1
|
Yogi YS, Parmar HB, Fattahi Juybari H, Nejati S, Rao AK, Roy R, Zarei M, Li L, Sett S, Das A, Miljkovic N, Weibel JA, Warsinger DM. Slippery liquid infused porous surface (SLIPS) condensers for high efficiency air gap membrane distillation. COMMUNICATIONS ENGINEERING 2025; 4:48. [PMID: 40089632 PMCID: PMC11910583 DOI: 10.1038/s44172-025-00348-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/17/2025] [Indexed: 03/17/2025]
Abstract
To address growing water scarcity, we must improve the energy efficiency of thermal desalination technologies such as air gap membrane distillation. However, promising functional materials such as slippery liquid infused porous surfaces have not yet implemented for any desalination technology. Here, we fabricate and test slippery liquid infused porous surfaces (using Krytox 16,256 lubricant and CuO nanostructures) in an air gap membrane distillation apparatus. System-level transport models, validated by experimental data, establish a framework for improving performance through enhanced condensation surfaces. Results are obtained across a range of temperatures (50-80 °C), salinities (5-105 g/kg), and module lengths. We find that small air gap thickness and efficient droplet shedding significantly improves performance. The CuO Krytox process achieves these with a conductive-self-limiting coating, high nanostructure rugosity, strong covalent and metallic bonding, high hydrophobicity, minimal droplet pinning sites, and ultra-low contact angle hysteresis. The greatest efficiency enhancement from SLIPS is derived from the improved droplet shedding, which allows for reduced gap sizes without flooding, and is further augmented by the increased permeate flux.
Collapse
Affiliation(s)
- Yashwant S Yogi
- School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Harsharaj B Parmar
- School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Hamid Fattahi Juybari
- School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Sina Nejati
- School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Akshay K Rao
- School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Rishav Roy
- School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Mojtaba Zarei
- School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Longnan Li
- Department of Mechanical Science and Engineering, University of Illinois, Urbana, IL, 61801, USA
| | - Soumyadip Sett
- Department of Mechanical Science and Engineering, University of Illinois, Urbana, IL, 61801, USA
| | - Abhimanyu Das
- School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Nenad Miljkovic
- Department of Mechanical Science and Engineering, University of Illinois, Urbana, IL, 61801, USA
- Materials Research Laboratory, University of Illinois, Urbana, IL, 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois, Urbana, IL, 61801, USA
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- Air Conditioning and Refrigeration Center, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Institute for Sustainability, Energy and Environment (iSEE), University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Justin A Weibel
- School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - David M Warsinger
- School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
2
|
Kywe PP, Ratanatamskul C. Membrane fouling analysis of air-gap membrane distillation (AGMD) for recovery of water and removal of antibiotics from a model wastewater containing antibiotics and humic acid. CHEMOSPHERE 2024; 363:142942. [PMID: 39059636 DOI: 10.1016/j.chemosphere.2024.142942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
The study investigates the efficiency of air-gap membrane distillation (AGMD) in water recovery and antibiotics removal from wastewater, focusing on high-concentration scenarios. Experimental findings reveal enhanced membrane performance with increasing the feed temperature, resulting in vapor permeate fluxes of up to 5 kg/m2.h at higher temperatures. Despite experiencing flux reduction caused by fouling from humic acid (HA) in the feed antibiotics solution, the antibiotics consistently maintain near-complete rejection rates (>99%) over 48 h. The foulant on the membrane surface was illustrated by SEM imaging. To know the temperature polarization and the fouling resistance, mathematical modeling was used, and it validates experimental results, elucidating temperature polarization effects and mass transfer coefficients. An increase in feed flow rates reduced thermal boundary layers, enhancing heat flux. Higher temperatures reduced HA fouling resistance. Therefore, AGMD proves effective in water recovery and antibiotics removal, with mathematical models aiding fouling understanding for future research and detailed computational fluid dynamics (CFD) models.
Collapse
Affiliation(s)
- Pyae Phyo Kywe
- Center of Excellence in Innovative Waste Treatment and Water Reuse, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand; Department of Environmental and Sustainable Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chavalit Ratanatamskul
- Center of Excellence in Innovative Waste Treatment and Water Reuse, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand; Department of Environmental and Sustainable Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
3
|
Bi H, Yuan H, Xu Z, Liang Z, Du Y. Research on the Performance and Computational Fluid Dynamics Numerical Simulation of Plate Air Gap Membrane Distillation Module. MEMBRANES 2024; 14:162. [PMID: 39195414 DOI: 10.3390/membranes14080162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024]
Abstract
Membrane distillation (MD) is widely used in the field of seawater desalination. Among its various sub-categories, air gap membrane distillation (AGMD) stands out due to its high thermal efficiency and compatibility with low-grade heat sources. This study delves into the impact of varying operating conditions on AGMD performance, employing numerical simulations which are grounded in experimental validation. The objective was to enhance the performance of AGMD, mitigate polarization phenomena, and provide a reference for optimizing membrane component design. The results show that the agreements between the simulated and the experimental values were high. When increasing the feed temperature and decreasing the coolant temperature, the impact of polarization phenomena on the performance of AGMD was reduced. The mass flux, Total Permeate Concentration (TPC), and heat flux increased by 81.69%, 36.89%, and 118.01%, respectively, when the feed temperature was increased from 50 °C to 75 °C. When the coolant temperature decreased from 22 °C to 7 °C, the mass flux increased by 37.06%. The response surface analysis revealed that the feed temperature has significant influence on AGMD performance, and there is a noticeable interaction between the feed temperature and coolant temperature. These findings will play key roles in practical applications.
Collapse
Affiliation(s)
- Haojie Bi
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Hongying Yuan
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Zhiyuan Xu
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Zhuobin Liang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Yongliang Du
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| |
Collapse
|
4
|
Nthunya LN, Chong KC, Lai SO, Lau WJ, López-Maldonado EA, Camacho LM, Shirazi MMA, Ali A, Mamba BB, Osial M, Pietrzyk-Thel P, Pregowska A, Mahlangu OT. Progress in membrane distillation processes for dye wastewater treatment: A review. CHEMOSPHERE 2024; 360:142347. [PMID: 38759802 DOI: 10.1016/j.chemosphere.2024.142347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/26/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
Textile and cosmetic industries generate large amounts of dye effluents requiring treatment before discharge. This wastewater contains high levels of reactive dyes, low to none-biodegradable materials and chemical residues. Technically, dye wastewater is characterised by high chemical and biological oxygen demand. Biological, physical and pressure-driven membrane processes have been extensively used in textile wastewater treatment plants. However, these technologies are characterised by process complexity and are often costly. Also, process efficiency is not achieved in cost-effective biochemical and physical treatment processes. Membrane distillation (MD) emerged as a promising technology harnessing challenges faced by pressure-driven membrane processes. To ensure high cost-effectiveness, the MD can be operated by solar energy or low-grade waste heat. Herein, the MD purification of dye wastewater is comprehensively and yet concisely discussed. This involved research advancement in MD processes towards removal of dyes from industrial effluents. Also, challenges faced by this process with a specific focus on fouling are reviewed. Current literature mainly tested MD setups in the laboratory scale suggesting a deep need of further optimization of membrane and module designs in near future, especially for textile wastewater treatment. There is a need to deliver customized high-porosity hydrophobic membrane design with the appropriate thickness and module configuration to reduce concentration and temperature polarization (CP and TP). Also, energy loss should be minimized while increasing dye rejection and permeate flux. Although laboratory experiments remain pivotal in optimizing the MD process for treating dye wastewater, the nature of their time intensity poses a challenge. Given the multitude of parameters involved in MD process optimization, artificial intelligence (AI) methodologies present a promising avenue for assistance. Thus, AI-driven algorithms have the potential to enhance overall process efficiency, cutting down on time, fine-tuning parameters, and driving cost reductions. However, achieving an optimal balance between efficiency enhancements and financial outlays is a complex process. Finally, this paper suggests a research direction for the development of effective synthetic and natural dye removal from industrially discharged wastewater.
