1
|
Trifoglio A, Mantovani S, Khaliha S, Kovtun A, Marforio TD, Calvaresi M, Melucci M. Tailoring graphene oxide nanosheets by alkyl amine grafting for enhanced adsorption of PFASs in drinking water: a combined theoretical and experimental study. NANOSCALE 2025; 17:12124-12133. [PMID: 40235364 DOI: 10.1039/d5nr00502g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a class of persistent organic pollutants present in natural water showing environmental and health risks. Most of the currently available purification technologies fail in the removal of short and medium perfluoroalkyl chain length PFASs. Here, we report the design and synthesis of graphene oxide (GO) modified with different alkyl- and alkylamine pendants including N,N-dimethylethylenediamine (GO-DMEN) and investigate the relationships between the chemical structure of the alkyl pendant and the adsorption of PFAS molecules of different sizes and end group type. GO-DMEN shows higher removal (up to 98%) after 15 minutes toward medium and long chain PFASs, such as perfluorohexanoic acid (PFHxA) and perfluoroheptanoic acid (PFHpA), poorly removed by unmodified GO. Molecular modeling shows that van der Waals interactions are the driving forces for the adsorption. Indeed, the quaternarization of the amine moieties, with the consequent creation of positive charges on graphene nanosheet surfaces, does not enhance the adsorption capacity. The key role of the modification with an amine ended chain such as DMEN was demonstrated by comparing GO-DMEN adsorption properties to those of an octyl chain modified GO (GO-OcA) characterized by poorer binding energy contribution as a result of the flattening of the hydrophobic octyl chain on GO nanosheets (self-poisoning). This work contributes to a deeper understanding of the chemical interactions driving the adsorption of amphiphilic and charged PFAS molecules.
Collapse
Affiliation(s)
- Andrea Trifoglio
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Council of Italy (CNR), Bologna, Italy.
- Alma Mater Studiorum - University of Bologna, Department of Chemistry 'G. Ciamician', Bologna, Italy.
| | - Sebastiano Mantovani
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Council of Italy (CNR), Bologna, Italy.
| | - Sara Khaliha
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Council of Italy (CNR), Bologna, Italy.
| | - Alessandro Kovtun
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Council of Italy (CNR), Bologna, Italy.
| | - Tainah Dorina Marforio
- Alma Mater Studiorum - University of Bologna, Department of Chemistry 'G. Ciamician', Bologna, Italy.
- IRCCS Azienda Ospedaliero - Universitaria di Bologna, Bologna, Italy
| | - Matteo Calvaresi
- Alma Mater Studiorum - University of Bologna, Department of Chemistry 'G. Ciamician', Bologna, Italy.
- IRCCS Azienda Ospedaliero - Universitaria di Bologna, Bologna, Italy
| | - Manuela Melucci
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Council of Italy (CNR), Bologna, Italy.
| |
Collapse
|
2
|
Abdi J, Mazloom G, Hayati B. Sonocatalytic degradation of tetracycline hydrochloride using SnO 2 hollow-nanofiber decorated with UiO-66-NH 2. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122572. [PMID: 39299111 DOI: 10.1016/j.jenvman.2024.122572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/18/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
In this study, a porous hollow nanofiber SnO2 was decorated with UiO-66-NH2 nanoparticles with straightforward solvothermal method and utilized for sonocatalytic degradation of tetracycline (TC) by ultrasonic irradiation (USI). The prepared materials were characterized using different techniques such as SEM, EDS, FTIR, XRD, BET, XPS, UV-DRS, EIS, and zeta potential. SnO2 PHNF/UiO-66-NH2 nanocomposite offered the highest apparent rate constant of 0.0397 min-1 which was 6.3 and 3.1 times higher than those obtained for SnO2 PHNF and UiO-66-NH2, respectively. The integration of nanocomposite components revealed the synergy factor of 1.58, which can be due to the created heterojunctions resulted in efficiently charge carriers separation and retaining high redox ability. The effects of different affecting parameters such as TC initial concentration, pH of the solution, catalyst dosage, trapping agents, and coexisting anions on the catalytic performance were examined. The inhibitory effects of anions were confirmed to be decreased in the sequence of Cl- > NO3- > SO42-, while the sonocatalytic efficiency of the nanocomposite improved considerably in the presence of humic acid and bicarbonate. Also, the excellent performance of the catalyst was preserved during six successive cycles, suggesting the high stability of the prepared catalyst. In addition, based on the scavenger analysis, the created O2·-, OH·, and holes were contributed to the TC degradation. In conclusion, the creation heterojunction is an impressive methodology for improving the sonocatalytic activity of a catalyst, and SnO2 PHNF/UiO-66-NH2 nanocomposite was introduced as a satisfactory catalyst in sonocatalytic degradation of organic contaminants.
Collapse
Affiliation(s)
- Jafar Abdi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran.
| | - Golshan Mazloom
- Department of Chemical Engineering, Faculty of Engineering, University of Mazandaran, Babolsar, Iran
| | - Bagher Hayati
- Department of Environmental Health, Khalkhal University of Medical Sciences, Khalkhal, Iran.
| |
Collapse
|
3
|
Saveh H, Mazloom G, Abdi J. Synthesis of magnetic layered double hydroxide (Fe 3O 4@CuCr-LDH) decorated with ZIF-8 for efficient sonocatalytic degradation of tetracycline. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 362:121338. [PMID: 38823296 DOI: 10.1016/j.jenvman.2024.121338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/25/2024] [Accepted: 05/30/2024] [Indexed: 06/03/2024]
Abstract
A series of Fe3O4@CuCr-LDH hybrids decorated with different amount of ZIF-8 (FLZ, 10-40 wt%) was prepared using simple methods and characterized with different techniques. The activity of the synthesized nanocomposites was investigated in the sonocatalytic degradation of tetracycline (TC) antibiotic from wastewater. When the content of ZIF-8 in the nanocomposite structure was 20 wt%, the FLZ-20 sonocatalyst exhibited the high performance in the sonocatalytic removal of TC. At optimum conditions (0.7 g/L catalyst dosage, pH of 7, 50 mg/L initial concentration of antibiotic, and 15 min sonication time) of the sonocatalytic removal of TC approached to 91.4% under ultrasonic irradiation (USI) using FLZ-20. This efficiency was much higher than those of obtained results by Fe3O4@CuCr-LDH and pristine ZIF-8. The formed ●OH and ●O2- exhibited the major roles in the sonocatalytic TC degradation process. The excellent performance of FLZ-20 can be attributed to the heterojunctions created between composite components, which could improve the electron transfer ability and effectively separate e-/h+ pairs. In addition, FLZ-20 showed the superior reusability and stability during three successive recycling. Moreover, the facile magnetically separation of the sonocatalyst from the aqueous solution was another outstanding feature, which prevents the formation of secondary pollutants. It can be concluded that the fabrication of heterojunctions is an efficient procedure to promote the sonocatalytic acting of the catalyst.
