene (SCA), are ionically bonded into the polyamide network to engineer the molecular-sieving properties of TFN membranes for organic solvent forward osmosis (OSFO). Introducing both STCAss and SCA into the polyamide network not only increases the free volume, but also reduces the thickness of the TFN layers. Combining with their molecularly tunable size of the lower cavities, both STCAss and SCA enable the TFN membranes to size exclusively reject the draw solutes, but only STCAss-functionalized membrane has an ethanol flux doubling the pristine one under the FO and PRO modes in OSFO processes; leading the functionalized polyamide network with remarkable improvements in OSFO performance. This study may provide insights to molecularly functionalize TFN membranes using multifunctional nano-fillers for sustainable separations. Thin-film nanocomposites (TFN) nanomaterials have been employed to tailor permeability and selectivity in membranes, but achieving effective separation at large flux retains challenging. Here, the authors use calix[4]arene derivatives which are ionically bonded to a polyamide network to engineer the molecular-sieving properties of TFN membranes for organic solvent forward osmosis (OSFO).
Collapse
|
35
|
Cross-flow deposited hydroxyethyl cellulose (HEC)/polypropylene (PP) thin-film composite membrane for aqueous and non-aqueous nanofiltration. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2019.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Dai J, Li S, Liu J, He J, Li J, Wang L, Lei J. Fabrication and characterization of a defect-free mixed matrix membrane by facile mixing PPSU with ZIF-8 core–shell microspheres for solvent-resistant nanofiltration. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117261] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Novel polyphenylsulfone (PPSU)/nano tin oxide (SnO2) mixed matrix ultrafiltration hollow fiber membranes: Fabrication, characterization and toxic dyes removal from aqueous solutions. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.02.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
38
|
Asadi Tashvigh A, Feng Y, Weber M, Maletzko C, Chung TS. 110th Anniversary: Selection of Cross-Linkers and Cross-Linking Procedures for the Fabrication of Solvent-Resistant Nanofiltration Membranes: A Review. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02408] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Akbar Asadi Tashvigh
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
- Membrane Science and Technology Cluster, University of Twente, 7500 AE Enschede, The Netherlands
| | - Yingnan Feng
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Martin Weber
- Advanced Materials & Systems Research, BASF SE, RAP/OUB-B001, 67056 Ludwigshafen, Germany
| | - Christian Maletzko
- Performance Materials, BASF SE, G-PM/PU-D219, 67056 Ludwigshafen, Germany
| | - Tai-Shung Chung
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| |
Collapse
|
39
|
Dehban A, Kargari A, Zokaee Ashtiani F. Preparation and characterization of an antifouling poly (phenyl sulfone) ultrafiltration membrane by vapor-induced phase separation technique. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
Yuan S, Swartenbroekx J, Li Y, Zhu J, Ceyssens F, Zhang R, Volodine A, Li J, Van Puyvelde P, Van der Bruggen B. Facile synthesis of Kevlar nanofibrous membranes via regeneration of hydrogen bonds for organic solvent nanofiltration. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.12.047] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
|
42
|
Hollow fiber (HF) membrane fabrication: A review on the effects of solution spinning conditions on morphology and performance. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.10.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
43
|
Wang S, Tian J, Wang Q, Zhao Z, Cui F, Li G. Low-temperature sintered high-strength CuO doped ceramic hollow fiber membrane: Preparation, characterization and catalytic activity. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.10.078] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
44
|
Plisko TV, Bildyukevich AV, Karslyan YA, Ovcharova AA, Volkov VV. Development of high flux ultrafiltration polyphenylsulfone membranes applying the systems with upper and lower critical solution temperatures: Effect of polyethylene glycol molecular weight and coagulation bath temperature. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.08.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Marino T, Blasi E, Tornaghi S, Di Nicolò E, Figoli A. Polyethersulfone membranes prepared with Rhodiasolv®Polarclean as water soluble green solvent. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.12.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Feng Y, Weber M, Maletzko C, Chung TS. Facile fabrication of sulfonated polyphenylenesulfone (sPPSU) membranes with high separation performance for organic solvent nanofiltration. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.12.048] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
New promising polymer for organic solvent nanofiltration: Oxidized poly (arylene sulfide sulfone). J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.12.036] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
48
|
Nayak MC, Isloor AM, Moslehyani A, Ismail N, Ismail A. Fabrication of novel PPSU/ZSM-5 ultrafiltration hollow fiber membranes for separation of proteins and hazardous reactive dyes. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2017.11.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
A novel ionically cross-linked sulfonated polyphenylsulfone (sPPSU) membrane for organic solvent nanofiltration (OSN). J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.09.076] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
50
|
Lim SK, Goh K, Bae TH, Wang R. Polymer-based membranes for solvent-resistant nanofiltration: A review. Chin J Chem Eng 2017. [DOI: 10.1016/j.cjche.2017.05.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|