Collapse
Affiliation(s)
- Lebea N Nthunya
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag X3, 2050, Johannesburg, South Africa.
| | - Kok Chung Chong
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Kajang 43000, Selangor, Malaysia; Centre of Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, Kampar 31900, Perak, Malaysia
| | - Soon Onn Lai
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Kajang 43000, Selangor, Malaysia; Centre of Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, Kampar 31900, Perak, Malaysia
| | - Woei Jye Lau
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
| | | | - Lucy Mar Camacho
- Department of Environmental Engineering, Texas A&M University-Kingsville, MSC 2013, 700 University Blvd., Kingsville, TX 78363, USA
| | - Mohammad Mahdi A Shirazi
- Centre for Membrane Technology, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Aamer Ali
- Centre for Membrane Technology, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Bhekie B Mamba
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, 1709 Roodepoort, South Africa
| | - Magdalena Osial
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
| | - Paulina Pietrzyk-Thel
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
| | - Agnieszka Pregowska
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
| | - Oranso T Mahlangu
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, 1709 Roodepoort, South Africa.
| |
Collapse
|
5
|
Al-Harby NF, El Batouti M, Elewa MM. A Comparative Analysis of Pervaporation and Membrane Distillation Techniques for Desalination Utilising the Sweeping Air Methodology with Novel and Economical Pervaporation Membranes. Polymers (Basel) 2023; 15:4237. [PMID: 37959917 PMCID: PMC10648555 DOI: 10.3390/polym15214237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/17/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023] Open
Abstract
This study used the sweeping air approach to conduct a comparative analysis of pervaporation (PV) and membrane distillation (MD) in the context of desalinating saline/hypersaline water. An experimental setup of the sweeping air arrangement was designed and built at a laboratory size to conduct the research. The desalination process using PV used innovatively designed cellulose acetate (CA) membranes specifically adapted for this purpose. Conversely, in the studies involving MD, hydrophobic polytetrafluoroethylene (PTFE) membranes were utilised. CA membranes were fabricated in our laboratory using the phase inversion approach. The physicochemical characteristics of the membranes were assessed using many methodologies, including FTIR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), contact angle measurement, and water uptake analysis. This facilitated a more comprehensive comprehension of the impact of the alkaline treatment on these features. The variables that were examined included the kind of membrane, the pore size of the PTFE membrane, the composition of the casting solution of CA, the concentration of the feed solution, the temperature of the feed, and the temperature of the condenser cooling water. The morphologies of the membranes were examined using SEM. The study's findings indicated that the use of MD resulted in a greater flow and a remarkable percentage of salt rejection (% SR). Furthermore, it was observed that the flux was positively correlated with the feed temperature, while it exhibited an inverse relationship with the cooling water temperature. Moreover, it was observed that the impact of the pore size of the PTFE membrane on the desalination process was found to be minimal. The most optimal outcomes obtained were 13.35 kg/m2 h with a percentage salt rejection (% SR) of 99.86, and 17.96 kg/m2 h with a % SR of 99.83 at a temperature of 70 °C, while using MD and PV technologies, respectively. Furthermore, both methods demonstrated the capability to desalinate very salty solutions with a salinity level of up to 160 g/L, thereby yielding potable water in a single step.
Collapse
Affiliation(s)
- Nouf F. Al-Harby
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Mervette El Batouti
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21526, Egypt;
| | - Mahmoud M. Elewa
- Arab Academy for Science, Technology and Maritime Transport, Alexandria P.O. Box 1029, Egypt;
| |
Collapse
|
6
|
Abu-Zeid MAR, Bassyouni M, Fouad Y, Monica T, Sandid AM, Elhenawy Y. Experimental and Simulation Study of Solar-Powered Air-Gap Membrane Distillation Technology for Water Desalination. MEMBRANES 2023; 13:821. [PMID: 37887993 PMCID: PMC10608935 DOI: 10.3390/membranes13100821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023]
Abstract
This work aimed to investigate temperature polarization (TP) and concentration polarization (CP), which affect solar-powered air-gap membrane distillation (SP-AGMD) system performance under various operating conditions. A mathematical model for the SP-AGMD system using the experimental results was performed to calculate the temperature polarization coefficient (τ), interface temperature (Tfm), and interface concentration (Cfm) at various salt concentrations (Cf), feed temperatures (Tf), and flow rates (Mf). The system of SP-AGMD was simulated using the TRNSYS program. An evacuated tube collector (ETC) with a 2.5 m2 surface area was utilized for solar water heating. Electrical powering of cooler and circulation water pumps in the SP-AGMD system was provided using a photovoltaic system. Data were subjected to one-way analysis of variance (ANOVA) and Spearman's correlation analysis to test the significant impact of operating conditions and polarization phenomena at p < 0.05. Statistical analysis showed that Mf induced a highly significant difference in the productivity (Pr) and heat-transfer (hf) coefficients (p < 0.001) and a significant difference in τ (p < 0.05). Great F-ratios showed that Mf is the most influential parameter. Pr was enhanced by 99% and 146%, with increasing Tf (60 °C) and Mf (12 L/h), respectively, at a stable salt concentration (Cf) of 0.5% and a cooling temperature (Tc) of 20 °C. Also, the temperature increased to 85 °C when solar radiation reached 1002 W/m2 during summer. The inlet heat temperature of AGMD increased to 73 °C, and the Pr reached 1.62 kg/(m2·h).
Collapse
Affiliation(s)
- Mostafa AbdEl-Rady Abu-Zeid
- Department of Agricultural Engineering, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt;
| | - Mohamed Bassyouni
- Center of Excellence in Membrane-Based Water Desalination Technology for Testing and Characterization (CEMTC), Port Said University, Port Said 42526, Egypt
- Department of Chemical Engineering, Faculty of Engineering, Port Said University, Port Said 42526, Egypt
- Department of Chemical Engineering, Faculty of Engineering, East Port Said University of Technology, North Sinai 45632, Egypt
| | - Yasser Fouad
- Department of Applied Mechanical Engineering, College of Applied Engineering, Muzahimiyah Branch, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia;
| | - Toderaș Monica
- Faculty of Sciences, University of Oradea, St. No.1., 410087 Oradea, Romania
| | - Abdelfatah Marni Sandid
- Mechanical Engineering Department, University of Ain-Temouchent, Ain-Temouchent 46000, Algeria;
| | - Yasser Elhenawy
- Center of Excellence in Membrane-Based Water Desalination Technology for Testing and Characterization (CEMTC), Port Said University, Port Said 42526, Egypt
- School of Chemical and Metallurgical Engineering, University of the Witwatersrand, 1 Jan Smuts Avenue, Johannesburg 2000, South Africa
- Department of Mechanical Power Engineering, Faculty of Engineering, Port Said University, Port Said 42526, Egypt
| |
Collapse
|
7
|
Zhang Z, Yang J, Qi R, Huang J, Chen H, Zhang H. Development of Hydrophobic Coal-Fly-Ash-Based Ceramic Membrane for Vacuum Membrane Distillation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3153. [PMID: 37109989 PMCID: PMC10141027 DOI: 10.3390/ma16083153] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/02/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
Membrane distillation is an emerging separation technology with a high separation factor in water desalination. Ceramic membranes are increasingly used in membrane distillation because of high thermal and chemical stabilities. Coal fly ash is a promising ceramic membrane material with low thermal conductivity. In this study, three hydrophobic coal-fly-ash-based ceramic membranes were prepared for saline water desalination. The performances of different membranes in membrane distillation were compared. The effects of membrane pore size on permeate flux and salt rejection were researched. The coal-fly-ash-based membrane showed both a higher permeate flux and a higher salt rejection than the alumina membrane. As a result, using coal fly ash as the material for membrane fabrication can effectively increase the performance when applied to MD. Increasing the membrane pore size improved the permeate flux, but reduced the salt rejection. When the mean pore size increased from 0.15 μm to 1.57 μm, the water flux rose from 5.15 L·m-2·h-1 to 19.72 L·m-2·h-1, but the initial salt rejection was reduced from 99.95% to 99.87%. The hydrophobic coal-fly-ash-based membrane with a mean pore size of 0.18 μm exhibited a water flux of 9.54 L·m-2·h-1 and a salt rejection of higher than 98.36% in membrane distillation.