Collapse
Affiliation(s)
- Hannaneh Saveh
- Department of Chemical Engineering, Faculty of Engineering, University of Mazandaran, 47416-13534, Babolsar, Iran
| | - Golshan Mazloom
- Department of Chemical Engineering, Faculty of Engineering, University of Mazandaran, 47416-13534, Babolsar, Iran
| | - Jafar Abdi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, 3619995161, Shahrood, Iran.
| |
Collapse
|
4
|
Sohn EJ, Jun BM, Nam SN, Park CM, Jang M, Son A, Yoon Y. Photocatalytic boron nitride-based nanomaterials for the removal of selected organic and inorganic contaminants in aqueous solution: A review. CHEMOSPHERE 2024; 349:140800. [PMID: 38040264 DOI: 10.1016/j.chemosphere.2023.140800] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023]
Abstract
Boron nitride (BN) coupled with various conventional and advanced photocatalysts has been demonstrated to exhibit extraordinary activity for photocatalytic degradation because of its unique properties, including a high surface area, constant wide-bandgap semiconducting property, high thermal-oxidation resistance, good hydrogen-adsorption performance, and high chemical/mechanical stability. However, only limited reviews have discussed the application of BN or BN-based nanomaterials as innovative photocatalysts, and it does not cover the recent results and the developments on the application of BN-based nanomaterials for water purification. Herein, we present a complete review of the present findings on the photocatalytic degradation of different contaminants by various BN-based nanomaterials. This review includes the following: (i) the degradation behavior of different BN-based photocatalysts for various contaminants, such as selected dye compounds, pharmaceuticals, personal care products, pesticides, and inorganics; (ii) the stability/reusability of BN-based photocatalysts; and (iii) brief discussion for research areas/future studies on BN-based photocatalysts.
Collapse
Affiliation(s)
- Erica Jungmin Sohn
- Water Supply and Sewerage Department, DOHWA Engineering Co., LTD, 438, Samseong-ro, Gangnam-gu, Seoul, 06178, Republic of Korea
| | - Byung-Moon Jun
- Radwaste Management Center, Korea Atomic Energy Research Institute (KAERI), 111 Daedeok-daero 989 Beon-gil, Yuseong-gu, Daejeon, 34057, Republic of Korea
| | - Seong-Nam Nam
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Chang Min Park
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, 447-1 Wolgye-dong Nowon-gu, Seoul, Republic of Korea
| | - Ahjeong Son
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea.
| | - Yeomin Yoon
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea; Department of Civil and Environmental Engineering, University of South Carolina, Columbia, 300 Main Street, SC, 29208, USA.
| |
Collapse
|
5
|
Salamanca M, Peña M, Hernandez A, Prádanos P, Palacio L. Forward Osmosis Application for the Removal of Emerging Contaminants from Municipal Wastewater: A Review. MEMBRANES 2023; 13:655. [PMID: 37505021 PMCID: PMC10384920 DOI: 10.3390/membranes13070655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/29/2023]
Abstract
Forward osmosis (FO) has attracted special attention in water and wastewater treatment due to its role in addressing the challenges of water scarcity and contamination. The presence of emerging contaminants in water sources raises concerns regarding their environmental and public health impacts. Conventional wastewater treatment methods cannot effectively remove these contaminants; thus, innovative approaches are required. FO membranes offer a promising solution for wastewater treatment and removal of the contaminants in wastewater. Several factors influence the performance of FO processes, including concentration polarization, membrane fouling, draw solute selection, and reverse salt flux. Therefore, understanding and optimizing these factors are crucial aspects for improving the efficiency and sustainability of the FO process. This review stresses the need for research to explore the potential and challenges of FO membranes to meet municipal wastewater treatment requirements, to optimize the process, to reduce energy consumption, and to promote scalability for potential industrial applications. In conclusion, FO shows promising performance for wastewater treatment, dealing with emerging pollutants and contributing to sustainable practices. By improving the FO process and addressing its challenges, we could contribute to improve the availability of water resources amid the global water scarcity concerns, as well as contribute to the circular economy.
Collapse
Affiliation(s)
- Mónica Salamanca
- Institute of Sustainable Processes (ISP), Dr. Mergelina s/n, 47011 Valladolid, Spain
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
- Department of Applied Physics, Faculty of Sciences, University of Valladolid, Paseo Belén 7, 47011 Valladolid, Spain
| | - Mar Peña
- Institute of Sustainable Processes (ISP), Dr. Mergelina s/n, 47011 Valladolid, Spain
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - Antonio Hernandez
- Institute of Sustainable Processes (ISP), Dr. Mergelina s/n, 47011 Valladolid, Spain
- Department of Applied Physics, Faculty of Sciences, University of Valladolid, Paseo Belén 7, 47011 Valladolid, Spain
| | - Pedro Prádanos
- Institute of Sustainable Processes (ISP), Dr. Mergelina s/n, 47011 Valladolid, Spain
- Department of Applied Physics, Faculty of Sciences, University of Valladolid, Paseo Belén 7, 47011 Valladolid, Spain
| | - Laura Palacio
- Institute of Sustainable Processes (ISP), Dr. Mergelina s/n, 47011 Valladolid, Spain
- Department of Applied Physics, Faculty of Sciences, University of Valladolid, Paseo Belén 7, 47011 Valladolid, Spain
| |
Collapse
|
6
|
Saawarn B, Mahanty B, Hait S, Hussain S. Sources, occurrence, and treatment techniques of per- and polyfluoroalkyl substances in aqueous matrices: A comprehensive review. ENVIRONMENTAL RESEARCH 2022; 214:114004. [PMID: 35970375 DOI: 10.1016/j.envres.2022.114004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/04/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS), a class of synthetic organic pollutants, have prompted concerns about their global prevalence and possible health effects. This review consolidates the most recent data on different aspects of PFAS, such as their occurrence, and prominent sources. The current literature analysis of PFAS occurrence suggests significant variation in their concentration ranging from 0.025 to 1.2 × 108 ng/L in wastewater, 0.01 to 8.9 × 105 ng/L in surface water, and <0.01 to 1.3 × 104 ng/L in groundwater globally. Since conventional treatment techniques are inadequate in remediating PFAS, innovative treatment approaches based on their removal or mineralization mechanism have been comprehensively reviewed. Advanced treatment technologies have shown degradation or removal of PFAS to be around 6 and > 99.9% in different aqueous matrices. However, due to significant drawbacks in their applicability in wastewater treatment plants (WWTPs), a novel treatment train approach has emerged as an effective alternative. This approach synergistically integrates multiple remediation techniques while addressing the impediments of individual treatments. Furthermore, nanofiltration (NF270) combined with electrochemical degradation has been demonstrated to be the most efficient (>98%) treatment train approach in PFAS remediation. If implemented in WWTPs, nanofiltration followed by adsorption using activated carbon is also a viable method for PFAS removal.
Collapse
Affiliation(s)
- Bhavini Saawarn
- Department of Civil and Environmental Engineering, Indian Institute of Technology Patna, Bihar, 801 106, India
| | - Byomkesh Mahanty
- Department of Civil and Environmental Engineering, Indian Institute of Technology Patna, Bihar, 801 106, India
| | - Subrata Hait
- Department of Civil and Environmental Engineering, Indian Institute of Technology Patna, Bihar, 801 106, India.
