1
|
Chen G, Wan Y, Ghosh R. Bioseparation using membrane chromatography: Innovations, and challenges. J Chromatogr A 2025; 1744:465733. [PMID: 39893917 DOI: 10.1016/j.chroma.2025.465733] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
The resin-based column continues to be the dominant incumbent in bioprocess chromatography. While alternative formats such as membrane-, monolith- and fiber-based chromatography are more visible than before, each still plays minor roles. The reasons for this are complex and some of these are explained in this paper. However, the fact remains that membrane chromatography has come a long way since its early days of development. The main advantage of membrane chromatography continues to be its convection dominant transport mechanism, the resultant benefit being fast and scalable separation. Also, resolution obtained with properly designed devices could be comparable or even better than resin-based chromatography. Significant progress has been made in new membrane development, membrane characterization, device design and novel applications development. A wider range of new membrane matrices, ligands, and ligand-matrix linking chemistries are now available. New membrane modules, formats, and process configurations have also helped improve membrane performance. However, some significant challenges still exist, and these need to be addressed if membrane chromatography is to become more mainstream in the field of bioprocessing. Also, membrane chromatography has significant potential for application in analytical separations and this space has hardly been explored. In this paper, the advances in the areas of membrane preparation, device design and process development are reviewed. A high-level cost analysis is presented and the role of process design in membrane chromatography is discussed.
Collapse
Affiliation(s)
- Guoqiang Chen
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yinhua Wan
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, PR China; Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, PR China
| | - Raja Ghosh
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada.
| |
Collapse
|
2
|
Chen J, Yu B, Cong H, Shen Y. Recent development and application of membrane chromatography. Anal Bioanal Chem 2023; 415:45-65. [PMID: 36131143 PMCID: PMC9491666 DOI: 10.1007/s00216-022-04325-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 01/11/2023]
Abstract
Membrane chromatography is mainly used for the separation and purification of proteins and biological macromolecules in the downstream processing process, also applications in sewage disposal. Membrane chromatography is recognized as an effective alternative to column chromatography because it significantly improves chromatography from affinity, hydrophobicity, and ion exchange; the development status of membrane chromatography in membrane matrix and membrane equipment is thoroughly discussed, and the applications of protein capture and intermediate purification, virus, monoclonal antibody purification, water treatment, and others are summarized. This review will provide value for the exploration and potential application of membrane chromatography.
Collapse
Affiliation(s)
- Jing Chen
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China.
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China.
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| |
Collapse
|
3
|
Sambyal K, Singh RV. Exploitation of E. coli for the production of penicillin G amidase: a tool for the synthesis of semisynthetic β-lactam antibiotics. J Genet Eng Biotechnol 2021; 19:156. [PMID: 34652570 PMCID: PMC8521562 DOI: 10.1186/s43141-021-00263-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/04/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Penicillin G amidase/acylases from microbial sources is a unique enzyme that belongs to the N-terminal nucleophilic hydrolase structural superfamily. It catalyzes the selective hydrolysis of side chain amide/acyl bond of penicillins and cephalosporins whereas the labile amide/acyl bond in the β-lactam ring remains intact. This review summarizes the production aspects of PGA from various microbial sources at optimized conditions. The minimal yield from wild strains has been extensively improved using varying strain improvement techniques like recombination and mutagenesis; further applied for the subsequent synthesis of 6-aminopenicillanic acid, which is an intermediate molecule for synthesis of a wide range of novel β-lactam antibiotics. Immobilization of PGA has also been attempted to enhance the durability of enzyme for the industrial purposes. SHORT CONCLUSION The present review provides an emphasis on exploitation of E. coli to enhance the microbial production of PGA. The latest achievements in the production of recombinant enzymes have also been discussed. Besides E. coli, other potent microbial strains with PGA activity must be explored to enhance the yields.
