1
|
Chen G, Wan Y, Ghosh R. Bioseparation using membrane chromatography: Innovations, and challenges. J Chromatogr A 2025; 1744:465733. [PMID: 39893917 DOI: 10.1016/j.chroma.2025.465733] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
The resin-based column continues to be the dominant incumbent in bioprocess chromatography. While alternative formats such as membrane-, monolith- and fiber-based chromatography are more visible than before, each still plays minor roles. The reasons for this are complex and some of these are explained in this paper. However, the fact remains that membrane chromatography has come a long way since its early days of development. The main advantage of membrane chromatography continues to be its convection dominant transport mechanism, the resultant benefit being fast and scalable separation. Also, resolution obtained with properly designed devices could be comparable or even better than resin-based chromatography. Significant progress has been made in new membrane development, membrane characterization, device design and novel applications development. A wider range of new membrane matrices, ligands, and ligand-matrix linking chemistries are now available. New membrane modules, formats, and process configurations have also helped improve membrane performance. However, some significant challenges still exist, and these need to be addressed if membrane chromatography is to become more mainstream in the field of bioprocessing. Also, membrane chromatography has significant potential for application in analytical separations and this space has hardly been explored. In this paper, the advances in the areas of membrane preparation, device design and process development are reviewed. A high-level cost analysis is presented and the role of process design in membrane chromatography is discussed.
Collapse
Affiliation(s)
- Guoqiang Chen
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yinhua Wan
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, PR China; Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, PR China
| | - Raja Ghosh
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada.
| |
Collapse
|
2
|
Yang X, Merenda A, AL-Attabi R, Dumée LF, Zhang X, Thang SH, Pham H, Kong L. Towards next generation high throughput ion exchange membranes for downstream bioprocessing: A review. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
Yang X, Hsia T, Merenda A, AL-Attabi R, Dumee LF, Thang SH, Kong L. Constructing novel nanofibrous polyacrylonitrile (PAN)-based anion exchange membrane adsorber for protein separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Chang YK, Cheng HI, Ooi CW, Song CP, Liu BL. Adsorption and purification performance of lysozyme from chicken egg white using ion exchange nanofiber membrane modified by ethylene diamine and bromoacetic acid. Food Chem 2021; 358:129914. [PMID: 34000689 DOI: 10.1016/j.foodchem.2021.129914] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 04/07/2021] [Accepted: 04/18/2021] [Indexed: 12/23/2022]
Abstract
A high-performance polyacid ion exchange (IEX) nanofiber membrane was used in membrane chromatography for the recovery of lysozyme from chicken egg white (CEW). The polyacid IEX nanofiber membrane (P-BrA) was prepared by the functionalization of polyacrylonitrile (PAN) nanofiber membrane with ethylene diamine (EDA) and bromoacetic acid (BrA). The adsorption performance of P-BrA was evaluated under various operating conditions using Pall filter holder. The results showed that optimal conditions of IEX membrane chromatography for lysozyme adsorption were 10% (w/v) of CEW, pH 9 and 0.1 mL/min. The purification factor and yield of lysozyme were 402 and 91%, respectively. The adsorption process was further scaled up to a larger loading volume, and the purification performance was found to be consistent. Furthermore, the regeneration of IEX nanofiber membrane was achieved under mild conditions. The adsorption process was repeated for five times and the adsorption capacity of adsorber was found to be unaffected.
Collapse
Affiliation(s)
- Yu-Kaung Chang
- Department of Chemical Engineering, Graduate School of Biochemical Engineering, Ming Chi University of Technology, New Taipei City 24303, Taiwan.
| | - Hsing-I Cheng
- Department of Chemical Engineering, Graduate School of Biochemical Engineering, Ming Chi University of Technology, New Taipei City 24303, Taiwan
| | - Chien Wei Ooi
- Chemical Engineering Discipline, School of Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Cher Pin Song
- Chemical Engineering Discipline, School of Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Bing-Lan Liu
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung 413310, Taiwan.