| | - Sahid Hussain
- Department of Chemistry, Indian Institute of Technology Patna, Bihar, 801 106, India
| |
Collapse
|
7
|
Anti-biofouling polyvinylidene fluoride/quaternized polyvinyl alcohol ultrafiltration membrane selectively separates aromatic contaminants from wastewater by host–guest interactions. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
8
|
He Y, Wang L, Chen Z, Huang X, Wang X, Zhang X, Wen X. Novel catalytic ceramic membranes anchored with MnMe oxide and their catalytic ozonation performance towards atrazine degradation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120362] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
9
|
Patel A, Mungray AK, Mungray A. A novel concept of Vertical Up-Flow Forward Osmosis reactor: Design, performance and evaluation. CHEMOSPHERE 2021; 281:130741. [PMID: 34015655 DOI: 10.1016/j.chemosphere.2021.130741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/04/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Performance of the forward osmosis (FO) process is limited due to the decline in water flux and increase in reverse salt flux. In this study, a novel Vertical Up-Flow Forward Osmosis (VUF-FO) reactor was designed and evaluated for eight different contacting patterns of feed and draw agent (DA). The best contacting pattern was compared with the basic H-shape reactor. Pulsating inlets were used for the recirculation of the feed and DA which helped in improving the performance by reducing the concentration polarization on membrane. Water flux in FO (active layer facing feed side) and PRO (active layer facing draw side) mode was 12.75 and 16.28 L/m2hr (LMH) respectively for the contacting pattern R3 and R5 after 8 h of the process. While the water flux in the H-shape reactor was 9.12 and 12.54 LMH for FO and PRO mode respectively. Diffusional behavior of water flux and reverse salt flux were also evaluated for both the FO reactors. Water flux in the H-shape reactor was declined to more than 60% from its initial value in both the modes (i.e. FO and PRO) due to the concentration polarization on membrane. Only 10% decline in water flux was observed for the VUF-FO reactor. This showed a better consistency of water flux in the VUF-FO reactor. The reverse salt flux in the VUF-FO reactor was less than 85% compared to the H-shape reactor. Therefore, a novel designed reactor improved the overall performance of FO in terms of water flux and reverse salt flux.
Collapse
Affiliation(s)
- Asfak Patel
- Department of Chemical Engineering, S.V. National Institute of Technology Surat, Ichchhanath, Surat-Dumas Road, Keval Chowk, Surat, 395007, Gujarat, India.
| | - Arvind Kumar Mungray
- Department of Chemical Engineering, S.V. National Institute of Technology Surat, Ichchhanath, Surat-Dumas Road, Keval Chowk, Surat, 395007, Gujarat, India.
| | - Alka Mungray
- Department of Chemical Engineering, S.V. National Institute of Technology Surat, Ichchhanath, Surat-Dumas Road, Keval Chowk, Surat, 395007, Gujarat, India.
| |
Collapse
|
10
|
Sanahuja-Embuena V, Frauholz J, Oruc T, Trzaskus K, Hélix-Nielsen C. Transport mechanisms behind enhanced solute rejection in forward osmosis compared to reverse osmosis mode. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Jeong N, Chung TH, Tong T. Predicting Micropollutant Removal by Reverse Osmosis and Nanofiltration Membranes: Is Machine Learning Viable? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11348-11359. [PMID: 34342439 DOI: 10.1021/acs.est.1c04041] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Predictive models for micropollutant removal by membrane separation are highly desirable for the design and selection of appropriate membranes. While machine learning (ML) models have been applied for such purposes, their reliability might be compromised by data leakage due to inappropriate data splitting. More importantly, whether ML models can truly understand the mechanisms of membrane separation has not been revealed. In this study, we evaluate the capability of the XGBoost model to predict micropollutant removal efficiencies of reverse osmosis and nanofiltration membranes. Our results demonstrate that data leakage leads to falsely high prediction accuracy. By utilizing a model interpretation method based on the cooperative game theory, we test the knowledge of XGBoost on the mechanisms of membrane separation via quantifying the contributions of input variables to the model predictions. We reveal that XGBoost possesses an adequate understanding of size exclusion, but its knowledge of electrostatic interactions and adsorption is limited. Our findings suggest that future work should focus more on avoiding data leakage and evaluating the mechanistic knowledge of ML models. In addition, high-quality data from more diverse experimental conditions, as well as more informative variables, are needed to improve the accuracy of ML models for predicting membrane performance.
Collapse
Affiliation(s)
- Nohyeong Jeong
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Tai-Heng Chung
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Tiezheng Tong
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
12
|
Jarma YA, Karaoğlu A, Tekin Ö, Baba A, Ökten HE, Tomaszewska B, Bostancı K, Arda M, Kabay N. Assessment of different nanofiltration and reverse osmosis membranes for simultaneous removal of arsenic and boron from spent geothermal water. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124129. [PMID: 33082019 DOI: 10.1016/j.jhazmat.2020.124129] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/13/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
One of the factors that determine agricultural crops' yield is the quality of water used during irrigation. In this study, we assessed the usability of spent geothermal water for agricultural irrigation after membrane treatment. Preliminary membrane tests were conducted on a laboratory-scale set up followed by mini-pilot scale tests in a geothermal heating center. In part I, three commercially available membranes (XLE BWRO, NF90, and Osmonics CK- NF) were tested using a cross-flow flat-sheet membrane testing unit (Sepa CF II, GE-Osmonics) under constant applied pressure of 20 bar. In part II, different spiral wound membranes (TR-NE90-NF, TR-BE-BW, and BW30) other than the ones used in laboratory tests were employed for the mini-pilot scale studies in a continuous mode. Water recovery and applied pressure were maintained constant at 60% and 12 bar, respectively. Performances of the membranes were assessed in terms of the permeate flux, boron and arsenic removals. In laboratory tests, the permeate fluxes were measured as 94.3, 87.9, and 64.3 L m-2 h-1 for XLE BWRO, CK-NF and NF90 membranes, respectively. The arsenic removals were found as 99.0%, 87.5% and 83.6% while the boron removals were 56.8%, 54.2%, and 26.1% for XLE BWRO, NF90 and CK-NF membranes, respectively. In field tests, permeate fluxes were 49.9, 26.8 and 24.0 L m-2 h-1 for TR-NE90-NF, BW30-RO and TR-BE-BW membranes, respectively. Boron removals were calculated as 49.9%, 44.1% and 40.7% for TR-BE-BW, TR-NE90-NF and BW30-RO membranes, respectively. Removal efficiencies of arsenic in mini-pilot scale membrane tests were all over 90%. Quality of the permeate water produced was suitable for irrigation in terms of the electrical conductivity (EC) and the total dissolved solids (TDS) for all tested membranes with respect to guidelines set by the Turkish Ministry of Environment and Urbanisation (TMEU). However, XLE BWRO, CK-NF and NF90 membranes failed to meet the required limits for irrigation in terms of boron and arsenic concentrations in the product water. The permeate streams of TR-BE-BW, TR-NE90-NF and BW30-RO membranes complied with the irrigation water standards in terms of EC, TDS and arsenic concentration while boron concentration remained above the allowable limit.
