1
|
Arandia K, Karna NK, Mattsson T, Theliander H. Monitoring Membrane Fouling Using Fluid Dynamic Gauging: Influence of Feed Characteristics and Operating Conditions. MEMBRANES 2023; 13:834. [PMID: 37888006 PMCID: PMC10608854 DOI: 10.3390/membranes13100834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/02/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023]
Abstract
Recent studies on membrane fouling have made considerable progress in reducing its adverse effects. However, a lack of comprehensive studies focusing on the underlying fouling mechanisms remains. This work aims to address a part of this gap by investigating the influence of feed suspension chemistry and operating conditions on the fouling characteristics of microcrystalline cellulose. Fluid dynamic gauging (FDG) was employed to monitor the properties of fouling layers under varied conditions. FDG results revealed that the cohesive strength of fouling layers increased in the direction towards the membrane, which can be associated with the higher compressive pressures exerted on foulants deposited near the surface. At lower pHs and higher ionic strengths, reduced electrostatic repulsions between particles likely resulted in particle agglomeration, leading to the formation of thicker cakes. In addition, thicker cake layers were also observed at higher feed concentrations, higher operating transmembrane pressures, and longer filtration times. The cross-flow velocity influenced the resilience of fouling layers significantly, resulting in thinner yet stronger cake layers in the transition and turbulent flow regimes. These findings regarding the influence of feed characteristics and operating conditions on the fouling behavior can be beneficial in developing effective antifouling strategies in membrane separation processes.
Collapse
Affiliation(s)
- Kenneth Arandia
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; (N.K.K.); (H.T.)
- Wallenberg Wood Science Center, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Nabin Kumar Karna
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; (N.K.K.); (H.T.)
- Wallenberg Wood Science Center, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Tuve Mattsson
- Center for Membrane Technology, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark;
| | - Hans Theliander
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; (N.K.K.); (H.T.)
- Wallenberg Wood Science Center, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
2
|
Arandia K, Karna NK, Mattsson T, Larsson A, Theliander H. Fouling characteristics of microcrystalline cellulose during cross-flow microfiltration: Insights from fluid dynamic gauging and molecular dynamics simulations. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
3
|
Abd-Razak NH, Chew YMJ, Bird MR. Orange juice ultrafiltration: characterisation of deposit layers and membrane surfaces after fouling and cleaning. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2021; 17:837-850. [DOI: 10.1515/ijfe-2021-0096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
The influence of feed condition and membrane cleaning during the ultrafiltration (UF) of orange juice for phytosterol separation was investigated. UF was performed using regenerated cellulose acetate (RCA) membranes at different molecular weight cut-off (MWCO) values with a 336 cm2 membrane area and a range of temperatures (10–40 °C) and different feed volumes (3–9 L). Fluid dynamic gauging (FDG) was applied to assess the fouling and cleaning behaviours of RCA membranes fouled by orange juice and cleaned using P3-Ultrasil 11 over two complete cycles. During the FDG testing, fouling layers were removed by fluid shear stress caused by suction flow. The cleanability was characterised by using ImageJ software analysis. A Liebermann-Buchard-based method was used to quantify the phytosterol content. The results show that RCA 10 kDa filters exhibited the best separation of phytosterols from protein in orange juice at 20 °C using 3 L feed with a selectivity factor of 17. Membranes that were fouled after two cycles showed higher surface coverage compared to one fouling cycle. The surface coverage decreased with increasing fluid shear stress from 0 to 3.9 Pa. FDG achieved 80–95% removal at 3.9 Pa for all RCA membranes. Chemical cleaning using P3-Ultrasil 11 altered both the membrane surface hydrophobicity and roughness. These results show that the fouling layer on RCA membranes can be removed by fluid shear stress without affecting the membrane surface modification caused by chemical cleaning.
