1
|
Chen J, Shi Z, Yang X, Zhang X, Wang D, Qian S, Sun W, Wang C, Li Q, Wang Z, Song Y, Qing G. Broad-Spectrum Clearance of Lipopolysaccharides from Blood Based on a Hemocompatible Dihistidine Polymer. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37377344 DOI: 10.1021/acsami.3c05341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Blood infection can release toxic bacterial lipopolysaccharides (LPSs) into bloodstream, trigger a series of inflammatory reactions, and eventually lead to multiple organ dysfunction, irreversible shock, and even death, which seriously threatens human life and health. Herein, a functional block copolymer with excellent hemocompatibility is proposed to enable broad-spectrum clearance of LPSs from whole blood blindly before pathogen identification, facilitating timely rescue from sepsis. A dipeptide ligand of histidine-histidine (HH) was designed as the LPS binding unit, and poly[(trimethylamine N-oxide)-co-(histidine-histidine)], a functional block copolymer combining the LPS ligand of HH and a zwitterionic antifouling unit of trimethylamine N-oxide (TMAO), was then designed by reversible addition-fragmentation chain transfer (RAFT) polymerization. The functional polymer achieved effective clearance of LPSs from solutions and whole blood in a broad-spectrum manner and had good antifouling and anti-interference properties and hemocompatibility. The proposed functional dihistidine polymer provides a novel strategy for achieving broad-spectrum clearance of LPSs, with potential applications in clinical blood purification.
Collapse
Affiliation(s)
- Junjun Chen
- College of Pharmaceutical and Bioengineering, Shenyang University of Chemical Technology, Shenyang 110142, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhenqiang Shi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xijing Yang
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoyu Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Dongdong Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shengxu Qian
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wenjing Sun
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Cunli Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qiongya Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhengjian Wang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Yanling Song
- College of Pharmaceutical and Bioengineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Guangyan Qing
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
2
|
Xu T, Gao H, Zhou J, He M, Ji X, Dai H, Rojas OJ. Design of AgNPs doped chitosan/sodium lignin sulfonate/polypyrrole films with antibacterial and endotoxin adsorption functions. Int J Biol Macromol 2023; 229:321-328. [PMID: 36543299 DOI: 10.1016/j.ijbiomac.2022.12.143] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/15/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
There is an urgent need to develop materials to prevent bacterial infection and the deleterious effects of endotoxins. In this study, we introduce a one-step electrodeposition method to prepare films composed of chitosan/Ag/polypyrrole and layer-by-layer self-assembly to introduce lignin sulphonate (LS) to obtain chitosan/Ag/polypyrrole/LS films. Antibacterial effects against both E. coli and S. aureus are shown by bacterial growth profiles and observation of bacteriostatic zones. Meanwhile, the addition of self-assembled LS improved the antibacterial effect of the film. For E. coli, the inhibition zone diameter was 0.93 cm, while for S. aureus, the inhibition zone diameter was 0.72 cm. Rapid and efficient endotoxin adsorption effects were shown whereby the electrostatic interactions between chitosan and endotoxin molecules played a major role. After adsorption for 1 h, in initial concentration of 1 EU/mL endotoxin solution, the adsorption efficiency could reach up to 85 %, while in initial concentration of 5 EU/mL endotoxin solution, the adsorption efficiency could reach up to 87.6 %. The results suggest chitosan/Ag/polypyrrole/LS films for their capability as a new type of antibacterial film with intrinsic endotoxin adsorption activity.