Collapse
Affiliation(s)
- Zheng Zhang
- School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China; (Z.Z.); (J.Y.); (R.Q.); (J.H.); (H.C.)
| | - Jihao Yang
- School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China; (Z.Z.); (J.Y.); (R.Q.); (J.H.); (H.C.)
| | - Run Qi
- School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China; (Z.Z.); (J.Y.); (R.Q.); (J.H.); (H.C.)
| | - Jiguang Huang
- School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China; (Z.Z.); (J.Y.); (R.Q.); (J.H.); (H.C.)
| | - Haiping Chen
- School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China; (Z.Z.); (J.Y.); (R.Q.); (J.H.); (H.C.)
- Beijing Key Laboratory of Pollutant Monitoring and Control in Thermoelectric Production Process, North China Electric Power University, Beijing 102206, China
| | - Heng Zhang
- School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China; (Z.Z.); (J.Y.); (R.Q.); (J.H.); (H.C.)
- Beijing Key Laboratory of Pollutant Monitoring and Control in Thermoelectric Production Process, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
8
|
Mibarki N, Triki Z, Belhadj AE, Tahraoui H, Amrane A, Cheikh S, Hadadi A, Bouchelkia N, Kebir M, Zhang J, Assadi AA, Mouni L. Energy and Exergy Analysis of Solar Air Gap Membrane Distillation System for Seawater Desalination. WATER 2023; 15:1201. [DOI: 10.3390/w15061201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Air gap membrane distillation (AGMD) is a widely utilized technology for producing drinking water due to its low heat loss, high thermal efficiency, and compatibility with solar energy. The application of the first and second laws of thermodynamics in energy and exergy analyses provides a comprehensive evaluation of the efficiency of thermal processes. This study aims to examine numerically the energy and exergy performance indicators of a solar AGMD system used for seawater desalination. The simulation was carried out using MATLAB 9.7 software. The total thermal efficiency and overall efficiency of each element in the AGMD system were calculated for various solar field energy outputs, and moreover, a parametric study was conducted. The results indicate that the exergetic efficiency of the AGMD system components was the lowest in the solar field, with the concentrator having the lowest energy efficiency. Additionally, the thermal and exergetic efficiency of the entire solar AGMD system decreases along with the raise of ambient temperature. An additional investigation was conducted to better apprehend the sources of exergy destruction in the solar field. The obtained results from this study can be employed as a guide to reduce exergy destruction in the whole solar AGMD desalination system with recognition of the main sources of irreversibility.
Collapse
Affiliation(s)
- Nawel Mibarki
- Laboratory of Biomaterials and Transport Phenomena, University of Medea, Medea 26000, Algeria
| | - Zakaria Triki
- Laboratory of Biomaterials and Transport Phenomena, University of Medea, Medea 26000, Algeria
| | - Abd-Elmouneïm Belhadj
- Laboratory of Biomaterials and Transport Phenomena, University of Medea, Medea 26000, Algeria
| | - Hichem Tahraoui
- Laboratory of Biomaterials and Transport Phenomena, University of Medea, Medea 26000, Algeria
- Laboratoire de Génie des Procédés Chimiques, Department of Process Engineering, University of Ferhat Abbas, Setif 19000, Algeria
| | - Abdeltif Amrane
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR—UMR6226, F-35000 Rennes, France
| | - Sabrina Cheikh
- Laboratory of Management and Valorization of Natural Resources and Quality Assurance, SNVST Faculty, Bouira University, Bouira 10000, Algeria
| | - Amina Hadadi
- Laboratory of Management and Valorization of Natural Resources and Quality Assurance, SNVST Faculty, Bouira University, Bouira 10000, Algeria
| | - Nasma Bouchelkia
- Laboratory of Management and Valorization of Natural Resources and Quality Assurance, SNVST Faculty, Bouira University, Bouira 10000, Algeria
- Département de Génie des Procédés, Faculté de Technologie, Université de Bejaia, Bejaia 06000, Algeria
| | - Mohamed Kebir
- Research Unit on Analysis and Technological Development in Environment (URADTE CRAPC), BP 384, Bou-Ismail, Tipaza 42000, Algeria
| | - Jie Zhang
- School of Engineering, Merz Court, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Amine Aymen Assadi
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR—UMR6226, F-35000 Rennes, France
- College of Engineering, Imam Mohammad Ibn Saud Islamic University, IMSIU, Riyadh 11432, Saudi Arabia
| | - Lotfi Mouni
- Laboratory of Management and Valorization of Natural Resources and Quality Assurance, SNVST Faculty, Bouira University, Bouira 10000, Algeria
| |
Collapse
|
9
|
Mibarki N, Triki Z, Belhadj AE, Tahraoui H, Zamouche M, Kebir M, Amrane A, Zhang J, Mouni L. An Effective Standalone Solar Air Gap Membrane Distillation Plant for Saline Water Desalination: Mathematical Model, Optimization. WATER 2023; 15:1141. [DOI: 10.3390/w15061141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Several drinking water production techniques are being established to respond immediately to the growing needs of the population. The system of air gap membrane distillation (AGMD) is the best attractive option for the process of water desalination. This thermal process is characterized by its potential to provide drinking water at low energy costs when combined with solar energy. In this paper, the AGMD brackish water desalination unit potentialities coupled with solar energy were investigated. Ghardaïa of the south region has been considered as the field of our study. Mathematical modeling is investigated by employing MATLAB software to develop the prediction of the permeate flux related to the phenomena of heat and mass transfer. Herein, flat plate solar collectors (SFPC) were exploited as a source for heating saline water through free solar energy conversion. The further model validation of a flat solar collector made it possible for following the instantaneous evolution of the collector outlet temperature depending on the feed water temperature and the flow rate. Furthermore, it is interesting to note that the results prove the possibility to produce water by the solar AGMD process with a maximum permeate flux of 8 kg·m−2·h−1 achieved at 68 °C, a feed temperature. Moreover, gained output ratio (GOR) of the unit of thermal solar desalination was estimated to be about 4.6, which decreases with increasing hot water flow and temperature.
Collapse
Affiliation(s)
- Nawel Mibarki
- Laboratory of Biomaterials and Transport Phenomena, University of Medea, Medea 26000, Algeria
| | - Zakaria Triki
- Laboratory of Biomaterials and Transport Phenomena, University of Medea, Medea 26000, Algeria
| | - Abd-Elmouneïm Belhadj
- Laboratory of Biomaterials and Transport Phenomena, University of Medea, Medea 26000, Algeria
| | - Hichem Tahraoui
- Laboratory of Biomaterials and Transport Phenomena, University of Medea, Medea 26000, Algeria
- Laboratoire de Génie des Procédés Chimiques, Department of Process Engineering, University of Ferhat Abbas, Setif 19000, Algeria
| | - Meriem Zamouche
- Laboratoire de l’Ingénierie des Procédés de l’Environnement (LIPE), Faculté de Génie des Procédés, Département de Génie de l’Environnement, Université de Constantine 3, Constantine 25000, Algeria
| | - Mohammed Kebir
- Research Unit on Analysis and Technological Development in Environment (URADTE-CRAPC), Tipaza 42000, Algeria
| | - Abdeltif Amrane
- Ecole Nationale Supérieure de Chimie de Rennes, Université de Rennes, CNRS, F-35000 Rennes, France
| | - Jie Zhang
- School of Engineering, Merz Court, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Lotfi Mouni
- Laboratory of Management and Valorization of Natural Resources and Quality Assurance, SNVST Faculty, Université de Bouira, Bouira 10000, Algeria
| |
Collapse
|
10
|
Islam MR, Lin B, Yu Y, Chen CC, Malmali M. Comparative Energetics of Various Membrane Distillation Configurations and Guidelines for Design and Operation. MEMBRANES 2023; 13:273. [PMID: 36984660 PMCID: PMC10056151 DOI: 10.3390/membranes13030273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
This paper presents a comparative performance study of single-stage desalination processes with major configurations of membrane distillation (MD) modules. MD modules covered in this study are (a) direct contact MD (DCMD), (b) vacuum MD (VMD), (c) sweeping gas MD (SGMD), and (d) air gap MD (AGMD). MD-based desalination processes are simulated with rigorous theoretical MD models supported by molecular thermodynamic property models for the accurate calculation of performance metrics. The performance metrics considered in MD systems are permeate flux and energy efficiency, i.e., gained output ratio (GOR). A general criterion is established to determine the critical length of these four MDs (at fixed width) for the feasible operation of desalination in a wide range of feed salinities. The length of DCMD and VMD is restricted by the feed salinity and permeate flux, respectively, while relatively large AGMD and SGMD are allowed. The sensitivity of GOR flux with respect to permeate conditions is investigated for different MD configurations. AGMD outperforms other configurations in terms of energy efficiency, while VMD reveals the highest permeate production. With larger MD modules, utilization of thermal energy supplied by the hot feed for evaporation is in the order of VMD > AGMD > SGMD > DCMD. Simulation results highlight that energy efficiency of the overall desalination process relies on the efficient recovery of spent for evaporation, suggesting potential improvement in energy efficiency for VMD-based desalination.