Collapse
Affiliation(s)
- Yakubu A Jarma
- Ege University, Department of Chemical Engineering, 35100 Izmir, Turkey
| | - Aslı Karaoğlu
- Ege University, Department of Chemical Engineering, 35100 Izmir, Turkey; Ege University, Graduate School of Science, Division of Environmental Sciences, Izmir, Turkey
| | - Özge Tekin
- Ege University, Department of Chemical Engineering, 35100 Izmir, Turkey
| | - Alper Baba
- Izmir Institute of Technology, Department of International Water Resources, 35430 Urla, Izmir, Turkey
| | - H Eser Ökten
- Izmir Institute of Technology, Department of Environmental Engineering, Izmir, Turkey
| | - Barbara Tomaszewska
- Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Kraków, Poland; AGH University of Science and Technology, Mickiewicza 30 Av., 30-059 Kraków, Poland
| | - Kamil Bostancı
- Ege University, Department of Chemistry, Izmir, Turkey; Dokuz Eylul University, Torbalı Vocational School, Mining Technology Programme, Izmir, Turkey
| | - Müşerref Arda
- Ege University, Department of Chemistry, Izmir, Turkey
| | - Nalan Kabay
- Ege University, Department of Chemical Engineering, 35100 Izmir, Turkey.
| |
Collapse
|
13
|
Xu J, Tran TN, Lin H, Dai N. Modeling the transport of neutral disinfection byproducts in forward osmosis: Roles of reverse salt flux. WATER RESEARCH 2020; 185:116255. [PMID: 32771562 DOI: 10.1016/j.watres.2020.116255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/13/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
The rejection of disinfection byproducts (DBPs) is an important consideration for the application of forward osmosis (FO) in wastewater recycling. However, the transport of organic compounds in FO is not well predicted by existing models, partially because these models have not incorporated the effect of reverse salt flux, a phenomenon previously shown to influence the transport of pharmaceutical compounds. In this study, we investigated the effects of reverse salt flux on DBP transport in FO and the corresponding mechanisms. We used a commercial Aquaporin membrane and tested sixteen DBPs relevant to wastewater recycling. Using draw solutions constituted by NaCl, MgSO4, or glucose in a bench-scale FO system, we first confirmed that higher reverse salt flux resulted in lower DBP permeance. By integrating results from the bench-scale FO system and those from diffusion cell tests, we showed that two mechanisms contributed to the hindered DBP transport: the steric hindrance in the active layer caused by the presence of the draw solute and the retarded diffusion of DBPs in the support layer via a "salting-out" effect. Lastly, we developed a modified solution-diffusion model incorporating these two mechanisms by accounting for the free volume occupied by draw solute molecules in the active layer and by introducing the Setschenow constant, respectively. The modified model significantly improved the prediction of permeance for halogenated DBPs, and revealed the relative importance of steric hindrance (dominant for large DBPs) and retarded diffusion (dominant for hydrophobic DBPs). The modified model did not accurately predict the permeance of nitrosamines, attributable to their extremely high hydrophilicity or large size.
Collapse
Affiliation(s)
- Jiale Xu
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, 231 Jarvis Hall, Buffalo, NY, 14260, United States
| | - Thien Ngoc Tran
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, United States
| | - Haiqing Lin
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, United States
| | - Ning Dai
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, 231 Jarvis Hall, Buffalo, NY, 14260, United States.
| |
Collapse
|
14
|
Jun BM, Al-Hamadani YA, Son A, Park CM, Jang M, Jang A, Kim NC, Yoon Y. Applications of metal-organic framework based membranes in water purification: A review. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116947] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
15
|
Removal of organic micropollutants using advanced membrane-based water and wastewater treatment: A review. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117672] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Selected advanced water treatment technologies for perfluoroalkyl and polyfluoroalkyl substances: A review. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.115929] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Rastgar M, Shakeri A, Karkooti A, Asad A, Razavi R, Sadrzadeh M. Removal of trace organic contaminants by melamine-tuned highly cross-linked polyamide TFC membranes. CHEMOSPHERE 2020; 238:124691. [PMID: 31524626 DOI: 10.1016/j.chemosphere.2019.124691] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
In recent years, forward osmosis (FO) has represented numerous potential applications in safe water production. In this study, we improved the performance of FO thin film composite (TFC) membranes for the removal of trace organic compounds (TOrCs) by tuning the chemistry of its top active layer. The TFC membranes were synthesized by interfacial polymerization (IP) reaction between amine-containing monomers, e.g., meta-phenylene diamine (MPD) or para-phenylenediamine (PPD), and an acid chloride monomer, e.g., trimesoyl chloride (TMC). Owing to three free amine functionals over main core, melamine was used in the amine monomers solution to increase cross-linking among polyamide chains. Chemical and morphological characterization of the prepared membranes confirmed that melamine was successfully incorporated into the chemical structure of the top PA layer. Two agricultural toxic materials (atrazine and diazinon) were used to investigate the capability of the newly fabricated membranes in the removal of TOrCs. The obtained results showed that melamine-improved FO membranes provided higher atrazine and diazinon rejections in two different FO membrane configurations, including active layer facing feed solution (ALF) and active layer facing draw solution (ALD). The highest rejections of both diazinon (99.4%) and atrazine (97.3%) were achieved when the melamine modified MPD-based membrane served in ALF mode with 2 M NaCl as a draw solution.
Collapse
Affiliation(s)
- Masoud Rastgar
- School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6619, Tehran, Iran; Department of Mechanical Engineering, 10-367, Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton, AB, Canada
| | - Alireza Shakeri
- School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6619, Tehran, Iran.
| | - Amin Karkooti
- Department of Mechanical Engineering, 10-367, Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton, AB, Canada
| | - Asad Asad
- Department of Mechanical Engineering, 10-367, Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton, AB, Canada
| | - Reza Razavi
- School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6619, Tehran, Iran
| | - Mohtada Sadrzadeh
- Department of Mechanical Engineering, 10-367, Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
18
|
Jemutai-Kimosop S, Orata F, Shikuku VO, Okello VA, Getenga ZM. Insights on adsorption of carbamazepine onto iron oxide modified diatomaceous earth: Kinetics, isotherms, thermodynamics, and mechanisms. ENVIRONMENTAL RESEARCH 2020; 180:108898. [PMID: 31732171 DOI: 10.1016/j.envres.2019.108898] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 05/23/2023]
Abstract
To ameliorate adsorbent recovery by an external magnetic field, naturally occurring diatomaceous earth (DE) was modified with iron-oxide, characterized and applied for adsorption of carbamazepine (CBZ) from synthetic wastewater using batch equilibration method. The fabricated adsorbent was characterized using XRF, XRD, SEM-EDX, FT-IR, BET surface area analysis, VSM and pH of point of zero charge (pHpzc) determination. The adsorption rate was described by the pseudo-first-order (PFO) model suggesting a physisorption controlled rate-determining step. Equilibrium adsorption data were fitted to linear and nonlinear isotherm models, viz Langmuir and Freundlich models, and were best described by Freundlich nonlinear equations implying heterogeneous multilayer adsorption. The best-fitting kinetic and isotherm model was determined using four mathematical error functions. The thermodynamic parameters, namely enthalpy (ΔH = -26.4 kJ mol-1), Gibbs free energy (ΔG = -2.22 kJ mol-1 at 298 K), entropy (ΔS = -34.0 kJ mol-1), indicated that the adsorption was a spontaneous, exothermic, and physical process. The adsorption mechanism is postulated to involve cation-π interactions. Modified diatomaceous earth is a potentially excellent, low-cost, and novel sorbent for CBZ adsorption with 88% removal in 180 min and provides a possible alternative adsorbent for wastewater treatment.
Collapse
Affiliation(s)
| | - Francis Orata
- Masinde Muliro University of Science and Technology, P.O.Box 190, Kakamega, Kenya
| | - Victor O Shikuku
- Kaimosi Friends University College, P.O. Box 385-50309, Kaimosi, Kenya.
| | | | | |
Collapse
|
19
|
Yuan J, Van Dyke MI, Huck PM. Selection and evaluation of water pretreatment technologies for managed aquifer recharge (MAR) with reclaimed water. CHEMOSPHERE 2019; 236:124886. [PMID: 31564425 DOI: 10.1016/j.chemosphere.2019.124886] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
Managed aquifer recharge with reclaimed water is a promising strategy for indirect potable reuse. However, residual contaminants in the treated wastewater effluent could potentially have adverse effects on human health. Hence, adequate water pretreatment is required. A multi-criteria approach was used to select and evaluate suitable water pretreatment technologies that can remove these critical contaminants in wastewater effluent for MAR identified in a previous study (Yuan et al., 2017). The treatment efficiency targets were calculated based on the concentrations and the suggested limits of critical contaminants. Treatment efficiency credits were then assigned to each treatment option for the removal of critical contaminants based on literature data. Treatment units that resulted in the highest efficiency credit scores were selected and combined into treatment train options, which were evaluated in terms of treatability, cost, and sustainability. This paper proposes an approach for the selection and evaluation of water treatment options, which will be helpful to guide the future implementation of MAR projects with reclaimed water.