| |
Collapse
|
5
|
Li X, Liu Y, Sun Y. Development of poly(methacrylate)-grafted Sepharose FF for cation-exchange chromatography of proteins. J Chromatogr A 2020; 1634:461669. [DOI: 10.1016/j.chroma.2020.461669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 12/26/2022]
|
6
|
Lu Y, Sun D, Lu Y, Yan Y, Hu B. Zwitterion imprinted composite membranes with obvious antifouling character for selective separation of Li ions. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-019-0442-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
|
8
|
Zwitterion augmented polyamide membrane for improved forward osmosis performance with significant antifouling characteristics. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.09.079] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
9
|
Tetrazole-functionalized cation-exchange membrane adsorbers with high binding capacity and unique separation feature for protein. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1097-1098:18-26. [DOI: 10.1016/j.jchromb.2018.08.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/27/2018] [Accepted: 08/31/2018] [Indexed: 01/12/2023]
|
10
|
Carter BM, Sengupta A, Qian X, Ulbricht M, Wickramasinghe SR. Controlling external versus internal pore modification of ultrafiltration membranes using surface-initiated AGET-ATRP. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.02.066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Rajesh S, Schneiderman S, Crandall C, Fong H, Menkhaus TJ. Synthesis of Cellulose-graft-Polypropionic Acid Nanofiber Cation-Exchange Membrane Adsorbers for High-Efficiency Separations. ACS APPLIED MATERIALS & INTERFACES 2017; 9:41055-41065. [PMID: 29111637 DOI: 10.1021/acsami.7b13459] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Fabrication of membrane adsorbers with elevated binding capacity and high throughput is highly desired for simplifying and improving purification efficiencies of bioproducts (biotherapeutics, vaccines, etc.) in the biotechnological and biopharmaceutical industries. Here we demonstrate the preparation of a novel class of self-supported, cellulose-graft-polypropionic acid (CL-g-PPA) cation-exchange nanofiber membrane adsorbers under mild reaction conditions for the purification of positively charged therapeutic proteins. In our fabrication method, acrylonitrile was first polymerized and surface grafted onto cellulose nanofibers using cerium ammonium nitrate as a redox initiator to form cellulose-g-polyacrylonitrile (CL-g-PAN). CL-g-PAN was then submitted to a hydrolyzation reaction to form CL-g-PPA cationic membrane adsorbers. Morphology and structural characterization illustrated the formation of CL-g-PPA membranes with uniform coating of polyacid nanolayers along the individual nanofibers without disturbing the nanofiber structure. Benefiting from these numerous cationic polyacid binding sites and inherent large surface area and open porous structure, CL-g-PPA nanofiber membrane adsorbers showed a lysozyme static adsorption capacity of 1664 mg/g of nanofibers. These membranes showed a lysozyme dynamic binding capacity of 508 mg/g of nanofibers at 10% breakthrough (equivalent to 206 g/L capacity), with a residence time of less than 6 s. Moreover, CL-g-PPA self-supported nanofibers displayed excellent structural stability and reversibility after several cycles of protein binding studies. This dynamic binding capacity of the CL-g-PPA nanofiber membranes was 3.2 times higher than that of macroporous cellulose membranes and 8.5 times higher than that of the Sartobind S commercial membrane adsorber. Considering the simple fabrication method employed, excellent protein adsorption capacity, remarkable structural stability, and reusability, CL-g-PPA nanofiber membranes provided a versatile platform for the chromatographic separations of biomolecules (e.g., proteins, nucleic acids, and viral vaccines) as well as water purification and similar ion-exchange applications.