Collapse
Affiliation(s)
- Nurul Hainiza Abd-Razak
- Centre of Advanced Separations Engineering, Department of Chemical Engineering , University of Bath , Bath BA2 7AY , UK
- Rubber Research Institute of Malaysia, Malaysian Rubber Board , PO Box 10150 , 50908 Kuala Lumpur , Malaysia
| | - Y. M. John Chew
- Centre of Advanced Separations Engineering, Department of Chemical Engineering , University of Bath , Bath BA2 7AY , UK
| | - Michael R. Bird
- Centre of Advanced Separations Engineering, Department of Chemical Engineering , University of Bath , Bath BA2 7AY , UK
| |
Collapse
|
4
|
Arandia K, Balyan U, Mattsson T. Development of a fluid dynamic gauging method for the characterization of fouling behavior during cross-flow filtration of a wood extraction liquor. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Comparison of Polypropylene and Ceramic Microfiltration Membranes Applied for Separation of 1,3-PD Fermentation Broths and Saccharomyces cerevisiae Yeast Suspensions. MEMBRANES 2021; 11:membranes11010044. [PMID: 33435635 PMCID: PMC7826861 DOI: 10.3390/membranes11010044] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 01/18/2023]
Abstract
In recent years, microfiltration (MF) has gained great interest as an excellent technique for clarification of biological suspensions. This paper addresses a direct comparison of efficiency, performance and susceptibility to cleaning of the ceramic and polymeric MF membranes applied for purification of 1,3-propanediol (1,3-PD) fermentation broths and suspensions of yeast Saccharomyces cerevisiae. For this purpose, ceramic, titanium dioxide (TiO2) based membranes and polypropylene (PP) membranes were used. It has been found that both TiO2 and PP membranes provide sterile permeate during filtration of 1,3-PD broths. However, the ceramic membrane, due to the smaller pore diameter, allowed obtaining a better quality permeate. All the membranes used were highly susceptible to fouling with the components of the clarified broths and yeast suspensions. The significant impact of the feed flow velocity and fermentation broth composition on the relative permeate flux has been demonstrated. Suitable cleaning agents with selected concentration and duration of action effectively cleaned the ceramic membrane. In turn, the use of aggressive cleaning solutions led to degradation of the PP membranes matrix. Findings of this study add to a growing body of literature on the use of ceramic and polypropylene MF membranes for the clarification of biological suspensions.
Collapse
|
6
|
Quantifying Charge Effects on Fouling Layer Strength and (Ir)Removability during Cross-Flow Microfiltration. MEMBRANES 2021; 11:membranes11010028. [PMID: 33401452 PMCID: PMC7824541 DOI: 10.3390/membranes11010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 11/17/2022]
Abstract
Fouling of membranes is still an important limiting factor in the application of membrane technology. Therefore, there is still a need for an in-depth understanding of which parameters affect the (ir)removability of fouling layers, as well as the mechanisms behind fouling. In this study, fluid dynamic gauging (FDG) was used to investigate the influence of charge effects between negatively charged foulant particles and cations on cake cohesive strength. Fouling cakes’ thicknesses and cohesive strengths were estimated during membrane operations, where microfiltration (MF) membranes were fouled in a feed-and-bleed cross-flow filtration system with low and highly negatively charged polystyrene–polyacrylic acid core-shell particles. In addition, an added procedure to determine the irremovability of cakes using FDG was also proposed. Comparing layers formed in the presence and absence of calcium ions revealed that layers formed without calcium ions had significantly lower cohesive strength than layers formed in the presence of calcium ions, which is explained by the bridging effect between negatively charged particles and calcium ions. Results also confirmed more cohesive cakes formed by high negative charge particles in the presence of calcium compared to lower negative charge particles. Hence, it was demonstrated that FDG can be used to assess the cohesive strength ((ir)removability) of cake layers, and to study how cake cohesive strength depends on foulant surface charge and ionic composition of the solution.