Collapse
Affiliation(s)
- Jie Yuan
- NSERC Chair in Water Treatment, Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
| | - Michele I Van Dyke
- NSERC Chair in Water Treatment, Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Peter M Huck
- NSERC Chair in Water Treatment, Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
20
|
Jun BM, Heo J, Park CM, Yoon Y. Comprehensive evaluation of the removal mechanism of carbamazepine and ibuprofen by metal organic framework. CHEMOSPHERE 2019; 235:527-537. [PMID: 31276866 DOI: 10.1016/j.chemosphere.2019.06.208] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 06/09/2023]
Abstract
Pharmaceutical products (PhACs) in water sources are considered to be a severe environmental issue. To mitigate this issue, we used a metal-organic framework (MOF) as an adsorbent to remove selected PhACs (i.e., carbamazepine (CBM) and ibuprofen (IBP)). This work was carried out to characterize the MOF, then confirm its feasibility for removing the selected PhACs. In particular, based on practical considerations, we investigated the effects of various water quality conditions, such as solution temperature, pH, ionic strength/background ions, and humic acid. MOF exhibited better removal rates than commercial powder activated carbon (PAC), considering pseudo-second order kinetic model. We clarified the competitive PhACs adsorption mechanisms based on the results obtained under various water quality conditions and found that hydrophobic interactions were the most important factors for both adsorbates. To confirm the practicality of MOF adsorption, we carried out regeneration tests with four adsorption and desorption cycles using acetone as a cleaning solution. Furthermore, to support the results of our regeneration tests, we characterized the MOF samples before and after adsorbate exposure using Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy. Overall, MOF can be used in practical applications as efficient adsorbents to remove PhACs from water sources.
Collapse
Affiliation(s)
- Byung-Moon Jun
- Department of Civil and Environmental Engineering, University of South Carolina, Columbia, 300 Main Street, SC, 29208, USA
| | - Jiyong Heo
- Department of Civil and Environmental Engineering, Korea Army Academy at Youngcheon, 495 Hogook-ro, Gokyungmeon, Youngcheon, Gyeongbuk, 38900, Republic of Korea
| | - Chang Min Park
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea.
| | - Yeomin Yoon
- Department of Civil and Environmental Engineering, University of South Carolina, Columbia, 300 Main Street, SC, 29208, USA.
| |
Collapse
|
21
|
Jun BM, Kim S, Heo J, Her N, Jang M, Park CM, Yoon Y. Enhanced sonocatalytic degradation of carbamazepine and salicylic acid using a metal-organic framework. ULTRASONICS SONOCHEMISTRY 2019; 56:174-182. [PMID: 31101253 DOI: 10.1016/j.ultsonch.2019.04.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
A metal-organic framework (MOF) was used as a sonocatalyst for ultrasonic (US) processes, to improve the degradation of two selected pharmaceutical active compounds (PhACs); carbamazepine (CBM) and salicylic acid (SA). The intrinsic characteristics of the MOF were characterized using a porosimeter (N2-BET) and scanning electron microscope (SEM). Various experiments were carried out under conditions with different US frequencies (28 and 1000 kHz), US power densities (45-180 W L-1), pH conditions (3.5, 7, and 10.5), and temperatures (293, 303, and 313 K) to investigate the degradation rates of the selected PhACs. Improved removal rates of PhACs were demonstrated within 60 min at 28 kHz (46% for SA; 47% for CBM) and 1000 kHz (60% for SA; 99% for CBM) with an MOF concentration of 45 mg L-1 in the US/MOF system, in comparison to 28 kHz (20% for SA; 25% for CBM) and 1000 kHz (37% for SA; 97% for CBM) under the 'US only' process. The removal of CBM was greater than that of SA under all experimental conditions due to the intrinsic properties of the PhACs. The degradation rates of PhACs are related to the quantity of H2O2; degradation is thus mostly affected by OH oxidation, which is generated by the dissociation of water molecules. The advantages of the 'US/MOF system' are as follows: (i) dispersion of MOF by US can improve sites and reactivity with respect to adsorption between the adsorbate (PhACs) and the adsorbent (MOF), and (ii) dispersed MOF acted as additional nuclei for water molecule pyrolysis, leading to the production of more OH. Therefore, based on the synergy indices, which were calculated using the removal rate constants [k1 (min-1)] of the pseudo-first order kinetic model, the 'US/MOF system' can potentially be used to treat organic pollutants (e.g., PhACs).
Collapse
Affiliation(s)
- Byung-Moon Jun
- Department of Civil and Environmental Engineering, University of South Carolina, Columbia, 300 Main Street, SC 29208, USA
| | - Sewoon Kim
- Department of Civil and Environmental Engineering, University of South Carolina, Columbia, 300 Main Street, SC 29208, USA
| | - Jiyong Heo
- Department of Civil and Environmental Engineering, Korea Army Academy at Youngcheon, 495 Hogook-ro, Gokyungmeon, Youngcheon, Gyeongbuk 38900, Republic of Korea
| | - Namguk Her
- Department of Civil and Environmental Engineering, Korea Army Academy at Youngcheon, 495 Hogook-ro, Gokyungmeon, Youngcheon, Gyeongbuk 38900, Republic of Korea
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, 447-1 Wolgye-Dong Nowon-Gu, Seoul, Republic of Korea
| | - Chang Min Park
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| | - Yeomin Yoon
- Department of Civil and Environmental Engineering, University of South Carolina, Columbia, 300 Main Street, SC 29208, USA.