Collapse
Affiliation(s)
- Tingting Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada
| | - Huanli Gao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jiahuan Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ming He
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xingxiang Ji
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Hongqi Dai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
3
|
Dou W, Qi F, Li Y, Wei F, Hu Q, Yao Z, Wang J, Zhang L, Tang Z. Charge-biased nanofibrous membranes with uniform charge distribution and hemocompatibility for enhanced selective adsorption of endotoxin from plasma. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
4
|
Aoudjit L, Salazar H, Zioui D, Sebti A, Martins PM, Lanceros-Méndez S. Solar Photocatalytic Membranes: An Experimental and Artificial Neural Network Modeling Approach for Niflumic Acid Degradation. MEMBRANES 2022; 12:membranes12090849. [PMID: 36135867 PMCID: PMC9504027 DOI: 10.3390/membranes12090849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 05/26/2023]
Abstract
The presence of contaminants of emerging concern (CEC), such as pharmaceuticals, in water sources is one of the main concerns nowadays due to their hazardous properties causing severe effects on human health and ecosystem biodiversity. Niflumic acid (NFA) is a widely used anti-inflammatory drug, and it is known for its non-biodegradability and resistance to chemical and biological degradation processes. In this work, a 10 wt.% TiO2/PVDF-TrFE nanocomposite membrane (NCM) was prepared by the solvent casting technique, fully characterized, and implemented on an up-scaled photocatalytic membrane reactor (PMR). The photocatalytic activity of the NCM was evaluated on NFA degradation under different experimental conditions, including NFA concentration, pH of the media, irradiation time and intensity. The NCM demonstrated a remarkable photocatalytic efficiency on NFA degradation, as efficiency of 91% was achieved after 6 h under solar irradiation at neutral pH. The NCM proved effective in long-term use, with maximum efficiency losses of 7%. An artificial neural network (ANN) model was designed to model NFA's photocatalytic degradation behavior, demonstrating a good agreement between experimental and predicted data, with an R2 of 0.98. The relative significance of each experimental condition was evaluated, and the irradiation time proved to be the most significant parameter affecting the NFA degradation efficiency. The designed ANN model provides a reliable framework l for modeling the photocatalytic activity of TiO2/PVDF-TrFE and related NCM.
Collapse
Affiliation(s)
- Lamine Aoudjit
- Unité de Développement des Équipements Solaires, UDES/Centre de Développement des Energies Renouvelables, CDER, Bou Ismail 42415, Algeria
| | - Hugo Salazar
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LaPMET—Laboratory of Physics for Materials and Emergent Technologies, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Centre/Department of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Djamila Zioui
- Unité de Développement des Équipements Solaires, UDES/Centre de Développement des Energies Renouvelables, CDER, Bou Ismail 42415, Algeria
| | - Aicha Sebti
- Unité de Développement des Équipements Solaires, UDES/Centre de Développement des Energies Renouvelables, CDER, Bou Ismail 42415, Algeria
| | - Pedro Manuel Martins
- Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Institute of Science and Innovation on Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Senentxu Lanceros-Méndez
- BCMaterials, Basque Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
5
|
Process- and Product-Related Foulants in Virus Filtration. Bioengineering (Basel) 2022; 9:bioengineering9040155. [PMID: 35447715 PMCID: PMC9030149 DOI: 10.3390/bioengineering9040155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022] Open
Abstract
Regulatory authorities place stringent guidelines on the removal of contaminants during the manufacture of biopharmaceutical products. Monoclonal antibodies, Fc-fusion proteins, and other mammalian cell-derived biotherapeutics are heterogeneous molecules that are validated based on the production process and not on molecular homogeneity. Validation of clearance of potential contamination by viruses is a major challenge during the downstream purification of these therapeutics. Virus filtration is a single-use, size-based separation process in which the contaminating virus particles are retained while the therapeutic molecules pass through the membrane pores. Virus filtration is routinely used as part of the overall virus clearance strategy. Compromised performance of virus filters due to membrane fouling, low throughput and reduced viral clearance, is of considerable industrial significance and is frequently a major challenge. This review shows how components generated during cell culture, contaminants, and product variants can affect virus filtration of mammalian cell-derived biologics. Cell culture-derived foulants include host cell proteins, proteases, and endotoxins. We also provide mitigation measures for each potential foulant.