Collapse
Affiliation(s)
- Sahadevan Rajesh
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology , Rapid City, South Dakota 57701, United States
| | - Steven Schneiderman
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology , Rapid City, South Dakota 57701, United States
| | - Caitlin Crandall
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology , Rapid City, South Dakota 57701, United States
| | - Hao Fong
- Department of Chemistry and Applied Biological Sciences, South Dakota School of Mines and Technology , Rapid City, South Dakota 57701, United States
| | - Todd J Menkhaus
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology , Rapid City, South Dakota 57701, United States
| |
Collapse
|
12
|
Khan MK, Luo J, Khan R, Fan J, Wan Y. Facile and green fabrication of cation exchange membrane adsorber with unprecedented adsorption capacity for protein purification. J Chromatogr A 2017; 1521:19-26. [DOI: 10.1016/j.chroma.2017.09.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 10/18/2022]
|
13
|
Song C, Wang M, Liu X, Wang H, Chen X, Dai L. Fabrication of high-capacity polyelectrolyte brush-grafted porous AAO-silica composite membrane via RAFT polymerization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:748-755. [DOI: 10.1016/j.msec.2017.03.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/28/2016] [Accepted: 03/04/2017] [Indexed: 01/08/2023]
|
14
|
Zoppe JO, Ataman NC, Mocny P, Wang J, Moraes J, Klok HA. Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. Chem Rev 2017; 117:1105-1318. [PMID: 28135076 DOI: 10.1021/acs.chemrev.6b00314] [Citation(s) in RCA: 631] [Impact Index Per Article: 78.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The generation of polymer brushes by surface-initiated controlled radical polymerization (SI-CRP) techniques has become a powerful approach to tailor the chemical and physical properties of interfaces and has given rise to great advances in surface and interface engineering. Polymer brushes are defined as thin polymer films in which the individual polymer chains are tethered by one chain end to a solid interface. Significant advances have been made over the past years in the field of polymer brushes. This includes novel developments in SI-CRP, as well as the emergence of novel applications such as catalysis, electronics, nanomaterial synthesis and biosensing. Additionally, polymer brushes prepared via SI-CRP have been utilized to modify the surface of novel substrates such as natural fibers, polymer nanofibers, mesoporous materials, graphene, viruses and protein nanoparticles. The last years have also seen exciting advances in the chemical and physical characterization of polymer brushes, as well as an ever increasing set of computational and simulation tools that allow understanding and predictions of these surface-grafted polymer architectures. The aim of this contribution is to provide a comprehensive review that critically assesses recent advances in the field and highlights the opportunities and challenges for future work.
Collapse
Affiliation(s)
- Justin O Zoppe
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Nariye Cavusoglu Ataman
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Piotr Mocny
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Jian Wang
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - John Moraes
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| |
Collapse
|
15
|
Ye H, Huang L, Li W, Zhang Y, Zhao L, Xin Q, Wang S, Lin L, Ding X. Protein adsorption and desorption behavior of a pH-responsive membrane based on ethylene vinyl alcohol copolymer. RSC Adv 2017. [DOI: 10.1039/c7ra03206d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The pH-responsive protein adsorption and desorption of a poly(DMAEMA)-grafted EVAL membrane was observed.
Collapse
Affiliation(s)
- Hui Ye
- State Key Laboratory of Separation Membranes and Membrane Processes
- Tianjin Polytechnic University
- Tianjin 300387
- China
- School of Materials Science and Engineering
| | - Lilan Huang
- State Key Laboratory of Separation Membranes and Membrane Processes
- Tianjin Polytechnic University
- Tianjin 300387
- China
- School of Materials Science and Engineering
| | - Wenrui Li
- State Key Laboratory of Separation Membranes and Membrane Processes
- Tianjin Polytechnic University
- Tianjin 300387
- China
- School of Materials Science and Engineering
| | - YuZhong Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes
- Tianjin Polytechnic University
- Tianjin 300387
- China
- School of Materials Science and Engineering
| | - Lizhi Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes
- Tianjin Polytechnic University
- Tianjin 300387
- China
- School of Materials Science and Engineering
| | - Qingping Xin
- State Key Laboratory of Separation Membranes and Membrane Processes
- Tianjin Polytechnic University
- Tianjin 300387
- China
- School of Materials Science and Engineering
| | - Shaofei Wang
- State Key Laboratory of Separation Membranes and Membrane Processes
- Tianjin Polytechnic University
- Tianjin 300387
- China
- School of Materials Science and Engineering
| | - Ligang Lin
- State Key Laboratory of Separation Membranes and Membrane Processes
- Tianjin Polytechnic University
- Tianjin 300387
- China
- School of Materials Science and Engineering
| | - Xiaoli Ding
- State Key Laboratory of Separation Membranes and Membrane Processes
- Tianjin Polytechnic University
- Tianjin 300387
- China
- School of Materials Science and Engineering
| |
Collapse
|
16
|
Chen Y, Zhao W, Zhang J. Preparation of 4-vinylpyridine (4VP) resin and its adsorption performance for heavy metal ions. RSC Adv 2017. [DOI: 10.1039/c6ra26813g] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The study focused on the preparation of a chelating resin with pyridine ring as the functional group.