Collapse
|
11
|
Abid MB, Wahab RA, Salam MA, Gzara L, Moujdin IA. Desalination technologies, membrane distillation, and electrospinning, an overview. Heliyon 2023; 9:e12810. [PMID: 36793956 PMCID: PMC9922933 DOI: 10.1016/j.heliyon.2023.e12810] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Water is a critical component for humans to survive, especially in arid lands or areas where fresh water is scarce. Hence, desalination is an excellent way to effectuate the increasing water demand. Membrane distillation (MD) technology entails a membrane-based non-isothermal prominent process used in various applications, for instance, water treatment and desalination. It is operable at low temperature and pressure, from which the heat demand for the process can be sustainably sourced from renewable solar energy and waste heat. In MD, the water vapors are gone through the membrane's pores and condense at permeate side, rejecting dissolved salts and non-volatile substances. However, the efficacy of water and biofouling are the main challenges for MD due to the lack of appropriate and versatile membrane. Numerous researchers have explored different membrane composites to overcome the above-said issue, and attempt to develop efficient, elegant, and biofouling-resistant novel membranes for MD. This review article addresses the 21st-century water crises, desalination technologies, principles of MD, the different properties of membrane composites alongside compositions and modules of membranes. The desired membrane characteristics, MD configurations, role of electrospinning in MD, characteristics and modifications of membranes used for MD are also highlighted in this review.
Collapse
Affiliation(s)
- Monis Bin Abid
- Center of Excellence in Desalination Technology, King Abdulaziz University, PO Box 80200, Jeddah, 21589, Saudi Arabia
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
- Department of General Studies, University of Prince Mugrin Al Munawara, Saudi Arabia
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
- Enzyme Technology and Green Synthesis Group, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Malaysia
| | - Mohamed Abdel Salam
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O Box 80200, Jeddah, 21589, Saudi Arabia
| | - Lassaad Gzara
- Center of Excellence in Desalination Technology, King Abdulaziz University, PO Box 80200, Jeddah, 21589, Saudi Arabia
| | - Iqbal Ahmed Moujdin
- Center of Excellence in Desalination Technology, King Abdulaziz University, PO Box 80200, Jeddah, 21589, Saudi Arabia
- Department of Mechanical Engineering, King Abdulaziz University, P.O. Box 80200, Jeddah, Saudi Arabia
| |
Collapse
|
12
|
Liu Y, Wang J, Hoek EMV, Municchi F, Tilton N, Cath TY, Turchi CS, Heeley MB, Jassby D. Multistage Surface-Heated Vacuum Membrane Distillation Process Enables High Water Recovery and Excellent Heat Utilization: A Modeling Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:643-654. [PMID: 36579652 DOI: 10.1021/acs.est.2c07094] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Surface-heated membrane distillation (MD) enhances the energy efficiency of desalination by mitigating temperature polarization (TP). However, systematic investigations of larger scale, multistage, surface-heated MD system with high water recovery and heat recycling are limited. Here, we explore the design and performance of a multistage surface-heated vacuum MD (SHVMD) with heat recovery through a comprehensive finite difference model. In this process, the latent heat of condensation is recovered through an internal heat exchanger (HX) using the retentate from one stage as the condensing fluid for the next stage and an external HX using the feed as the condensing fluid. Model results show that surface heating enhances the performance compared to conventional vacuum MD (VMD). Specifically, in a six-stage SHVMD process, 54.44% water recovery and a gained output ratio (GOR) of 3.28 are achieved with a surface heat density of 2000 W m-2, whereas a similar six-stage VMD process only reaches 18.19% water recovery and a GOR of 2.15. Mass and energy balances suggest that by mitigating TP, surface heating increases the latent heat trapped in vapor. The internal and external HXs capture and reuse the additional heat, which enhances the GOR values. We show for SHVMD that the hybrid internal/external heat recovery design can have GOR value 1.44 times higher than that of systems with only internal or external heat recovery. Furthermore, by only increasing six stages to eight stages, a GOR value as high as 4.35 is achieved. The results further show that surface heating can reduce the energy consumption of MD for brine concentration. The multistage SHVMD technology exhibits a promising potential for the management of brine from industrial plants.
Collapse
Affiliation(s)
- Yiming Liu
- Department of Civil and Environmental Engineering, University of California Los Angeles, Los Angeles, California90095, United States
| | - Jingbo Wang
- Department of Civil and Environmental Engineering, University of California Los Angeles, Los Angeles, California90095, United States
| | - Eric M V Hoek
- Department of Civil and Environmental Engineering, University of California Los Angeles, Los Angeles, California90095, United States
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California90095, United States
- Institute of the Environment & Sustainability, University of California Los Angeles, Los Angeles, California90095, United States
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| | - Federico Municchi
- Department of Mechanical Engineering, Colorado School of Mines, Golden, Colorado80401, United States
| | - Nils Tilton
- Department of Mechanical Engineering, Colorado School of Mines, Golden, Colorado80401, United States
| | - Tzahi Y Cath
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado80401, United States
| | - Craig S Turchi
- Thermal Energy Science & Technologies Research Group, National Renewable Energy Laboratory, Golden, Colorado80401, United States
| | - Michael B Heeley
- Department of Economics and Business, Colorado School of Mines, Golden, Colorado80401, United States
| | - David Jassby
- Department of Civil and Environmental Engineering, University of California Los Angeles, Los Angeles, California90095, United States
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California90095, United States
- Institute of the Environment & Sustainability, University of California Los Angeles, Los Angeles, California90095, United States
| |
Collapse
|
13
|
Comprehensive experimental and theoretical studies on material-gap and water-gap membrane distillation using composite membranes. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Francis L, Hilal N. Electrosprayed CNTs on Electrospun PVDF-Co-HFP Membrane for Robust Membrane Distillation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4331. [PMID: 36500954 PMCID: PMC9740161 DOI: 10.3390/nano12234331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
In this investigation, the electrospraying of CNTs on an electrospun PVDF-Co-HFP membrane was carried out to fabricate robust membranes for the membrane distillation (MD) process. A CNT-modified PVDF-Co-HFP membrane was heat pressed and characterized for water contact angle, liquid entry pressure (LEP), pore size distribution, tensile strength, and surface morphology. A higher water contact angle, higher liquid entry pressure (LEP), and higher tensile strength were observed in the electrosprayed CNT-coated PVDF-Co-HFP membrane than in the pristine membrane. The MD process test was conducted at varying feed temperatures using a 3.5 wt. % simulated seawater feed solution. The CNT-modified membrane showed an enhancement in the temperature polarization coefficient (TPC) and water permeation flux up to 16% and 24.6%, respectively. Field-effect scanning electron microscopy (FESEM) images of the PVDF-Co-HFP and CNT-modified membranes were observed before and after the MD process. Energy dispersive spectroscopy (EDS) confirmed the presence of inorganic salt ions deposited on the membrane surface after the DCMD process. Permeate water quality and rejection of inorganic salt ions were quantitatively analyzed using ion chromatography (IC) and inductively coupled plasma-mass spectrometry (ICP-MS). The water permeation flux during the 24-h continuous DCMD operation remained constant with a >99.8% inorganic salt rejection.