Collapse
|
6
|
Choi SH, Randová A, Vopička O, Lanč M, Fuoco A, Jansen JC, Friess K. Integrally skinned asymmetric poly(vinylidene fluoride) hollow fibre membranes: A study of gas and vapour transport properties. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Mesoporous metal organic frameworks functionalized with the amino acids as advanced sorbents for the removal of bacterial endotoxins from water: Optimization, regression and kinetic models. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116801] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
8
|
Li Z, Yan X, Wu K, Jiao Y, Zhou C, Yang J. Surface Modification of Reduced Graphene Oxide Beads: Integrating Efficient Endotoxin Adsorption and Improved Blood Compatibility. ACS APPLIED BIO MATERIALS 2021; 4:4896-4906. [PMID: 35007038 DOI: 10.1021/acsabm.0c01666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
As a pathogenic toxin, endotoxins are the culprit for endotoxemia and can be generally removed from the blood by hemoperfusion. Reduced graphene oxide (rGO) is a promising endotoxin sorbent for hemoperfusion owing to its excellent adsorption capacity, but it has the side effect of nonspecific adsorption and low blood compatibility. Polymyxin B (PMB) acts as an organic affinity ligand that can specifically bind endotoxins. As a natural anticoagulant, heparin (Hep) can reduce the risk of coagulation and improve the blood compatibility of materials. Herein, an rGO bead adsorbent was prepared by coupling with PMB and Hep and used for endotoxin adsorption; in this, polydopamine (pDA) served as an active coating for immobilization of PMB and further coupling with Hep. The physicochemical characteristics indicated that PMB and Hep were successfully immobilized on rGO beads with a hierarchical pore structure. PMB endowed rGO beads with higher adsorption capacity (143.84 ± 3.28 EU/mg) and good adsorption selectivity for endotoxins. Hep significantly improved the blood compatibility of rGO beads. These modified rGO beads also achieved good adsorption capacity and adsorption selectivity for endotoxins in plasma, serum, or blood. Therefore, rGO/pDA/PMB/Hep beads are potential adsorbents for endotoxins in hemoperfusion.
Collapse
Affiliation(s)
- Zhentao Li
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Xin Yan
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Keke Wu
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Yanpeng Jiao
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Changren Zhou
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Jingxin Yang
- College of Robotics, Beijing Union University, Beijing 100027, China
| |
Collapse
|
9
|
Boas U, Sørensen MB, Andresen LO, Berger SS. A generic protocol to immobilize lipopolysaccharides on microbeads for multiplex analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2485-2494. [PMID: 34002176 DOI: 10.1039/d1ay00327e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bead-based multiplex serodiagnostics enables simultaneous analysis of antibodies against several antigens. Binding of the antigens onto the surface of the bead, preserving the antigenicity of the antigen is a pivotal step to ensure high sensitivity and selectivity of the assay. Here, a generic method for immobilization of lipopolysaccharide (LPS) antigens from different Gram-negative bacteria to microbeads using non-covalent conjugation has been developed and tested. The method involves coupling of N,N-diethylethylenediamine (DEDA) and derivatives to microbeads. This enhances non-covalent interactions so that LPS is easily immobilized. LPS antigens from the Gram-negative bacteria Actinobacillus pleuropneumoniae (APP) and Salmonella enterica serogroup B (Sal. B) were immobilized on the DEDA-coupled microbeads. In parallel, the same LPS antigens were coupled to beads using two previously reported methods. The performance of microbeads coupled with antigen using the different methods was compared by measuring antibodies in positive and negative serum samples from pigs. DEDA-beads coupled with LPS detected pathogen specific serum antibodies with equal or higher sensitivity and specificity compared to the other coupling methods used in this study. Furthermore, derivatives of DEDA, where the tertiary amine was alkylated with a methyl (m-DEDA) and ethyl group (e-DEDA) to give a positively charged tetraalkylammonium group, were compared with DEDA for the binding of LPS antigens. Here, it was concluded that the DEDA-modified bead was most efficient in the binding of LPS antigens from two Actinobacillus pleuropneumoniae serovars and Salmonella enterica serogroup B.