Collapse
Affiliation(s)
- Youning Chen
- College of Chemistry and Chemical Engineering
- Xianyang Normal College
- Xianyang 712000
- China
| | - Wei Zhao
- College of Chemistry and Chemical Engineering
- Xianyang Normal College
- Xianyang 712000
- China
| | - Juncai Zhang
- College of Chemistry and Chemical Engineering
- Xianyang Normal College
- Xianyang 712000
- China
| |
Collapse
|
17
|
Wang HY, Sun Y, Zhang SL, Luo J, Shi QH. Fabrication of high-capacity cation-exchangers for protein chromatography by atom transfer radical polymerization. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Schwellenbach J, Kosiol P, Sölter B, Taft F, Villain L, Strube J. Controlling the polymer-nanolayer architecture on anion-exchange membrane adsorbers via surface-initiated atom transfer radical polymerization. REACT FUNCT POLYM 2016. [DOI: 10.1016/j.reactfunctpolym.2016.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Fu Q, Wang X, Si Y, Liu L, Yu J, Ding B. Scalable Fabrication of Electrospun Nanofibrous Membranes Functionalized with Citric Acid for High-Performance Protein Adsorption. ACS APPLIED MATERIALS & INTERFACES 2016; 8:11819-29. [PMID: 27111287 DOI: 10.1021/acsami.6b03107] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Fabricating protein adsorbents with high adsorption capacity and appreciable throughput is extremely important and highly desired for the separation and purification of protein products in the biomedical and pharmaceutical industries, yet still remains a great challenge. Herein, we demonstrate the synthesis of a novel protein adsorbent by in situ functionalizing eletrospun ethylene-vinyl alcohol (EVOH) nanofibrous membranes (NFM) with critic acid (CCA). Taking advantage of the merits of large specific surface area, highly tortuous open-porous structure, abundant active carboxyl groups introduced by CCA, superior chemical stability, and robust mechanical strength, the obtained CCA-grafted EVOH NFM (EVOH-CCA NFM) present an excellent integrated protein (take lysozyme as the model protein) adsorption performance with a high capacity of 284 mg g(-1), short equilibrium time of 6 h, ease of elution, and good reusability. Meanwhile, the adsorption performance of EVOH-CCA NFM can be optimized by regulating buffer pH, ionic strength, and initial concentration of protein solutions. More importantly, a dynamic binding efficiency of 250 mg g(-1) can be achieved driven solely by the gravity of protein solution, which matches well with the demands of the high yield and energy conservation in the actual protein purification process. Furthermore, the resultant EVOH-CCA NFM also possess unique selectivity for positively charged proteins which was confirmed by the method of sodium dodecyl sulfate polyacrylamide gel electrophoresis. Significantly, the successful synthesis of such intriguing and economic EVOH-CCA NFM may provide a promising candidate for the next generation of protein adsorbents for rapid, massive, and cost-effective separation and purification of proteins.