| |
Collapse
|
22
|
Law JY, Mohammad AW, Tee ZK, Zaman NK, Jahim JM, Santanaraj J, Sajab MS. Recovery of succinic acid from fermentation broth by forward osmosis-assisted crystallization process. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Jiang Z, Miao J, He Y, Hong X, Tu K, Wang X, Chen S, Yang H, Zhang L, Zhang R. A pH-stable positively charged composite nanofiltration membrane with excellent rejection performance. RSC Adv 2019; 9:37546-37555. [PMID: 35542300 PMCID: PMC9075534 DOI: 10.1039/c9ra06528h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/12/2019] [Indexed: 11/21/2022] Open
Abstract
A novel kind of pH-stable positively charged composite nanofiltration (NF) membrane with excellent rejection performance was developed via interfacial polymerization on the surface of a polysulfone (PSF) ultrafiltration (UF) membrane, using a mixture of polyethyleneimine (PEI) and piperazine (PIP) as the monomers of the aqueous phase, and cyanuric chloride (CC) as the monomer of the organic phase. The strong electron withdrawing and steric hindrance effects of the chloride group in the molecules of CC could protect the amido bond from the attack of hydrogen ions (H+) or hydroxyl ions (OH−) under acidic or alkaline conditions, thus the resultant polyamide composite membranes could be stable in acidic or alkali aqueous solution. A more compact PA active layer could be developed via mixing PIP into the PEI aqueous solution, where the PIP molecules could fill the pores of the polymer networks. There was no obvious change in the surface morphologies, the chemical structures, and the rejection performances after immersing the resultant polyamine composite NF membranes in the strong acidic solution (pH 1) and the strong alkaline solution (pH 13) for 30 days, respectively. The rejection performances of this kind of polyamine composite NF membranes could be adjusted through adjusting the mass ratio of PEI to PIP in the aqueous phase. A pH-stable positively charged composite nanofiltration (NF) membrane was developed via the interfacial polymerization (IP) between polyethyleneimine (PEI), piperazine (PIP), and cyanuric chloride (CC).![]()
Collapse
|
24
|
Jiang Z, Miao J, He Y, Tu K, Chen S, Zhang R, Zhang L, Yang H. A novel positively charged composite nanofiltration membrane based on polyethyleneimine with a tunable active layer structure developed via interfacial polymerization. RSC Adv 2019; 9:10796-10806. [PMID: 35515306 PMCID: PMC9062538 DOI: 10.1039/c9ra00253g] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/22/2019] [Indexed: 11/21/2022] Open
Abstract
A novel positively charged composite nanofiltration (NF) membrane with tunable active layer structure was successfully developed via interfacial polymerization on a polysulfone (PSF) ultrafiltration (UF) membrane surface, using polyethyleneimine (PEI) as the monomer of the aqueous phase, and a mixture of isophthaloyl dichloride (IPC) and tri-mesoyl chloride (TMC) as the monomer of the organic phase. Interestingly, a synergetic effect of the mass ratio of IPC and TMC was observed on the pore size and the structure of the active layer of the resultant polyamide (PA)/polysulfone (PSF) composite NF membrane. The rejection (R) to the inorganic electrolytes increased with the mass ratio of IPC to TMC, while the permeate flux (F) escalated up to a 1 : 1 mixing ratio of IPC to TMC and dropped at higher mixing ratios. The rejection to different inorganic electrolytes decreased in the order of ZnCl2, MgCl2, CaCl2, CuCl2, MgSO4, NaCl, and Na2SO4. At ambient temperature and 0.4 MPa, the optimized membrane demonstrated R and F to 1 g L−1 MgCl2 aqueous solution as 98.1% and 27.6 L m−2 h−1, respectively. Its rejection to various dyes reduced significantly in the order of cationic red X-GTL (100%), rhodamine B (94.2%), cationic gold yellow X-GL (93.5%), and brilliant blue KN-R (43.9%), in agreement with the decrease in the molecular weight (Mw) and the overall charges of the dye. The tunable active layer structure was developed via interfacial polymerization, using polyethyleneimine as the monomer of the aqueous phase, and a mixture of isophthaloyl dichloride and tri-mesoyl chloride as the monomer of the organic phase.![]()
Collapse
Affiliation(s)
- Zhibin Jiang
- Guangdong Key Laboratory of Membrane Materials and Membrane Separation
- Guangzhou Institute of Advanced Technology
- Chinese Academy of Sciences (CAS)
- Guangzhou 511458
- PR China
| | - Jing Miao
- Guangdong Key Laboratory of Membrane Materials and Membrane Separation
- Guangzhou Institute of Advanced Technology
- Chinese Academy of Sciences (CAS)
- Guangzhou 511458
- PR China
| | - Yuantao He
- Guangdong Key Laboratory of Membrane Materials and Membrane Separation
- Guangzhou Institute of Advanced Technology
- Chinese Academy of Sciences (CAS)
- Guangzhou 511458
- PR China
| | - Kai Tu
- Guangdong Key Laboratory of Membrane Materials and Membrane Separation
- Guangzhou Institute of Advanced Technology
- Chinese Academy of Sciences (CAS)
- Guangzhou 511458
- PR China
| | - Shunquan Chen
- Guangdong Key Laboratory of Membrane Materials and Membrane Separation
- Guangzhou Institute of Advanced Technology
- Chinese Academy of Sciences (CAS)
- Guangzhou 511458
- PR China
| | - Rui Zhang
- Shandong Disk Tube Reverse Osmosis (DTRO) Membrane Engineering Laboratory
- The New Water Technology, Inc. (NEWA)
- China
| | - Ling Zhang
- School of Resource and Environment
- University of Jinan
- Jinan 250022
- PR China
| | - Hao Yang
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Environmental Ecology and Biological Engineering
- Wuhan Institute of Technology
- Wuhan
- PR China
| |
Collapse
|
25
|
Kim S, Park CM, Jang M, Son A, Her N, Yu M, Snyder S, Kim DH, Yoon Y. Aqueous removal of inorganic and organic contaminants by graphene-based nanoadsorbents: A review. CHEMOSPHERE 2018; 212:1104-1124. [PMID: 30286540 DOI: 10.1016/j.chemosphere.2018.09.033] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 05/14/2023]
Abstract
Various graphene-based nanoadsorbents, including graphenes, graphene oxides, reduced graphene oxides, and their nanocomposites, have been widely studied as potential adsorbents due to their unique physicochemical properties, such as structural variability, chemical strength, low density, and the possibility of large scale fabrication. Adsorption mechanisms are governed largely by the physicochemical properties of contaminants, the characteristics of nanoadsorbents, and background water quality conditions. This review summarizes recent comprehensive studies on the removal of various inorganic (mainly heavy metals) and organic contaminants by graphene-based nanoadsorbents, and also discusses valuable information for applications of these nanoadsorbents in water and wastewater treatment. In particular, the aqueous removal of various contaminants was reviewed to (i) summarize the general adsorption capacities of various graphene-based nanoadsorbents for the removal of different inorganic and organic contaminants, (ii) evaluate the effects of key water quality parameters such as pH, temperature, background major ions/ionic strength, and natural organic matter on adsorption, (iii) provide a comprehensive discussion of the mechanisms that influence adsorption on these nanoadsorbents, and (iv) discuss the potential regeneration and reusability of nanoadsorbents. In addition, current challenges and future research needs for the removal of contaminants by graphene-based nanoadsorbents in water treatment processes are discussed briefly.
Collapse
Affiliation(s)
- Sewoon Kim
- Department of Civil and Environmental Engineering, University of South Carolina, Columbia, 300 Main Street, SC 29208, USA
| | - Chang Min Park
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, 447-1 Wolgye-Dong Nowon-Gu, Seoul, Republic of Korea
| | - Ahjeong Son
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Nauguk Her
- Department of Civil and Environmental Engineering, Korea Army Academy at Young-cheon, 495 Hogook-ro, Kokyungmeon, Young-Cheon, Gyeongbuk 38900, Republic of Korea
| | - Miao Yu
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Shane Snyder
- School of Civil & Environmental Engineering, Nanyang Technological University, 1 Cleantech Loop, 637141, Singapore; Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ 85721, USA
| | - Do-Hyung Kim
- Korea Environmental Industry & Technology Institute, 215 Jinheungno, Eunpyeong-gu, Seoul, Republic of Korea.
| | - Yeomin Yoon
- Department of Civil and Environmental Engineering, University of South Carolina, Columbia, 300 Main Street, SC 29208, USA.
| |
Collapse
|
26
|
Jang D, Jeong S, Jang A, Kang S. Relating solute properties of contaminants of emerging concern and their rejection by forward osmosis membrane. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 639:673-678. [PMID: 29803038 DOI: 10.1016/j.scitotenv.2018.05.078] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/03/2018] [Accepted: 05/06/2018] [Indexed: 06/08/2023]
Abstract
To elucidate the transport of emerging contaminants (CECs) in forward osmosis (FO) membrane process according to their solute properties, the rejections of CECs with various molecular weight, octanol/water partition coefficient (log Kow), and dissociation constant (pKa) were investigated. Among 12 selected CECs, negatively charged CECs exhibited the highest rejection efficiency than neutral or positively charged CECs due to the electrostatic repulsion between negatively charged CECs and membrane surfaces as well as diffusional hindrance by reversely transported salts from draw stream. The statistical analysis showed that the molecular weight was strongly correlated with the rejection of neutral CECs by size exclusion. Moreover, the correlation between adsorption and log Kow value of neutral CECs was observed due to the hydrophobic interaction. Positively charged CECs exhibited higher adsorption, but lower rejection than the negatively charged CECs due to the locally increased concentration by adsorption, and subsequent migration in FO membrane.