Collapse
Affiliation(s)
- Ulrik Boas
- The National Veterinary Institute, Technical University of Denmark, Section of Immunology and Vaccinology, Denmark
| | | | | | | |
Collapse
|
10
|
Li Y, Li J, Shi Z, Wang Y, Song X, Wang L, Han M, Du H, He C, Zhao W, Su B, Zhao C. Anticoagulant chitosan-kappa-carrageenan composite hydrogel sorbent for simultaneous endotoxin and bacteria cleansing in septic blood. Carbohydr Polym 2020; 243:116470. [DOI: 10.1016/j.carbpol.2020.116470] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/19/2020] [Accepted: 05/15/2020] [Indexed: 12/26/2022]
|
11
|
Zioui D, Salazar H, Aoudjit L, Martins PM, Lanceros-Méndez S. Polymer-Based Membranes for Oily Wastewater Remediation. Polymers (Basel) 2019; 12:polym12010042. [PMID: 31888040 PMCID: PMC7023582 DOI: 10.3390/polym12010042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/25/2019] [Accepted: 12/21/2019] [Indexed: 12/02/2022] Open
Abstract
The compounds found in industrial wastewater typically show high toxicity, and in this way, they have become a primary environmental concern. Several techniques have been applied in industrial effluent remediation. In spite of the efforts, these techniques are yet to be ineffective to treat oily wastewater before it can be discharged safely to the environment. Membrane technology is an attractive approach to treat oily wastewater. This is dedicated to the immobilisation of TiO2 nanoparticles on poly(vinylidene fluoride–trifluoro ethylene) (PVDF-TrFE) porous matrix by solvent casting. Membranes with interconnected pores with an average diameter of 60 µm and a contact angle of 97°, decorated with TiO2 nanoparticles, are obtained. The degradation of oily wastewater demonstrated the high photocatalytic efficiency of the nanocomposite membranes: Under sunlight irradiation for seven hours, colourless water was obtained.
Collapse
Affiliation(s)
- Djamila Zioui
- Unité de Développement des équipements Solaires, UDES/Centre de Développement des Energies Renouvelables, CDER, Bou Ismail, W. Tipaza 42415, Algerie; (D.Z.); (L.A.)
| | - Hugo Salazar
- Centre/Departament of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- Institute of Science and Innovation on Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Lamine Aoudjit
- Unité de Développement des équipements Solaires, UDES/Centre de Développement des Energies Renouvelables, CDER, Bou Ismail, W. Tipaza 42415, Algerie; (D.Z.); (L.A.)
- Laboratoire de Chimie du Gaz Naturel, Faculté de Chimie, BP 32, El Alia, U.S.T.H.B., Bab Ezzouar 16111, Algerie
| | - Pedro M. Martins
- Centre/Departament of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- Institute of Science and Innovation on Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
- Correspondence: (P.M.M.); (S.L.-M.)
| | - Senentxu Lanceros-Méndez
- Centre/Departament of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- BCMaterials, Basque Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
- Correspondence: (P.M.M.); (S.L.-M.)
| |
Collapse
|
12
|
Ju J, Liang F, Zhang X, Sun R, Pan X, Guan X, Cui G, He X, Li M. Advancement in separation materials for blood purification therapy. Chin J Chem Eng 2019. [DOI: 10.1016/j.cjche.2019.01.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Ding Y, Sun Z, Shi R, Cui H, Liu Y, Mao H, Wang B, Zhu D, Yan F. Integrated Endotoxin Adsorption and Antibacterial Properties of Cationic Polyurethane Foams for Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2019; 11:2860-2869. [PMID: 30586274 DOI: 10.1021/acsami.8b19746] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gram-negative bacteria, containing toxic proinflammatory and pyrogenic substances [endotoxin or lipopolysaccharide (LPS)], can lead to infection and associated serious diseases, such as sepsis and septic shock. Development of antimicrobial materials with intrinsically endotoxin adsorption activity can prevent the release of bacterial toxic components while killing bacteria. Herein, a series of imidazolium-type polyurethane (PU) foams with antimicrobial properties were synthesized. The content effects of cationic moieties on the antimicrobial activities against Gram-negative Escherichia coli and Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus as well as the endotoxin adsorption property were investigated. The obtained PU foams show slightly higher efficiency against two Gram-negative strains than for Gram-positive one and high absorbability of LPS. A wound healing test using P. aeruginosa and its isolated LPS-treated mice as the models further demonstrated that imidazolium-type PU foams combine both antibacterial and endotoxin adsorption properties and may have a potential application as an antimicrobial wound dressing in a clinical setting.