Collapse
Affiliation(s)
- Qiuxia Fu
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University , Shanghai 201620, China
| | - Xueqin Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University , Shanghai 201620, China
| | - Yang Si
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University , Shanghai 201620, China
| | - Lifang Liu
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University , Shanghai 201620, China
| | - Jianyong Yu
- Nanofibers Research Center, Modern Textile Institute, Donghua University , Shanghai 200051, China
| | - Bin Ding
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University , Shanghai 201620, China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University , Shanghai 201620, China
- Nanofibers Research Center, Modern Textile Institute, Donghua University , Shanghai 200051, China
| |
Collapse
|
20
|
Preparation and characterization of high capacity, strong cation-exchange fiber based adsorbents. J Chromatogr A 2016; 1447:92-106. [DOI: 10.1016/j.chroma.2016.04.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 11/18/2022]
|
21
|
Zhao L, Li M, Liu M, Zhang Y, Wu C, Zhang Y. Porphyrin-functionalized porous polysulfone membrane towards an optical sensor membrane for sorption and detection of cadmium(II). JOURNAL OF HAZARDOUS MATERIALS 2016; 301:233-241. [PMID: 26368797 DOI: 10.1016/j.jhazmat.2015.08.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 07/08/2015] [Accepted: 08/23/2015] [Indexed: 06/05/2023]
Abstract
In this study, an optical sensor membrane was prepared for sorption and detection of cadmium(II) (Cd(II)) in aqueous solution. A polyanion, poly(sodium 4-styrenesulfonate) (PNaSS), was grafted onto the chloromethylated polysulfone (CMPSF) microporous membrane via surface-initiated ATRP. 5,10,15,20-tetrakis(4-N-methylpyridyl) porphyrin p-toluenesulfonate (TMPyP) was immobilized onto the PNaSS-grafted polysulfone (PSF-PNaSS) membrane through electrostatic interaction. The TMPyP-functionalized membrane exhibited an enhanced sorption for, and distinct color and spectral response to cadmium(II) (Cd(II)) in aqueous solution. Larger immobilization capacity of TMPyP on the membrane led to stronger sorption for Cd(II), and smaller one made the optical sensor have a faster (in minutes) and more sensitive response to the ion. The detection limit study indicated that the functional membrane with proper amount of TMPyP (<0.5 mg/g) could still have color and spectral response to Cd(II) solutions at an extreme low concentration (10(-4) mg/L). The optical sensor membrane exhibited good stability and reusability which made it efficient for various sorptive removal and detection applications.
Collapse
Affiliation(s)
- Lizhi Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, PR China.
| | - Min Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, PR China
| | - Manman Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, PR China
| | - Yuecong Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, PR China
| | - Chenglin Wu
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 317000, Zhejiang Province, PR China
| | - Yuzhong Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, PR China.
| |
Collapse
|
22
|
Yuan J, Wang C, Wei Y. High-capacity strong cation exchanger prepared from an inactivated immobilized enzyme and its application to the removal of methylene blue from water. RSC Adv 2016. [DOI: 10.1039/c6ra10243c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inactivated immobilized enzymes were reutilized by converting into a strong cation exchanger by using surface-initiated atom transfer radical polymerization, and the cation exchanger was used to remove methylene blue from water.
Collapse
Affiliation(s)
- Jingxiang Yuan
- Synthetic and Natural Functional Molecule Chemistry of Ministry of Education Key Laboratory
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
- China
| | - Chaozhan Wang
- Synthetic and Natural Functional Molecule Chemistry of Ministry of Education Key Laboratory
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
- China
| | - Yinmao Wei
- Synthetic and Natural Functional Molecule Chemistry of Ministry of Education Key Laboratory
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
- China
| |
Collapse
|
23
|
He M, Wang C, Wei Y. Protein adsorption by a high-capacity cation-exchange membrane prepared via surface-initiated atom transfer radical polymerization. RSC Adv 2016. [DOI: 10.1039/c5ra24678d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A weak cation-exchange membrane was prepared via surface-initiated atom transfer radical polymerization of glycidyl methacrylate and subsequent two-step derivation, and then two new parameters were used to explain the protein adsorption behavior.