Collapse
|
7
|
Cho H, Mushtaq A, Hwang T, Kim HS, Han JI. Orifice-based membrane fouling inhibition employing in-situ turbulence for efficient microalgae harvesting. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Rudolph G, Virtanen T, Ferrando M, Güell C, Lipnizki F, Kallioinen M. A review of in situ real-time monitoring techniques for membrane fouling in the biotechnology, biorefinery and food sectors. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117221] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Investigation of the cohesive strength of membrane fouling layers formed during cross-flow microfiltration: The effects of pH adjustment on the properties and fouling characteristics of microcrystalline cellulose. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.06.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
The use of fluid dynamic gauging in investigating the thickness and cohesive strength of cake fouling layers formed during cross-flow microfiltration. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2017.01.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Suwarno SR, Huang W, Chew YMJ, Tan SHH, Trisno AE, Zhou Y. On-line biofilm strength detection in cross-flow membrane filtration systems. BIOFOULING 2018; 34:123-131. [PMID: 29268634 DOI: 10.1080/08927014.2017.1409892] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/20/2017] [Indexed: 06/07/2023]
Abstract
A fluid dynamic gauging (FDG) technique was used for on-line and in situ measurements of Pseudomonas aeruginosa PAO1 biofilm thickness and strength on flat sheet polyethersulphone membranes. The measurements are the first to be successfully conducted in a membrane cross-flow filtration system under constant permeation. In addition, FDG was used to demonstrate the removal behaviour of biofilms through local biofilm strength and removal energy estimation, which other conventional measurements such as flux and TMP cannot provide. The findings suggest that FDG can provide valuable additional information related to biofilm properties that have not been measured by other monitoring methods.
Collapse
Affiliation(s)
- Stanislaus Raditya Suwarno
- b Singapore Membrane Technology Centre, Nanyang Environment & Water Research Institute , Nanyang Technological University , Singapore
| | - Wenhai Huang
- a Advanced Environmental Biotechnology Centre , Nanyang Environment & Water Research Institute, Nanyang Technological University , Singapore
| | - Y M John Chew
- d Centre for Advanced Separations Engineering and Department of Chemical Engineering , University of Bath , Bath , UK
| | - Sio Hoong Henrich Tan
- c School of Civil & Environmental Engineering , Nanyang Technological University , Singapore
| | - Augustinus Elmer Trisno
- c School of Civil & Environmental Engineering , Nanyang Technological University , Singapore
| | - Yan Zhou
- a Advanced Environmental Biotechnology Centre , Nanyang Environment & Water Research Institute, Nanyang Technological University , Singapore
- c School of Civil & Environmental Engineering , Nanyang Technological University , Singapore
| |
Collapse
|
12
|
Benet E, Badran A, Pellegrino J, Vernerey F. The porous media's effect on the permeation of elastic (soft) particles. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Lewis WJ, Mattsson T, Chew YJ, Bird MR. Investigation of cake fouling and pore blocking phenomena using fluid dynamic gauging and critical flux models. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.03.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Du X, Qu F, Liang H, Li K, Chang H, Li G. Cake properties in ultrafiltration of TiO2 fine particles combined with HA: in situ measurement of cake thickness by fluid dynamic gauging and CFD calculation of imposed shear stress for cake controlling. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:8806-8818. [PMID: 26810663 DOI: 10.1007/s11356-015-5984-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 12/14/2015] [Indexed: 06/05/2023]
Abstract
In this study, the cake buildup of TiO2 fine particles in the presence of humid acid (HA) and cake layer controlling during ultrafiltration (UF) were investigated. Specifically, we measured the cake thickness using fluid dynamic gauging (FDG) method under various solution conditions, including TiO2 concentration (0.1-0.5 g/L), HA concentration (0-5 mg/L, total organic carbon (TOC)), and pH values (e.g., 4, 6 and 10), and calculated the shear stress distribution induced by stirring using computational fluid dynamics (CFD) to analyze the cake layer controlling conditions, including the operation flux (50-200 L m(-2) h(-1)) and TiO2 concentration (0.1-0.5 g/L). It was found that lower TiO2/HA concentration ratio could lead to exceedingly severe membrane fouling because of the formation of a relatively denser cake layer by filling the voids of cake layer with HA, and pH was essential for cake layer formation owing to the net repulsion between particles. Additionally, it was observed that shear stress was rewarding for mitigating cake growth under lower operation flux as a result of sufficient back-transport forces, and exhibited an excellent performance on cake layer controlling in lower TiO2 concentrations due to slight interaction forces on the vicinity of membrane.