Collapse
Affiliation(s)
- Krishika Sambyal
- University Institute of Biotechnology, Chandigarh University, Gharuan, Punjab, India
| | - Rahul Vikram Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
4
|
Khan MK, Luo J, Khan R, Fan J, Wan Y. Facile and green fabrication of cation exchange membrane adsorber with unprecedented adsorption capacity for protein purification. J Chromatogr A 2017; 1521:19-26. [DOI: 10.1016/j.chroma.2017.09.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 10/18/2022]
|
5
|
Fan J, Luo J, Wan Y. Membrane chromatography for fast enzyme purification, immobilization and catalysis: A renewable biocatalytic membrane. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.05.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
6
|
Song C, Wang M, Liu X, Wang H, Chen X, Dai L. Fabrication of high-capacity polyelectrolyte brush-grafted porous AAO-silica composite membrane via RAFT polymerization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:748-755. [DOI: 10.1016/j.msec.2017.03.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/28/2016] [Accepted: 03/04/2017] [Indexed: 01/08/2023]
|
7
|
Fan J, Luo J, Song W, Chen X, Wan Y. Directing membrane chromatography to manufacture α1-antitrypsin from human plasma fraction IV. J Chromatogr A 2015; 1423:63-70. [PMID: 26518493 DOI: 10.1016/j.chroma.2015.10.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/14/2015] [Accepted: 10/16/2015] [Indexed: 11/28/2022]
Abstract
The surging demand for plasma proteins, mainly driven by the growing market and the development of new therapeutic indications, is promoting manufacturers to improve the throughput of plasma proteins. Due to the inherent convective mass transfer, membrane chromatography has been proved to be an efficient approach for extracting a small amount of target proteins from large-volume feed. In this study, α1-antitrypsin (AAT) was extracted from human plasma fraction IV by a two-step membrane chromatography. An anion-exchange membrane chromatography (AEMC) was used to capture the plasma proteins in bind/elute mode, and the obtained effluent was further polished by a hydrophobic interaction membrane chromatography (HIMC) in flow-through mode. Under optimal conditions, the recovery and purity of AAT achieved 87.0% and 0.58 AAT/protein (g/g) by AEMC, respectively. After the precise polishing by HIMC, the purity of AAT was 1.22 AAT/protein (g/g). The comparison results showed that membrane chromatography outperformed column chromatography in both steps because of its high throughput. This two-step membrane chromatography could obtain an AAT recovery of 83.3% and an activity recovery of 91.4%. The outcome of this work not only offers an alternative process for protein purification from plasma, but also provides guidelines for manufacturing product from a large-volume feed with multi-components by membrane chromatography.
Collapse
Affiliation(s)
- Jinxin Fan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianquan Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Weijie Song
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiangrong Chen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yinhua Wan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
8
|
Dong J, Bruening ML. Functionalizing Microporous Membranes for Protein Purification and Protein Digestion. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2015; 8:81-100. [PMID: 26001953 DOI: 10.1146/annurev-anchem-071114-040255] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This review examines advances in the functionalization of microporous membranes for protein purification and the development of protease-containing membranes for controlled protein digestion prior to mass spectrometry analysis. Recent studies confirm that membranes are superior to bead-based columns for rapid protein capture, presumably because convective mass transport in membrane pores rapidly brings proteins to binding sites. Modification of porous membranes with functional polymeric films or TiO₂ nanoparticles yields materials that selectively capture species ranging from phosphopeptides to His-tagged proteins, and protein-binding capacities often exceed those of commercial beads. Thin membranes also provide a convenient framework for creating enzyme-containing reactors that afford control over residence times. With millisecond residence times, reactors with immobilized proteases limit protein digestion to increase sequence coverage in mass spectrometry analysis and facilitate elucidation of protein structures. This review emphasizes the advantages of membrane-based techniques and concludes with some challenges for their practical application.
Collapse
Affiliation(s)
- Jinlan Dong
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824;
| | | |
Collapse
|
9
|
Optimization of Dynamic Binding Capacity of Anion Exchange Chromatography Media for Recombinant Erythropoietin Purification. IRANIAN JOURNAL OF BIOTECHNOLOGY 2014. [DOI: 10.5812/ijb.17352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Ghosh P, Vahedipour K, Leuthold M, von Lieres E. Model-based analysis and quantitative prediction of membrane chromatography: Extreme scale-up from 0.08 ml to 1200 ml. J Chromatogr A 2014; 1332:8-13. [DOI: 10.1016/j.chroma.2014.01.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/14/2014] [Accepted: 01/16/2014] [Indexed: 10/25/2022]
|