Collapse
Affiliation(s)
- Maofang He
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- China
| | - Chaozhan Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- China
| | - Yinmao Wei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- China
| |
Collapse
|
24
|
Zhu J, Zheng J, Zhang Q, Zhang S. Antifouling ultrafiltration membrane fabricated from poly (arylene ether ketone) bearing hydrophilic hydroxyl groups. J Appl Polym Sci 2015. [DOI: 10.1002/app.42809] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jianhua Zhu
- Key Laboratory of Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun 130022 China
- University of Chinese Academy of Sciences; Beijing 100039 China
| | - Jifu Zheng
- Key Laboratory of Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun 130022 China
| | - Qifeng Zhang
- Key Laboratory of Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun 130022 China
| | - Suobo Zhang
- Key Laboratory of Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun 130022 China
| |
Collapse
|
25
|
Wang Y, Zhu J, Dong G, Zhang Y, Guo N, Liu J. Sulfonated halloysite nanotubes/polyethersulfone nanocomposite membrane for efficient dye purification. Sep Purif Technol 2015. [DOI: 10.1016/j.seppur.2015.07.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
|
27
|
Wang W, He M, Wang C, Wei Y. Enhanced binding capacity of boronate affinity adsorbent via surface modification of silica by combination of atom transfer radical polymerization and chain-end functionalization for high-efficiency enrichment of cis-diol molecules. Anal Chim Acta 2015; 886:66-74. [DOI: 10.1016/j.aca.2015.06.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 06/01/2015] [Accepted: 06/02/2015] [Indexed: 01/20/2023]
|
28
|
Dong J, Bruening ML. Functionalizing Microporous Membranes for Protein Purification and Protein Digestion. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2015; 8:81-100. [PMID: 26001953 DOI: 10.1146/annurev-anchem-071114-040255] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This review examines advances in the functionalization of microporous membranes for protein purification and the development of protease-containing membranes for controlled protein digestion prior to mass spectrometry analysis. Recent studies confirm that membranes are superior to bead-based columns for rapid protein capture, presumably because convective mass transport in membrane pores rapidly brings proteins to binding sites. Modification of porous membranes with functional polymeric films or TiO₂ nanoparticles yields materials that selectively capture species ranging from phosphopeptides to His-tagged proteins, and protein-binding capacities often exceed those of commercial beads. Thin membranes also provide a convenient framework for creating enzyme-containing reactors that afford control over residence times. With millisecond residence times, reactors with immobilized proteases limit protein digestion to increase sequence coverage in mass spectrometry analysis and facilitate elucidation of protein structures. This review emphasizes the advantages of membrane-based techniques and concludes with some challenges for their practical application.
Collapse
Affiliation(s)
- Jinlan Dong
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824;
| | | |
Collapse
|
29
|
A negatively charged loose nanofiltration membrane by blending with poly (sodium 4-styrene sulfonate) grafted SiO2 via SI-ATRP for dye purification. Sep Purif Technol 2015. [DOI: 10.1016/j.seppur.2015.03.030] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Kanagaraj P, Nagendran A, Rana D, Matsuura T, Neelakandan S, Malarvizhi K. Effects of Polyvinylpyrrolidone on the Permeation and Fouling-Resistance Properties of Polyetherimide Ultrafiltration Membranes. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b00432] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- P. Kanagaraj
- PG & Research Department of Chemistry, Polymeric Materials Research Lab, Alagappa Government Arts College, Karaikudi, 630 003, India
| | - A. Nagendran
- PG & Research Department of Chemistry, Polymeric Materials Research Lab, Alagappa Government Arts College, Karaikudi, 630 003, India
| | - D. Rana
- Department
of Chemical and Biological Engineering, Industrial Membrane Research
Institute, University of Ottawa, 161 Louis Pasteur Street, Ottawa, Ontario K1N 6N5, Canada
| | - T. Matsuura
- Department
of Chemical and Biological Engineering, Industrial Membrane Research
Institute, University of Ottawa, 161 Louis Pasteur Street, Ottawa, Ontario K1N 6N5, Canada
| | - S. Neelakandan
