1
|
Tong Y, Wang Y, Bian S, Ge H, Xiao F, Li L, Gao C, Zhu G. Incorporating Ag@RF core-shell nanomaterials into the thin film nanocomposite membrane to improve permeability and long-term antibacterial properties for nanofiltration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156231. [PMID: 35643139 DOI: 10.1016/j.scitotenv.2022.156231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Ag@resorcinol-formaldehyde resin (Ag@RF) core-shell nanomaterials were prepared by Stöber method, and introduced into polyamide (PA) selective layer of thin-film nanocomposite (TFN) membranes through the interfacial polymerization (IP) process. Due to the abundant hydroxyl groups on the surface and suitable particle size, Ag@RF nanoparticles (Ag@RFs) could be uniformly dispersed in the piperazine aqueous solution and participate in the IP process to precisely regulate the microstructure of the PA selective layer. The resulting "crater structure" and irregular granular structure enlarged the permeable area and contributed to the surface hydrophilicity. For the nanofiltration application, the water flux of TFN membrane modified by Ag@RFs to Na2SO4 solution reached 150 L·m-2·h-1 which was 87.5% greater than TFC, and salt rejection was maintained. The antibacterial efficiency of the prepared TFN membrane on E. coli reached 99.6% in the antibacterial experiment. In addition, due to the special structure of Ag@RFs, the TFN membrane also showed an expected slow-release capability of Ag+, allowing for long-term anti-biofouling properties. This work demonstrates that Ag@RF core-shell nanoparticles with high compatibility of organic nanoparticles and antibacterial properties of Ag nanoparticles could be used as promising nanofillers for designing functional nanofiltration TFN membranes.
Collapse
Affiliation(s)
- Yunbo Tong
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yanyi Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Shengjun Bian
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Haochen Ge
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Fangkun Xiao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Lingling Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Congjie Gao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Guiru Zhu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
2
|
Dong X, Wang X, Xu H, Huang Y, Gao C, Gao X. Mesoporous hollow structural polyaniline-co-polypyrrole nanospheres with amino groups for reverse osmosis membranes with enhanced permeability. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
3
|
Ndlovu LN, Malatjie KI, Chabalala MB, Mishra AK, Mishra SB, Nxumalo EN. Beta cyclodextrin modified polyvinylidene fluoride adsorptive mixed matrix membranes for removal of Congo red. J Appl Polym Sci 2022. [DOI: 10.1002/app.52302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Lloyd N. Ndlovu
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology University of South Africa, Florida Campus Johannesburg South Africa
| | - Kgolofelo I. Malatjie
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology University of South Africa, Florida Campus Johannesburg South Africa
| | - Mandla B. Chabalala
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology University of South Africa, Florida Campus Johannesburg South Africa
| | - Ajay K. Mishra
- Academy of Nanotechnology and Waste Water Innovations Johannesburg South Africa
- Research School of Polymeric Materials, School of Materials Science and Engineering Jiangsu University Zhenjiang China
| | - Shivani B. Mishra
- Academy of Nanotechnology and Waste Water Innovations Johannesburg South Africa
| | - Edward N. Nxumalo
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology University of South Africa, Florida Campus Johannesburg South Africa
| |
Collapse
|
4
|
Dual-gating pH-responsive membranes with the heterogeneous structure for whey protein fractionation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Luo Q, Cheng Z, He L, Wang X, Li K, Huang X. Glucose and glycidol grafted polyacrylonitrile particles by hydrothermal synthesis for enriched boron from aqueous solution. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
|
7
|
Wang Y, Zhang H, Song C, Gao C, Zhu G. Effect of aminophend/formaldehyde resin polymeric nanospheres as nanofiller on polyamide thin film nanocomposite membranes for reverse osmosis application. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118496] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
8
|