Collapse
Affiliation(s)
- Yingying Ding
- Department of Anesthesiology and Critical Care Medicine, Zhongshan Hospital , Fudan University , Shanghai 200032 , China
| | - Zhe Sun
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Rongwei Shi
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Hengqing Cui
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital , Shanghai Jiaotong University School of Medicine , Shanghai 200011 , China
| | - Yangyang Liu
- Department of Anesthesiology and Critical Care Medicine, Zhongshan Hospital , Fudan University , Shanghai 200032 , China
| | - Hailei Mao
- Department of Anesthesiology and Critical Care Medicine, Zhongshan Hospital , Fudan University , Shanghai 200032 , China
| | - Bin Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital , Shanghai Jiaotong University School of Medicine , Shanghai 200011 , China
| | - Duming Zhu
- Department of Anesthesiology and Critical Care Medicine, Zhongshan Hospital , Fudan University , Shanghai 200032 , China
| | - Feng Yan
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| |
Collapse
|
14
|
|
15
|
Ma N, Zhao L, Hu X, Yin Z, Zhang Y, Meng J. Protein Transport Properties of PAN Membranes Grafted with Hyperbranched Polyelectrolytes and Hyperbranched Zwitterions. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.6b03616] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Na Ma
- State Key Laboratory
of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China
| | - Lianrui Zhao
- State Key Laboratory
of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China
| | - Xiaoyu Hu
- State Key Laboratory of Membrane Materials and Membrane Applications,
Tianjin Motimo Membrane Technology Co., Ltd., Tianjin 300042, China
| | - Zhen Yin
- State Key Laboratory
of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China
| | - Yufeng Zhang
- State Key Laboratory
of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China
| | - Jianqiang Meng
- State Key Laboratory
of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China
| |
Collapse
|
16
|
Wu Q, Xu Y, Yang K, Cui H, Chen Y, Wang M, Zhu Q, Kang W, Gao C. Fabrication of membrane absorbers based on amphiphilic carbonaceous derivatives for selective endotoxin clearance. J Mater Chem B 2017; 5:8219-8227. [DOI: 10.1039/c7tb01778b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new carrier-dispersed method based on amphiphilic carbonaceous particles (ACPs) was developed for the construction of functionalized blend membrane absorbers.
Collapse
Affiliation(s)
- Qiang Wu
- College of Pharmacy, Institutes of Environment and Medicine and Chinese Material Medica, Henan University
- Kaifeng
- China
| | - Yueyue Xu
- College of Pharmacy, Institutes of Environment and Medicine and Chinese Material Medica, Henan University
- Kaifeng
- China
| | - Kai Yang
- College of Pharmacy, Institutes of Environment and Medicine and Chinese Material Medica, Henan University
- Kaifeng
- China
| | - Hailei Cui
- College of Pharmacy, Institutes of Environment and Medicine and Chinese Material Medica, Henan University
- Kaifeng
- China
| | - Yanjun Chen
- College of Pharmacy, Institutes of Environment and Medicine and Chinese Material Medica, Henan University
- Kaifeng
- China
- Department of Pharmaceutics, Beijing Institute of Pharmacology and Toxicology
- Beijing
| | - Menghua Wang
- College of Pharmacy, Institutes of Environment and Medicine and Chinese Material Medica, Henan University
- Kaifeng
- China
| | - Qingke Zhu
- College of Pharmacy, Institutes of Environment and Medicine and Chinese Material Medica, Henan University
- Kaifeng
- China
| | - Wenyi Kang
- College of Pharmacy, Institutes of Environment and Medicine and Chinese Material Medica, Henan University
- Kaifeng
- China
| | - Chunsheng Gao
- Department of Pharmaceutics, Beijing Institute of Pharmacology and Toxicology
- Beijing
- China
| |
Collapse
|
17
|