Collapse
Affiliation(s)
- Duksoo Jang
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Sanghyun Jeong
- Graduate School of Water Resources, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Am Jang
- Graduate School of Water Resources, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Seoktae Kang
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea.
| |
Collapse
|
27
|
Phenol rejection by cellulose triacetate and thin film composite forward osmosis membranes. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.05.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Silva LLS, Sales JCS, Campos JC, Bila DM, Fonseca FV. Advanced oxidative processes and membrane separation for micropollutant removal from biotreated domestic wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:6329-6338. [PMID: 27510162 DOI: 10.1007/s11356-016-7312-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 07/21/2016] [Indexed: 06/06/2023]
Abstract
The presence of micropollutants in sewage is already widely known, as well as the effects caused by natural and synthetic hormones. Thus, it is necessary to apply treatments to remove them from water systems, such as advanced oxidation processes (AOPs) and membrane separation processes, which can oxidize and remove high concentrations of organic compounds. This work investigated the removal of 17β-estradiol (E2), 17α-ethinylestradiol (EE2), and estriol (E3) from biotreated sewage. Reverse osmosis processes were conducted at three recoveries (50, 60, and 70 %). For E2 and EE2, the removals were affected by the recovery. The best results for RO were as follows: the E2 compound removal was 89 % for 60 % recovery and the EE2 compound removal was 57 % for 50 % recovery. The RO recovery did not impact the E3 removal. It was concluded that the interaction between the evaluated estrogens, and the membrane was the major factor for the hormone separation. The AOP treatment using H2O2/UV was carried out in two sampling campaigns. First, we evaluated the variation of UV doses (24.48, 73.44, 122.4, and 244.8 kJ m-2) with 18.8 mg L-1 of H2O2 in the reaction. EE2 showed considerable removals (around 70 %). In order to optimize the results, an experimental design was applied. The best result was obtained with higher UV dose (122.4 kJ m-2) and lower H2O2 concentration (4 mg L-1), achieving removal of 91 % for E3 and 100 % for E2 and EE2.
Collapse
Affiliation(s)
- Larissa L S Silva
- Escola de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Rio de Janeiro, Brazil.
| | - Julio C S Sales
- Escola de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Rio de Janeiro, Brazil
| | - Juacyara C Campos
- Escola de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Rio de Janeiro, Brazil
| | - Daniele M Bila
- Departamento de Engenharia Sanitária e do Meio Ambiente, Universidade do Estado do Rio de Janeiro, R. São Francisco Xavier, 524-Maracanã, Rio de Janeiro, Brazil
| | - Fabiana V Fonseca
- Escola de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Rio de Janeiro, Brazil
| |
Collapse
|
29
|
A probabilistic approach for estimating water permeability in pressure-driven membranes. J Mol Model 2016; 22:185. [PMID: 27444876 DOI: 10.1007/s00894-016-3049-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/20/2016] [Indexed: 10/21/2022]
Abstract
A probabilistic approach is proposed to estimate water permeability in a cellulose triacetate (CTA) membrane. Water transport across the membrane is simulated in reverse osmosis mode by means of non-equilibrium molecular dynamics (MD) simulations. Different membrane configurations obtained by an annealing MD simulation are considered and simulation results are analyzed by using a hierarchical Bayesian model to obtain the permeability of the different membranes. The estimated membrane permeability is used to predict full-scale water flux by means of a process-level Monte Carlo simulation. Based on the results, the parameters of the model are observed to converge within 5-ns total simulation time. The results also indicate that the use of unique structural configurations in MD simulations is essential to capture realistic membrane properties at the molecular scale. Furthermore, the predicted full-scale water flux based on the estimated permeability is within the same order of magnitude of bench-scale experimental measurement of 1.72×10(-5) m/s.
Collapse
|
30
|
Cui Y, Liu XY, Chung TS, Weber M, Staudt C, Maletzko C. Removal of organic micro-pollutants (phenol, aniline and nitrobenzene) via forward osmosis (FO) process: Evaluation of FO as an alternative method to reverse osmosis (RO). WATER RESEARCH 2016; 91:104-114. [PMID: 26773492 DOI: 10.1016/j.watres.2016.01.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/11/2015] [Accepted: 01/02/2016] [Indexed: 06/05/2023]
Abstract
In this study, we have explored and compared the effectiveness of using (1) lab-fabricated forward osmosis (FO) membranes under both FO and reverse osmosis (RO) modes and (2) commercially available RO membranes under the RO mode for the removal of organic micro-pollutants. The lab-fabricated FO membranes are thin film composite (TFC) membranes consisting of a polyamide layer and a porous substrate cast from three different materials; namely, Matrimid, polyethersulfone (PESU) and sulfonated polyphenylene sulfone (sPPSU). The results show that the FO mode is superior to the RO mode in the removal of phenol, aniline and nitrobenzene from wastewater. The rejections of all three TFC membranes to all the three organic micro-pollutants under the FO processes are higher than 72% and can be even higher than 90% for aniline when a 1000 ppm aromatic aqueous solution and 1 M NaCl are employed as feeds. These performances outperform the results obtained from themselves and commercially available RO membranes under the RO mode. In addition, the rejection can be maintained even when treating a more concentrated feed solution (2000 ppm). The removal performance can be further enhanced by using a more concentrated draw solution (2 M). The water flux is almost doubled, and the rejection increment can reach up to 17%. Moreover, it was observed that annealing as a post-treatment would help compact the membrane selective layer and further enhance the separating efficiency. The obtained organic micro-pollutant rejections and water fluxes under various feasible operating conditions indicate that the FO process has potential to be a viable treatment for wastewater containing organic micro-pollutants.