Collapse
|
15
|
Zhang Y, Guo F. Breaking the Saturated Vapor Layer with a Thin Porous Membrane. MEMBRANES 2022; 12:1231. [PMID: 36557138 PMCID: PMC9784513 DOI: 10.3390/membranes12121231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
The main idea of membrane distillation is to use a porous hydrophobic membrane as a barrier that isolates vapor from aqueous solutions. It is similar to the evaporation process from a free water surface but introduces solid-liquid interfaces and solid-vapor interfaces to a liquid-vapor interface. The transmembrane mass flux of a membrane-distillation process is affected by the membrane's intrinsic properties and the temperature gradient across the membrane. It is interesting and important to know whether the evaporation process of membrane distillation is faster or slower than that of a free-surface evaporation under the same conditions and know the capacity of the transmembrane mass flux of a membrane-distillation process. In this work, a set of proof-of-principle experiments with various water surface/membrane interfacial conditions is performed. The effect and mechanism of membrane-induced evaporation are investigated. Moreover, a practical engineering model is proposed based on mathematical fitting and audacious simplification, which reflects the capacity of transmembrane flux.
Collapse
|
16
|
Zare S, Kargari A. CFD simulation and optimization of an energy-efficient direct contact membrane distillation (DCMD) desalination system. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Ibarra-Bahena J, Dehesa-Carrasco U, Galindo-Luna YR, Medina-Caballero IL, Rivera W. Experimental Performance of a Membrane Desorber with a H 2O/LiCl Mixture for Absorption Chiller Applications. MEMBRANES 2022; 12:1184. [PMID: 36557089 PMCID: PMC9784068 DOI: 10.3390/membranes12121184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
For absorption cooling cycles using water as a refrigerant, H2O/LiCl mixtures are suitable for replacing conventional H2O/LiBr mixtures. In addition, membrane devices can be used to develop compact and lighter absorption systems, and they can operate with H2O/LiCl mixtures. The present paper describes an experimental evaluation of a membrane desorber/condenser operating at atmospheric pressure. Two operation modes were analyzed: continuous cycle operation and intermittent operation. For the first operation mode, the maximum desorption rate was 3.49 kg/h·m2, with a solution temperature of 90.3 °C and a condensation temperature of 25.1 °C. The lowest desorption rate value was 0.26 kg/h·m2, with a solution temperature of 75.4 °C and a condensation temperature of 40.1 °C. In the second mode, after three operating hours, the refrigerant fluid produced, per 1 m2 of membrane area, 7.7, 5.6, 4.3, and 2.2 kg, at solution temperatures of 90.3, 85.3, 80.4, and 75.4 °C, respectively. A one-dimension heat and mass transfer model is presented. The calculated values of desorption rate and outlet temperatures were compared with the experimental data; a square correlation coefficient of 0.9929 was reached for the desorption rate; meanwhile, for the outlet solution temperatures and the outlet cooling-water temperatures, a square correlation coefficient up to 0.9991 was achieved. The membrane desorber has the advantages of operating at atmospheric-pressure conditions, high condensation temperature, the ability to use different saline solution working mixtures, and different operation methods. These advantages can lead to new absorption systems.
Collapse
Affiliation(s)
- Jonathan Ibarra-Bahena
- Subcoordinación de Conservación de Cuencas y Servicios Ambientales, Instituto Mexicano de Tecnología del Agua, Jiutepec 62550, Mexico
| | - Ulises Dehesa-Carrasco
- Subcoordinación de Conservación de Cuencas y Servicios Ambientales, Instituto Mexicano de Tecnología del Agua, Jiutepec 62550, Mexico
| | - Yuridiana Rocio Galindo-Luna
- Departamento de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico
| | | | - Wilfrido Rivera
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Temixco 62580, Mexico
| |
Collapse
|
18
|
Francis L, Ahmed FE, Hilal N. Advances in Membrane Distillation Module Configurations. MEMBRANES 2022; 12:membranes12010081. [PMID: 35054607 PMCID: PMC8778876 DOI: 10.3390/membranes12010081] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 02/04/2023]
Abstract
Membrane Distillation (MD) is a membrane-based, temperature-driven water reclamation process. While research emphasis has been largely on membrane design, upscaling of MD has prompted advancements in energy-efficient module design and configurations. Apart from the four conventional configurations, researchers have come up with novel MD membrane module designs and configurations to improve thermal efficiency. While membrane design has been the focus of many studies, development of appropriate system configurations for optimal energy efficiency for each application has received considerable attention, and is a critical aspect in advancing MD configurations. This review assesses advancements in modified and novel MD configurations design with emphasis on the effects of upscaling and pilot scale studies. Improved MD configurations discussed in this review are the material gap MD, conductive gap MD, permeate gap MD, vacuum-enhanced AGMD/DCMD, submerged MD, flashed-feed MD, dead-end MD, and vacuum-enhanced multi-effect MD. All of these modified MD configurations are designed either to reduce the heat loss by mitigating the temperature polarization or to improve the mass transfer and permeate flux. Vacuum-enhanced MD processes and MD process with non-contact feed solution show promise at the lab-scale and must be further investigated. Hollow fiber membrane-based pilot scale modules have not yet been sufficiently explored. In addition, comparison of various configurations is prevented by a lack of standardized testing conditions. We also reflect on recent pilot scale studies, ongoing hurdles in commercialization, and niche applications of the MD process.
Collapse
|
19
|
Structural tailoring of ceria nanoparticles for fabricating fouling resistant nanocomposite membranes with high flux distillation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127858] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Bispacer Multi-Stage Direct Contact Membrane Distillation System: Analytical and Experimental Study. Processes (Basel) 2021. [DOI: 10.3390/pr9081297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A multi-staged direct contact membrane distillation (MDCMD) system is designed considering a novel bispacer configuration in the present study. The proposed bispacer DCMD, which has not been addressed in the literature to best of our knowledge, is considered with two purposes, including increasing mechanical stability and turbulence. As increasing turbulence leads to increasing Nusselt number, the bispacer MDCMD provides higher permeate flux. An analytical approach is considered using energy and mass balance correlation. The effect of bispacer and feed operating conditions, including feed temperature, feed flow rate, feed salinity, and the number of stages on permeate flux and salt rejection of the developed MDCMD, are examined both analytically and experimentally. The performance and sustainability of the developed system were investigated by analyzing the parameters, including thermal efficiency (η), gained output ratio (GOR), and temperature polarization coefficient (TPC).
Collapse
|
21
|
Theoretical Investigation of Vapor Transport Mechanism Using Tubular Membrane Distillation Module. MEMBRANES 2021; 11:membranes11080560. [PMID: 34436323 PMCID: PMC8399860 DOI: 10.3390/membranes11080560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/24/2022]
Abstract
This paper’s primary objective is to examine the vapor delivery mechanism through a tubular membrane distillation (MD) module. Experiments were conducted utilizing a hydrophobic tubular membrane module with a pore size of 0.2 µm. To establish the mass transport mechanism of water vapor, tests were carried out first with pure water as a feed. The permeate flow was then determined using NaCl aqueous feed solutions. Distilled water flux at diverse feed temperatures, feed flow rates, and feed salt concentrations was investigated. The permeate flux improved linearly with rising temperature and flow rate of the feed, however, it declined with feed concentration. Increasing temperature from 40 to 70 °C increased the permeate flux by a factor of 2.2, while increasing the feed flow rate from 60 to 120 L/h increased the permeate flux by a factor ranging from 0.7 to 1.1 depending on feed temperature. Using the Dusty gas model (DGM) the mass transport of water vapor is estimated in the membrane pores. The results showed that the water vapor delivery is controlled by way of the Knudsen molecular diffusion transition mechanism and its version changed into one capable of predicting the permeate fluxes. The mass transfer coefficient calculated and located using the Knudsen molecular transition version agreed properly with the corresponding experimental value. The delivery resistances were affected by working parameters, along with feed temperature, flow rate, and concentration. The mass transfer resistance of the membrane became the predominant controlling step to the MD process.