Lin S, Huang H, Zeng Y, Zhang L, Hou L. Facile surface modification by aldehydes to enhance chlorine resistance of polyamide thin film composite membranes. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.06.032] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Wang Y, Wang LL, He XC, Zhang ZJ, Yu HY, Gu JS. Integration of RAFT polymerization and click chemistry to fabricate PAMPS modified macroporous polypropylene membrane for protein fouling mitigation. J Colloid Interface Sci 2014; 435:43-50. [DOI: 10.1016/j.jcis.2014.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 08/01/2014] [Accepted: 08/06/2014] [Indexed: 10/24/2022]
|
19
|
Akashi N, Kuroda SI. Protein immobilization onto poly (vinylidene fluoride) microporous membranes activated by the atmospheric pressure low temperature plasma. POLYMER 2014. [DOI: 10.1016/j.polymer.2014.04.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Exploring the spinning and operations of multibore hollow fiber membranes for vacuum membrane distillation. AIChE J 2013. [DOI: 10.1002/aic.14323] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Yang Q, Mi B. Nanomaterials for membrane fouling control: accomplishments and challenges. Adv Chronic Kidney Dis 2013; 20:536-55. [PMID: 24206605 DOI: 10.1053/j.ackd.2013.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/21/2013] [Indexed: 12/13/2022]
Abstract
We report a review of recent research efforts on incorporating nanomaterials-including metal/metal oxide nanoparticles, carbon-based nanomaterials, and polymeric nanomaterials-into/onto membranes to improve membrane antifouling properties in biomedical or potentially medical-related applications. In general, nanomaterials can be incorporated into/onto a membrane by blending them into membrane fabricating materials or by attaching them to membrane surfaces via physical or chemical approaches. Overall, the fascinating, multifaceted properties (eg, high hydrophilicity, superparamagnetic properties, antibacterial properties, amenable functionality, strong hydration capability) of nanomaterials provide numerous novel strategies and unprecedented opportunities to fully mitigate membrane fouling. However, there are still challenges in achieving a broader adoption of nanomaterials in the membrane processes used for biomedical applications. Most of these challenges arise from the concerns over their long-term antifouling performance, hemocompatibility, and toxicity toward humans. Therefore, rigorous investigation is still needed before the adoption of some of these nanomaterials in biomedical applications, especially for those nanomaterials proposed to be used in the human body or in contact with living tissue/body fluids for a long period of time. Nevertheless, it is reasonable to predict that the service lifetime of membrane-based biomedical devices and implants will be prolonged significantly with the adoption of appropriate fouling control strategies.
Collapse
|
22
|
Allantoin as a solid phase adsorbent for removing endotoxins. J Chromatogr A 2013; 1310:15-20. [DOI: 10.1016/j.chroma.2013.08.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 08/09/2013] [Accepted: 08/12/2013] [Indexed: 11/22/2022]
|
23
|
Wang J, Wu G, Shi W, Liu X, Ruan C, Xue M, Ge D. Affinity electromembrane with covalently coupled heparin for thrombin adsorption. J Memb Sci 2013. [DOI: 10.1016/j.memsci.2012.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Li Q, Bi QY, Lin HH, Bian LX, Wang XL. A novel ultrafiltration (UF) membrane with controllable selectivity for protein separation. J Memb Sci 2013. [DOI: 10.1016/j.memsci.2012.09.010] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Huang T, Zhang M, Cheng L, Zhang L, Huang M, Xu Q, Chen H. A novel polysulfone-based affinity membrane with high hemocompatibility: preparation and endotoxin elimination performance. RSC Adv 2013. [DOI: 10.1039/c3ra43594f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
26
|
Wu XM, Wang LL, Wang Y, Gu JS, Yu HY. Surface modification of polypropylene macroporous membrane by marrying RAFT polymerization with click chemistry. J Memb Sci 2012. [DOI: 10.1016/j.memsci.2012.06.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|