Collapse
Affiliation(s)
- Yue Cui
- Department of Chemistry, National University of Singapore, 117542, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 117542, Singapore
| | - Xiang-Yang Liu
- Department of Chemistry, National University of Singapore, 117542, Singapore; Department of Physics, National University of Singapore, 117542, Singapore
| | - Tai-Shung Chung
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117542, Singapore; Water Desalination & Reuse (WDR) Center, King Abdullah University of Science and Technology, 23955-6900, Saudi Arabia.
| | - Martin Weber
- Advanced Materials & Systems Research, BASF SE, GM-B001, 67056 Ludwigshafen, Germany
| | - Claudia Staudt
- Advanced Materials & Systems Research, BASF SE, GM-B001, 67056 Ludwigshafen, Germany
| | - Christian Maletzko
- Performance Materials, BASF SE, G-PM/PU-F206, 67056 Ludwigshafen, Germany
| |
Collapse
|
31
|
Hidalgo AM, Gómez M, Murcia MD, Gómez E, León G, Cascales E. Influence of Physicochemical Parameters of Organic Solutes on the Retention and Flux in a Nanofiltration Process. Chem Eng Technol 2016. [DOI: 10.1002/ceat.201500254] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
32
|
Yan W, Wang Z, Wu J, Zhao S, Wang J, Wang S. Enhancing the flux of brackish water TFC RO membrane by improving support surface porosity via a secondary pore-forming method. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2015.10.029] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Zhang X, Ning Z, Wang DK, Diniz da Costa JC. Processing municipal wastewaters by forward osmosis using CTA membrane. J Memb Sci 2014. [DOI: 10.1016/j.memsci.2014.06.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
34
|
Holloway RW, Regnery J, Nghiem LD, Cath TY. Removal of trace organic chemicals and performance of a novel hybrid ultrafiltration-osmotic membrane bioreactor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:10859-10868. [PMID: 25113310 DOI: 10.1021/es501051b] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A hybrid ultrafiltration-osmotic membrane bioreactor (UFO-MBR) was investigated for over 35 days for nutrient and trace organic chemical (TOrC) removal from municipal wastewater. The UFO-MBR system uses both ultrafiltration (UF) and forward osmosis (FO) membranes in parallel to simultaneously extract clean water from an activated sludge reactor for nonpotable (or environmental discharge) and potable reuse, respectively. In the FO stream, water is drawn by osmosis from activated sludge through an FO membrane into a draw solution (DS), which becomes diluted during the process. A reverse osmosis (RO) system is then used to reconcentrate the diluted DS and produce clean water suitable for direct potable reuse. The UF membrane extracts water, dissolved salts, and some nutrients from the system to prevent their accumulation in the activated sludge of the osmotic MBR. The UF permeate can be used for nonpotable reuse purposes (e.g., irrigation and toilet flushing). Results from UFO-MBR investigation illustrated that the chemical oxygen demand, total nitrogen, and total phosphorus removals were greater than 99%, 82%, and 99%, respectively. Twenty TOrCs were detected in the municipal wastewater that was used as feed to the UFO-MBR system. Among these 20 TOrCs, 15 were removed by the hybrid UFO-MBR system to below the detection limit. High FO membrane rejection was observed for all ionic and nonionic hydrophilic TOrCs and lower rejection was observed for nonionic hydrophobic TOrCs. With the exceptions of bisphenol A and DEET, all TOrCs that were detected in the DS were well rejected by the RO membrane. Overall, the UFO-MBR can operate sustainably and has the potential to be utilized for direct potable reuse applications.
Collapse
Affiliation(s)
- Ryan W Holloway
- Colorado School of Mines, Golden, Colorado 80401, United States
| | | | | | | |
Collapse
|
35
|
Wei X, Wang S, Shi Y, Xiang H, Chen J. Application of Positively Charged Composite Hollow-Fiber Nanofiltration Membranes for Dye Purification. Ind Eng Chem Res 2014. [DOI: 10.1021/ie5017688] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | - Hai Xiang
- College
of Bioengineering, Zhejiang Chinese Medical University, Hangzhou 310053, P. R. China
| | | |
Collapse
|
36
|
Baudequin C, Mai Z, Rakib M, Deguerry I, Severac R, Pabon M, Couallier E. Removal of fluorinated surfactants by reverse osmosis – Role of surfactants in membrane fouling. J Memb Sci 2014. [DOI: 10.1016/j.memsci.2014.01.063] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Coday BD, Yaffe BGM, Xu P, Cath TY. Rejection of trace organic compounds by forward osmosis membranes: a literature review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:3612-3624. [PMID: 24552278 DOI: 10.1021/es4038676] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
To meet surging water demands, water reuse is being sought as an alternative to traditional water resources. However, contamination of water resources by trace organic compounds (TOrCs), including pharmaceuticals, personal care products, disinfection byproducts, and industrial chemicals is of increasing concern. These compounds are not readily removed by conventional water treatment processes and require new treatment technologies to enable potable water reuse. Forward osmosis (FO) has been recognized in recent years as a robust process suitable for the treatment of highly impaired streams and a good barrier to TOrCs. To date, at least 14 studies have been published that investigated the rejection of various TOrCs by FO membranes under a variety of experimental conditions. In this paper, TOrC rejection by FO has been critically reviewed, evaluating the effects of membrane characteristics and orientation, experimental scale and duration, membrane fouling, feed solution chemistry, draw solution composition and concentration, and transmembrane temperature on process performance. Although it is important to continue to investigate the removal of diverse TOrCs by FO, and especially with new FO membranes, it is critically important to adhere to standard testing conditions to enable comparison of results between studies. Likewise, feed concentration of TOrCs during FO testing must be environmentally relevant (most commonly 10-100 ng/L range for most wastewaters) and not excessively high, and in addition to testing TOrC rejection in clean feedwater, the effects of real water matrix and membrane fouling on TOrC rejection must be evaluated.
Collapse
Affiliation(s)
- Bryan D Coday
- Colorado School of Mines , Golden, Colorado 80401, United States
| | | | | | | |
Collapse
|
38
|
Chen L, Gu Y, Cao C, Zhang J, Ng JW, Tang C. Performance of a submerged anaerobic membrane bioreactor with forward osmosis membrane for low-strength wastewater treatment. WATER RESEARCH 2014; 50:114-123. [PMID: 24374126 DOI: 10.1016/j.watres.2013.12.009] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 12/03/2013] [Accepted: 12/05/2013] [Indexed: 06/03/2023]
Abstract
A submerged anaerobic membrane bioreactor with forward osmosis membrane (FO-AnMBR) was operated at 25 °C for the treatment of synthetic wastewater. As the experiment progressed, the water flux reduced due to the membrane fouling and the increasing salinity in the reactor, and achieved at around 3.5 LMH in one cycle. It was worth noting that the level of salinity in the reactor was not a concern in terms of inhibition or toxic effects on the biological processes. The FO-AnMBR process exhibited greater than 96% removal of organic carbon, nearly 100% of total phosphorus and 62% of ammonia-nitrogen, respectively, suggesting a better removal efficiency than the conventional anaerobic membrane bioreactor. The methane and carbon dioxide compositions achieved concentrations of around 65%-78% and 22%-35%, respectively; and no obvious difference in the biogas composition was observed with the changes of conductivity. With respect to the methane yield, an average value of 0.21 L CH4 g(-1) COD was obtained, exhibiting the feasibility of energy recovery by this FO-AnMBR system. Additionally, an increase in the salinity enhanced the accumulation of soluble microbial products, especially for the proteins with 88.9% increment as the conductivity increased from 1.2 to 17.3 ms cm(-1). In contrast, a relatively stable concentration of extracellular polymer substances (EPS) was observed, indicating that the influence of conductivity on EPS cannot be directly correlated.
Collapse
Affiliation(s)
- Lin Chen
- Advanced Environmental Biotechnology, Nanyang Technological University, Singapore 637174, Singapore; Singapore Membrane Technology Centre, Nanyang Technological University, Singapore 639798, Singapore.
| | - Yangshuo Gu
- Singapore Membrane Technology Centre, Nanyang Technological University, Singapore 639798, Singapore
| | - Chuqing Cao
- Department of Electrical and Computer Engineering, National University of Singapore, 117576, Singapore
| | - Jun Zhang
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Jing-Wen Ng
- Singapore Membrane Technology Centre, Nanyang Technological University, Singapore 639798, Singapore
| | - Chuyang Tang
- Singapore Membrane Technology Centre, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|