Collapse
|
22
|
Cong S, Miao Q, Guo F. Mass Transfer Analysis of Air-Cooled Membrane Distillation Configuration for Desalination. MEMBRANES 2021; 11:membranes11040281. [PMID: 33920309 PMCID: PMC8069192 DOI: 10.3390/membranes11040281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 11/23/2022]
Abstract
It has been proposed that the air-cooled configuration for air gap membrane distillation is an effective way to simplify the system design and energy source requirement. This offers potential for the practical applications of membrane distillation on an industrial scale. In this work, membrane distillation tests were performed using a typical water-cooled membrane distillation (WCMD) configuration and an air-cooled membrane distillation (ACMD) configuration with various condensing plates and operating conditions. To increase the permeate flux of an ACMD system, the condensing plate in the permeate side should transfer heat to the atmosphere more effectively, such as using a more thermally conductive plate, adding fins, or introducing forced convection air flow. Importantly, a practical mass transfer model was proposed to describe the ACMD performance in terms of permeate flux. This model can be simplified by introducing specific correction values to the mass transfer coefficient of a WCMD process under the same conditions. The two factors relate to the capacity (B) and the efficiency (σ), which can be considered as the characteristic factors of a membrane distillation (MD) system. The experimental results are consistent with the theoretical estimations based on this model, which can be used to describe the performance of an MD process.
Collapse
|
23
|
Dong Y, Dai X, Zhao L, Gao L, Xie Z, Zhang J. Review of Transport Phenomena and Popular Modelling Approaches in Membrane Distillation. MEMBRANES 2021; 11:membranes11020122. [PMID: 33567617 PMCID: PMC7915881 DOI: 10.3390/membranes11020122] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 11/16/2022]
Abstract
In this paper, the transport phenomena in four common membrane distillation (MD) configurations and three popular modelling approaches are introduced. The mechanism of heat transfer on the feed side of all configurations are the same but are distinctive from each other from the membrane interface to the bulk permeate in each configuration. Based on the features of MD configurations, the mechanisms of mass and heat transfers for four configurations are reviewed together from the bulk feed to the membrane interface on the permeate but reviewed separately from the interface to the bulk permeate. Since the temperature polarisation coefficient cannot be used to quantify the driving force polarisation in Sweeping Gas MD and Vacuum MD, the rate of driving force polarisation is proposed in this paper. The three popular modelling approaches introduced are modelling by conventional methods, computational fluid dynamics (CFD) and response surface methodology (RSM), which are based on classic transport mechanism, computer science and mathematical statistics, respectively. The default assumptions, area for applications, advantages and disadvantages of those modelling approaches are summarised. Assessment and comparison were also conducted based on the review. Since there are only a couple of full-scale plants operating worldwide, the modelling of operational cost of MD was only briefly reviewed. Gaps and future studies were also proposed based on the current research trends, such as the emergence of new membranes, which possess the characteristics of selectivity, anti-wetting, multilayer and incorporation of inorganic particles.
Collapse
Affiliation(s)
- Yan Dong
- Department of Oil Engineering, Shengli College China University of Petroleum, Dongying 257061, China; (Y.D.); (X.D.)
| | - Xiaodong Dai
- Department of Oil Engineering, Shengli College China University of Petroleum, Dongying 257061, China; (Y.D.); (X.D.)
| | - Lianyu Zhao
- YunFu (Foshan) R&D Center of Hydrogen Energy Standardization, Yunfu 527326, China;
| | - Li Gao
- South East Water Corporation, P.O. Box 2268, Seaford, VIC 3198, Australia;
| | - Zongli Xie
- CSIRO Manufacturing, Private Bag 10, Clayton South MDC, VIC 3169, Australia;
| | - Jianhua Zhang
- Institute for Sustainable Industries & Liveable Cities, Victoria University, Melbourne, VIC 8001, Australia
- Correspondence:
| |
Collapse
|
24
|
A Mini Review on Antiwetting Studies in Membrane Distillation for Textile Wastewater Treatment. Processes (Basel) 2021. [DOI: 10.3390/pr9020243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The textile industry is an important contributor to the growth of the global economy. However, a huge quantity of wastewater is generated as a by-product during textile manufacturing, which hinders the ongoing development of textile industry in terms of environmental sustainability. Membrane distillation (MD), which is driven by thermal-induced vapor pressure difference, is being considered as an emerging economically viable technology to treat the textile wastewater for water reuse. So far, massive efforts have been put into new membrane material developments and modifications of the membrane surface. However, membrane wetting, direct feed solution transport through membrane pores leading to the failure of separation, remains as one of the main challenges for the success and potential commercialization of this separation process as textile wastewater contains membrane wetting inducing surfactants. Herein, this review presents current progress on the MD process for textile wastewater treatment with particular focuses on the fundamentals of membrane wetting, types of membranes applied as well as the fabrication or modification of membranes for anti-wetting properties. This article aims at providing insights in membrane design to enhance the MD separation performance towards commercial application of textile wastewater treatment.
Collapse
|
25
|
Hydrophobizing polyether sulfone membrane by sol-gel for water desalination using air gap membrane distillation. POLYM-PLAST TECH MAT 2021. [DOI: 10.1080/25740881.2020.1784225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Kalla S, Baghel R, Upadhyaya S, Singh K. Separation of HCl/water mixture using air gap membrane distillation, Taguchi optimization and artificial neural network. CHEMICAL PRODUCT AND PROCESS MODELING 2020. [DOI: 10.1515/cppm-2020-0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The aim of this paper is to analyze the performance of the air gap membrane distillation (AGMD) process for the separation of HCl/Water mixture first by applying Taguchi optimization approach and second by developing an artificial neural network (ANN) model. The experimental data which are fed as input to the above approaches are collected from the fabricated AGMD lab-scale setup using poly-tetra-fluoro-ethylene membrane of 0.22 µm pore size. The process input variables considered are bulk feed temperature, feed flow rate, air gap thickness, cooling water temperature and cooing water flow rate and AGMD performance index is the total permeate flux. The optimum operating condition is found to be at feed temperature 50 °C, air gap thickness 7 mm, cooling water temperature 5 °C and feed flow rate 10 lpm. Analysis of variance test is carried out for both Taguchi and ANN models. Regression model has also been developed for the comparison between experimental and model predicted data. The developed ANN model has been found well fitted with experimental data having R
2 value of 0.998. Based on the calculated percentage of contribution of each input parameter on the AGMD permeate flux, it can be concluded that feed temperature and air gap thickness have highest weightage whereas feed flow rate and cooling water temperature have moderate effects. Predictive ability of the developed ANN model is further checked with 2D contour plot. The distinctive feature of the paper is the development of the Taguchi experimental design and ANN model and then consequently integration of both Taguchi and ANN has been carried out to optimized the developed ANN model parameters.