Collapse
Affiliation(s)
- Xing Du
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, People's Republic of China
| | - Fangshu Qu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, People's Republic of China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, People's Republic of China.
| | - Kai Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 13 Yanta Road, Xi'an, 710055, People's Republic of China
| | - Haiqing Chang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, People's Republic of China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, People's Republic of China
| |
Collapse
|
15
|
Loulergue P, Weckert M, Reboul B, Cabassud C, Uhl W, Guigui C. Mechanisms of action of particles used for fouling mitigation in membrane bioreactors. WATER RESEARCH 2014; 66:40-52. [PMID: 25181616 DOI: 10.1016/j.watres.2014.07.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/25/2014] [Accepted: 07/23/2014] [Indexed: 06/03/2023]
Abstract
Adding chemicals to the biofluid is an option to mitigate membrane fouling in membrane bioreactors. In particular, previous studies have shown that the addition of particles could enhance activated sludge filterability. Nevertheless, the mechanisms responsible for the improved filtration performance when particles are added are still unclear. Two main mechanisms might occur: soluble organic matter adsorption onto the particles and/or cake structure modification. To date, no studies have clearly dissociated the impact of these two phenomena as a method was needed for the in-line characterization of the cake structure during filtration. The objective of this study was thus to apply, for the first time, an optical method for in-situ, non-invasive, characterization of cake structure during filtration of a real biofluid in presence of particles. This method was firstly used to study local cake compressibility during the biofluid filtration. It was found that the first layers of the cake were incompressible whereas the cake appeared to be compressible at global scale. This questions the global scale analysis generally used to study cake compressibility and highlights the interest of coupling local characterization with overall process performance analysis. Secondly, the impact of adding submicronic melamine particles into the biofluid was studied. It appears that particles added into the biofluid strongly influence the cake properties, making it thicker and more permeable. Furthermore, by using liquid chromatography with an organic carbon detector to determine the detailed characteristics of the feed and permeate, it was shown that the modification of cake structure also affected the retention of soluble organic compounds by the membrane and thus the cake composition. Simultaneous use of a method for in-situ characterization of the cake structure with a detailed analysis of the fluid composition and monitoring of the global performance is thus a powerful method for evaluating cake structure and composition and their impact on global process performance. The use of this methodology should allow "cake engineering" to be developed so that cake properties (structure, composition) can be controlled and process performance optimized.
Collapse
Affiliation(s)
- P Loulergue
- Université de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France; INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France; CNRS, UMR5504, F-31400 Toulouse, France.
| | - M Weckert
- Université de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France; INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France; CNRS, UMR5504, F-31400 Toulouse, France; Technische Universitat Dresden, Institute of Urban Water Management, Chair of Water Supply Engineering, 01062 Dresden, Germany
| | - B Reboul
- Université de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France; INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France; CNRS, UMR5504, F-31400 Toulouse, France
| | - C Cabassud
- Université de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France; INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France; CNRS, UMR5504, F-31400 Toulouse, France
| | - W Uhl
- Technische Universitat Dresden, Institute of Urban Water Management, Chair of Water Supply Engineering, 01062 Dresden, Germany
| | - C Guigui
- Université de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France; INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France; CNRS, UMR5504, F-31400 Toulouse, France
| |
Collapse
|