- PG & Research Department of Chemistry, Polymeric Materials Research Lab, Alagappa Government Arts College, Karaikudi, 630 003, India
| | - K. Malarvizhi
- PG & Research Department of Chemistry, Polymeric Materials Research Lab, Alagappa Government Arts College, Karaikudi, 630 003, India
| |
Collapse
|
31
|
Wang C, Hu X, Guan P, Wu D, Qian L, Li J, Song R. Separation and purification of thymopentin with molecular imprinting membrane by solid phase extraction disks. J Pharm Biomed Anal 2015; 102:137-43. [DOI: 10.1016/j.jpba.2014.07.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 07/18/2014] [Accepted: 07/20/2014] [Indexed: 11/25/2022]
|
32
|
Li M, Zhao L, Zhang Y, Liu M, Ye H, Zhang Y, Chen X. Adsorption behavior and self-aggregation of 5,10,15,20-tetrakis-(4-sulfonatophenyl)-porphyrin on quaternized polysulfone membrane. Colloid Polym Sci 2014. [DOI: 10.1007/s00396-014-3438-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Chenette HCS, Husson SM. Membrane adsorbers comprising grafted glycopolymers for targeted lectin binding. J Appl Polym Sci 2014; 132:1-7. [PMID: 25866416 DOI: 10.1002/app.41437] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This work details the design and testing of affinity membrane adsorbers for lectin purifications that incorporate glucose-containing glycopolymers. It is the selective interaction between the sugar residues of the glycopolymer and the complementary carbohydrate-binding domain of the lectin that provides the basis for the isolation and purification of lectins from complex biological media. The design approach used in these studies was to graft glycopolymer 'tentacles' from macroporous regenerated cellulose membranes by atom transfer radical polymerization. As shown in earlier studies, this design approach can be used to prepare high-productivity membrane adsorbers. The model lectin, concanavalin A (conA), was used to evaluate membrane performance in bind-and-elute purification, using a low molecular weight sugar for elution. The membrane capacity for binding conA was measured at equilibrium and under dynamic conditions using flow rates of 0.1 and 1.0 mL/min. The first Damkohler number was estimated to relate the adsorption rate to the convective mass transport rate through the membrane bed. It was used to assess whether adsorption kinetics or mass transport contributed the primary limitation to conA binding. Analyses indicate that this system is not limited by the accessibility of the binding sites, but by the inherent rate of adsorption of conA onto the glycopolymer.
Collapse
Affiliation(s)
- Heather C S Chenette
- Department of Chemical and Biomolecular Engineering and Center for Advanced Engineering Fibers and Films, Clemson University, Clemson, SC 29634, USA
| | - Scott M Husson
- Department of Chemical and Biomolecular Engineering and Center for Advanced Engineering Fibers and Films, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
34
|
Zhu J, Guo N, Zhang Y, Yu L, Liu J. Preparation and characterization of negatively charged PES nanofiltration membrane by blending with halloysite nanotubes grafted with poly (sodium 4-styrenesulfonate) via surface-initiated ATRP. J Memb Sci 2014. [DOI: 10.1016/j.memsci.2014.04.016] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Nestola P, Villain L, Peixoto C, Martins DL, Alves PM, Carrondo MJ, Mota JP. Impact of grafting on the design of new membrane adsorbers for adenovirus purification. J Biotechnol 2014; 181:1-11. [DOI: 10.1016/j.jbiotec.2014.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 04/02/2014] [Accepted: 04/04/2014] [Indexed: 10/25/2022]
|
36
|
Zhang R, Li Q, Gao Y, Li J, Huang Y, Song C, Zhou W, Ma G, Su Z. Hydrophilic modification gigaporous resins with poly(ethylenimine) for high-throughput proteins ion-exchange chromatography. J Chromatogr A 2014; 1343:109-18. [DOI: 10.1016/j.chroma.2014.03.064] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 03/11/2014] [Accepted: 03/22/2014] [Indexed: 01/22/2023]
|
37
|
Low fouling negatively charged hybrid ultrafiltration membranes for protein separation from sulfonated poly(arylene ether sulfone) block copolymer and functionalized multiwalled carbon nanotubes. Sep Purif Technol 2014. [DOI: 10.1016/j.seppur.2014.03.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
38
|
Kumar M, Ulbricht M. Novel ultrafiltration membranes with adjustable charge density based on sulfonated poly(arylene ether sulfone) block copolymers and their tunable protein separation performance. POLYMER 2014. [DOI: 10.1016/j.polymer.2013.09.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|