Collapse
Affiliation(s)
- Sarita Kalla
- Department of Chemical Engineering , Sardar Vallabhbhai National Institute of Technology , Surat , 395007 , India
- Department of Chemical Engineering , Malaviya National Institute of Technology , Jaipur , 302017 , India
| | - Rakesh Baghel
- Department of Chemical Engineering , Malaviya National Institute of Technology , Jaipur , 302017 , India
| | - Sushant Upadhyaya
- Department of Chemical Engineering , Malaviya National Institute of Technology , Jaipur , 302017 , India
| | - Kailash Singh
- Department of Chemical Engineering , Malaviya National Institute of Technology , Jaipur , 302017 , India
| |
Collapse
|
27
|
Noamani S, Niroomand S, Rastgar M, Azhdarzadeh M, Sadrzadeh M. Modeling of Air-Gap Membrane Distillation and Comparative Study with Direct Contact Membrane Distillation. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04464] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sadaf Noamani
- Department of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton AB T6G 1H9, Canada
| | - Shirin Niroomand
- Department of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton AB T6G 1H9, Canada
| | - Masoud Rastgar
- Department of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton AB T6G 1H9, Canada
| | - Mehdi Azhdarzadeh
- Department of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton AB T6G 1H9, Canada
| | - Mohtada Sadrzadeh
- Department of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton AB T6G 1H9, Canada
| |
Collapse
|
28
|
Zuo K, Wang W, Deshmukh A, Jia S, Guo H, Xin R, Elimelech M, Ajayan PM, Lou J, Li Q. Multifunctional nanocoated membranes for high-rate electrothermal desalination of hypersaline waters. NATURE NANOTECHNOLOGY 2020; 15:1025-1032. [PMID: 33106641 DOI: 10.1038/s41565-020-00777-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Surface heating membrane distillation overcomes several limitations inherent in conventional membrane distillation technology. Here we report a successful effort to grow in situ a hexagonal boron nitride (hBN) nanocoating on a stainless-steel wire cloth (hBN-SSWC), and its application as a scalable electrothermal heating material in surface heating membrane distillation. The novel hBN-SSWC provides superior vapour permeability, thermal conductivity, electrical insulation and anticorrosion properties, all of which are critical for the long-term surface heating membrane distillation performance, particularly with hypersaline solutions. By simply attaching hBN-SSWC to a commercial membrane and providing power with an a.c. supply at household frequency, we demonstrate that hBN-SSWC is able to support an ultrahigh power intensity (50 kW m-2) to desalinate hypersaline solutions with exceptionally high water flux (and throughput), single-pass water recovery and heat utilization efficiency while maintaining excellent material stability. We also demonstrate the exceptional performance of hBN-SSWC in a scalable and compact spiral-wound electrothermal membrane distillation module.
Collapse
Affiliation(s)
- Kuichang Zuo
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA
- NSF Nanosystems Engineering Research Center Nanotechnology-Enabled Water Treatment (NEWT), Rice University, Houston, TX, USA
| | - Weipeng Wang
- NSF Nanosystems Engineering Research Center Nanotechnology-Enabled Water Treatment (NEWT), Rice University, Houston, TX, USA
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA
| | - Akshay Deshmukh
- NSF Nanosystems Engineering Research Center Nanotechnology-Enabled Water Treatment (NEWT), Rice University, Houston, TX, USA
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| | - Shuai Jia
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA
| | - Hua Guo
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA
| | - Ruikun Xin
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA
- NSF Nanosystems Engineering Research Center Nanotechnology-Enabled Water Treatment (NEWT), Rice University, Houston, TX, USA
| | - Menachem Elimelech
- NSF Nanosystems Engineering Research Center Nanotechnology-Enabled Water Treatment (NEWT), Rice University, Houston, TX, USA
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| | - Pulickel M Ajayan
- NSF Nanosystems Engineering Research Center Nanotechnology-Enabled Water Treatment (NEWT), Rice University, Houston, TX, USA.
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA.
| | - Jun Lou
- NSF Nanosystems Engineering Research Center Nanotechnology-Enabled Water Treatment (NEWT), Rice University, Houston, TX, USA.
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA.
| | - Qilin Li
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA.
- NSF Nanosystems Engineering Research Center Nanotechnology-Enabled Water Treatment (NEWT), Rice University, Houston, TX, USA.
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA.
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA.
| |
Collapse
|
29
|
Gao L, Li JD, Yang G, Zhang J, Xie Z. De-ammonification using direct contact membrane distillation – An experimental and simulation study. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117158] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Abu-Zeid MAER, Lu X, Zhang S. Enhancement of the air gap membrane distillation system performance by using the water gap module. WATER SUPPLY 2020; 20:2884-2902. [DOI: 10.2166/ws.2020.186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
The negative effect of an air gap layer presented between the membrane and cooling plate on air gap membrane distillation (AGMD) performance was diminished largely by inserting a water gap membrane distillation (WGMD) module in series. The new design of air-gap–water-gap membrane distillation (AG-WG)MD was evaluated experimentally by comparing with an AGMD system under different operating conditions. In theory, mass and heat transfer in the new (AG-WG)MD and imitative AGMD systems were analyzed. Experimental outcomes showed that a new (AG-WG)MD design profoundly enhanced flux (Pd) and gained output ratio (GOR), and greatly decreased energy consumption (STEC) and heat input (EH.I). At a concentration of 5,000 mg/L, coolant temperature of 20 °C, and flow rate of 18 L/h, Pd was promoted by 76.26%, 40.84%, 35.45%, 30.91%, and GOR by 46.38%, 33.46%, 31.27%, 26.65%, in addition to STEC being reduced about 55.63%, 46.81%, 43.66%, 38.30%, and EH.I around 31.31%, 25.84%, 23.53%, 20.55%, from the AGMD to (AG-WG)MD system at feed temperatures of 50 °C, 60 °C, 70 °C, and 80 °C, respectively. The outcomes proved that the AGMD performance could be significantly promoted by integrating with WGMD in a combined MD system. This combination increased the temperature difference across the membrane and decreased thermal-concentration boundary layers for the AGMD system.
Collapse
Affiliation(s)
- Mostafa Abd El-Rady Abu-Zeid
- Institute of Biological and Chemical Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering, Tiangong University, Tianjin, 300387, China
- Department of Agricultural Engineering, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Xiaolong Lu
- Institute of Biological and Chemical Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Shaozhe Zhang
- Institute of Biological and Chemical Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering, Tiangong University, Tianjin, 300387, China
| |
Collapse
|
31
|
|
32
|
Naji O, Al-Juboori RA, Bowtell L, Alpatova A, Ghaffour N. Direct contact ultrasound for fouling control and flux enhancement in air-gap membrane distillation. ULTRASONICS SONOCHEMISTRY 2020; 61:104816. [PMID: 31669841 DOI: 10.1016/j.ultsonch.2019.104816] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/07/2019] [Accepted: 09/29/2019] [Indexed: 06/10/2023]
Abstract
Air Gap Membrane distillation (AGMD) is a thermally driven separation process capable of treating challenging water types, but its low productivity is a major drawback. Membrane fouling is a common problem in many membrane treatment systems, which exacerbates AGMD's low overall productivity. In this study, we investigated the direct application of low-power ultrasound (8-23 W), as an in-line cleaning and performance boosting technique for AGMD. Two different highly saline feedwaters, namely natural groundwater (3970 μS/cm) and RO reject stream water (12760 μS/cm) were treated using Polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF) membranes. Theoretical calculations and experimental investigations are presented, showing that the applied ultrasonic power range only produced acoustic streaming effects that enhanced cleaning and mass transfer. Attenuated Total Reflection Fourier-Transform Infrared Spectroscopy (ATR FT-IR) analysis showed that ultrasound was capable of effectively removing silica and calcium scaling. Ultrasound application on a fouled membrane resulted in a 100% increase in the permeate flux. Cleaning effects accounted for around 30-50% of this increase and the remainder was attributed to mass transfer improvements. Contaminant rejection percentages were consistently high for all treatments (>99%), indicating that ultrasound did not deteriorate the membrane structure. Scanning Electron Microscopy (SEM) analysis of the membrane surface was used to confirm this observation. The images of the membrane surface demonstrated that ultrasound successfully cleaned the previously fouled membrane, with no signs of structural damage. The results of this study highlight the efficient and effective application of direct low power ultrasound for improving AGMD performance.
Collapse
Affiliation(s)
- Osamah Naji
- Faculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba 4350, Australia; University of Technology Sydney (UTS), Centre for Technology in Water and Wastewater Treatment, Sydney, NSW 2007, Australia
| | - Raed A Al-Juboori
- Faculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba 4350, Australia; School of Science, Engineering and Information Technology, Federation University Australia, University Drive, Mt Helen, VIC 3350, Australia.
| | - Les Bowtell
- Faculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba 4350, Australia
| | - Alla Alpatova
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Centre (WDRC), Biological and Environmental Science and Engineering (BESE), 23955-6900 Thuwal, Saudi Arabia
| | - Noreddine Ghaffour
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Centre (WDRC), Biological and Environmental Science and Engineering (BESE), 23955-6900 Thuwal, Saudi Arabia
| |
Collapse
|
33
|
Elhenawy Y, Elminshawy NA, Bassyouni M, Alhathal Alanezi A, Drioli E. Experimental and theoretical investigation of a new air gap membrane distillation module with a corrugated feed channel. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117461] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Novitskii EG, Golubev GS, Grushevenko EA, Vasilevskii VP, Volkov AV. Process of Concentrating of Highly Mineralized Waters in an Air-Gap Membrane Distiller. MEMBRANES AND MEMBRANE TECHNOLOGIES 2019. [DOI: 10.1134/s2517751619060027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Rioyo J, Aravinthan V, Bundschuh J. The effect of ‘High-pH pretreatment’ on RO concentrate minimization in a groundwater desalination facility using batch air gap membrane distillation. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.115699] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
Thermopervaporation for regeneration of triethylene glycol (TEG):Experimental and model development. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117205] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Chung TS, Zhao D, Gao J, Lu K, Wan C, Weber M, Maletzko C. Emerging R&D on membranes and systems for water reuse and desalination. Chin J Chem Eng 2019. [DOI: 10.1016/j.cjche.2019.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
38
|
Development of heat and mass transfer correlations and recovery calculation for HCl–water azeotropic separation using air gap membrane distillation. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00795-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
39
|
Im BG, Lee JG, Kim YD, Kim WS. Theoretical modeling and simulation of AGMD and LGMD desalination processes using a composite membrane. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
Kim YD, Francis L, Lee JG, Ham MG, Ghaffour N. Effect of non-woven net spacer on a direct contact membrane distillation performance: Experimental and theoretical studies. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.07.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
41
|
Li C, Zhou Y, Su W, Wang H. Research Progress of Hybrid Distillation/Crystallization Technology. Chem Eng Technol 2018. [DOI: 10.1002/ceat.201700675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chunli Li
- Hebei University of Technology; School of Chemical Engineering; #8, Guangrong Road 300130 Tianjin China
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization; #8, Guangrong Road 300130 Tianjin China
| | - Yiwei Zhou
- Hebei University of Technology; School of Chemical Engineering; #8, Guangrong Road 300130 Tianjin China
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization; #8, Guangrong Road 300130 Tianjin China
| | - Weiyi Su
- Hebei University of Technology; School of Chemical Engineering; #8, Guangrong Road 300130 Tianjin China
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization; #8, Guangrong Road 300130 Tianjin China
| | - Honghai Wang
- Hebei University of Technology; School of Chemical Engineering; #8, Guangrong Road 300130 Tianjin China
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization; #8, Guangrong Road 300130 Tianjin China
| |
Collapse
|
42
|
Abstract
Abstract
In recent years, membrane distillation (MD) has evidently emerged as one of the promising separation processes, with increasing areas of application including but not limited to desalination, pharmaceutical and textile wastewater purification, food processing, concentration of aqueous solution, breaking azeotropic mixtures, and extraction of volatile organic compounds. Primarily, MD has been categorized on the basis of vapor collection and condensation arrangement methods. Among the various categories, air gap membrane distillation (AGMD), in which an air gap is maintained across the membrane and the cooling plate, turns out to be an important and efficient process. Lately, AGMD has received significant attention of researchers around the world which motivates the present work. This paper aims to review the work done so far concerning the AGMD in order to provide a holistic view that covers the principles and applications of AGMD, effect of process parameters, membrane parameters, mathematical modeling, fouling, temperature and concentration polarization, types of membrane module, energy consumption, recent developments in AGMD process, cost estimation, and heat integration with AGMD. To the best of our knowledge, the present work is the first attempt to exhaustively review the AGMD process.
Collapse
|
43
|
Lin PH, Horng RY, Hsu SF, Chen SS, Ho CH. A Feasibility Study of Ammonia Recovery from Coking Wastewater by Coupled Operation of a Membrane Contactor and Membrane Distillation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15030441. [PMID: 29510505 PMCID: PMC5876986 DOI: 10.3390/ijerph15030441] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 02/24/2018] [Accepted: 02/28/2018] [Indexed: 11/16/2022]
Abstract
More than 80% of ammonia (NH₃) in the steel manufacturing process wastewater is contributed from the coking wastewater, which is usually treated by biological processes. However, the NH₃ in the coking wastewater is typically too high for biological treatment due to its inhibitory concentration. Therefore, a two-stage process including a hollow fiber membrane contactor (HFMC) and a modified membrane distillation (MD) system was developed and applied to reduce and recover NH₃ from coking wastewater. The objectives of this paper are to evaluate different membrane materials, receiving solutions, and operation parameters for the system, remove NH₃ from the coking wastewater to less than 300 mg N/L, which is amenable to the biological process, and recover ammonia solution for reuse. As a result, the polytetrafluoroethylene (PTFE) HFMC using sulfuric acid as a receiving solution can achieve a maximum NH₃-N transmembrane flux of 1.67 g N/m²·h at pH of 11.5 and reduce NH₃ in the coking wastewater to less than 300 mg N/L. The NH₃ in the converted ammonium sulfate ((NH₄)₂SO₄) was then recovered by the modified MD using ice water as the receiving solution to produce ≥3% of ammonia solution for reuse.
Collapse
Affiliation(s)
- Po-Hsun Lin
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, No. 84 Gungjuan Rd., Taishan Dist., New Taipei City 24301, Taiwan.
| | - Ren-Yang Horng
- Material and Chemical Research Laboratories, Industrial Technology Research Institute, 321 Sec. 2, Kuang Fu Rd., Hsinchu 300, Taiwan.
| | - Shu-Fang Hsu
- Material and Chemical Research Laboratories, Industrial Technology Research Institute, 321 Sec. 2, Kuang Fu Rd., Hsinchu 300, Taiwan.
| | - Shiao-Shing Chen
- Institute of Environmental Engineering and Management, National Taipei University of Technology, No.1, Sec. 3, Chung Hsiao E. Rd., Taipei 106, Taiwan.
| | - Chia-Hua Ho
- Material and Chemical Research Laboratories, Industrial Technology Research Institute, 321 Sec. 2, Kuang Fu Rd., Hsinchu 300, Taiwan.
| |
Collapse
|
44
|
|
45
|
Alsalhy QF, Ibrahim SS, Hashim FA. Experimental and theoretical investigation of air gap membrane distillation process for water desalination. Chem Eng Res Des 2018. [DOI: 10.1016/j.cherd.2017.12.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
Total water production capacity inversion phenomenon in multi-stage direct contact membrane distillation: A theoretical study. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.09.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
47
|
Gao L, Zhang J, Gray S, Li JD. Experimental study of hollow fiber permeate gap membrane distillation and its performance comparison with DCMD and SGMD. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.07.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Ho CD, Chen L, Huang MC, Lai JY, Chen YA. Distillate flux enhancement in the air gap membrane distillation with inserting carbon-fiber spacers. SEP SCI TECHNOL 2017. [DOI: 10.1080/01496395.2017.1367809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Chii-Dong Ho
- Energy and Opto-Electronic Materials Research Center, Department of Chemical and Materials Engineering, Tamkang University, Tamsui, New Taipei, Taiwan
| | - Luke Chen
- Department of Water Resources and Environmental Engineering, Tamkang University, Tamsui, New Taipei, Taiwan
| | - Mei-Chih Huang
- Energy and Opto-Electronic Materials Research Center, Department of Chemical and Materials Engineering, Tamkang University, Tamsui, New Taipei, Taiwan
| | - Jing-Yuan Lai
- Energy and Opto-Electronic Materials Research Center, Department of Chemical and Materials Engineering, Tamkang University, Tamsui, New Taipei, Taiwan
| | - Yu-An Chen
- Energy and Opto-Electronic Materials Research Center, Department of Chemical and Materials Engineering, Tamkang University, Tamsui, New Taipei, Taiwan
| |
Collapse
|
49
|
Understanding the impact of membrane properties and transport phenomena on the energetic performance of membrane distillation desalination. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.05.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
|