Cho H, Mushtaq A, Hwang T, Kim HS, Han JI. Orifice-based membrane fouling inhibition employing in-situ turbulence for efficient microalgae harvesting. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Ang MBMY, Ji YL, Huang SH, Lee KR, Lai JY. A facile and versatile strategy for fabricating thin-film nanocomposite membranes with polydopamine-piperazine nanoparticles generated in situ. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.02.064] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Fabrication of organic solvent nanofiltration membranes via facile bioinspired one-step modification. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.01.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Vlotman D, Ngila J, Ndlovu T, Doyle B, Carleschi E, Malinga S. Hyperbranched polymer membrane for catalytic degradation of polychlorinated biphenyl-153 (PCB-153) in water. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2018.12.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Ye H, Yu T, Li Y, Zhang Y, Xin Q, Zhao L, Li H. Manipulation of Grafting Location via Photografting To Fabricate High-Performance Ethylene Vinyl Alcohol Copolymer Membrane for Protein Separation. ACS OMEGA 2019; 4:3514-3526. [PMID: 31459566 PMCID: PMC6648286 DOI: 10.1021/acsomega.8b03363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/16/2019] [Indexed: 06/10/2023]
Abstract
Ethylene vinyl alcohol copolymer (EVAL) membrane has great potential for applications in protein separation and purification, but the uncontrollable distribution of grafting location when membranes are modified by the grafting method limits the membrane performance. Herein, an effective strategy for controlling the distribution of grafting location was designed to fabricate a high-performance EVAL membrane via photografting. The UV intensity through the membranes was weakened when the local concentration of the photoinitiator benzophenone (BP) on the topside of the membrane increased; thus, the grafting location inside the EVAL membrane changed from homogenous to asymmetric distribution based on the UV absorbability of BP. The grafting inside the membrane pores can be promoted when the loose and porous surface of the EVAL membrane was used as the UV-facing side. More importantly, the varied distribution of grafting location played different roles on improving the membrane performance. For protein binding, the limited convection in the membrane bed was avoided, and the desorption efficiency could be improved when the grafting location enriched inside the membrane pores. For protein filtration, the antifouling properties of the EVAL membrane were enhanced when the grafting location enriched on the topside. This research offers a novel approach to achieve controllable grafting location distribution of membranes and provides a perspective to design the high-performance EVAL membranes for protein separation.
Collapse
|
13
|
Behera B, Acharya A, Gargey IA, Aly N, P B. Bioprocess engineering principles of microalgal cultivation for sustainable biofuel production. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2018.08.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Kotte MR, Kuvarega AT, Talapaneni SN, Cho M, Coskun A, Diallo MS. A Facile and Scalable Route to the Preparation of Catalytic Membranes with in Situ Synthesized Supramolecular Dendrimer Particle Hosts for Pt(0) Nanoparticles Using a Low-Generation PAMAM Dendrimer (G1-NH 2) as Precursor. ACS APPLIED MATERIALS & INTERFACES 2018; 10:33238-33251. [PMID: 30199628 DOI: 10.1021/acsami.8b11351] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Since the first reports of Cu dendrimer-encapsulated nanoparticles (DENs) published in 1998, the dendrimer-templating method has become the best and most versatile method for preparing ultrafine metallic and bimetallic nanoparticles (1-3 nm) with well-defined compositions, high catalytic activity, and tunable selectivity. However, DENs have remained for the most part model systems with limited prospects for scale up and integration into high-performance and reusable catalytic modules and systems for industrial-scale applications. Here, we describe a facile and scalable route to the preparation of catalytic polyvinylidene fluoride (PVDF) membranes with in situ synthesized supramolecular dendrimer particles (SDPs) that can serve as hosts and containers for Pt(0) nanoparticles (2-3 nm). These new catalytic membranes were prepared using a reactive encapsulation process similar to that utilized to prepare Pt DENs by addition of a reducing agent (sodium borohydride) to aqueous complexes of Pt(II) + G4-OH/G6-OH polyamidoamine (PAMAM) dendrimers. However, the SDPs (2.4 μm average diameter) of our new mixed matrix PVDF-PAMAM membranes were synthesized in the dope dispersion without purification prior to film casting using (i) a low-generation PAMAM dendrimer (G1-NH2) as particle precursor and (ii) epichlorohydrin, an inexpensive functional reagent, as cross-linker. In addition, the membrane PAMAM particles contain secondary amine groups (∼1.9 mequiv per gram of dry membrane), which are more basic and thus have higher Pt binding affinity than the tertiary amine groups of the G4-OH and G6-OH PAMAM dendrimers. Proof-of-concept experiments show that our new PVDF-PAMAM-G1-Pt/membranes can serve as highly active and reusable catalysts for the hydrogenation of alkenes and alkynes to the corresponding alkanes using (i) H2 at room temperature and a pressure of 1 bar and (ii) low catalyst loadings of ∼1.4-1.6 mg of Pt. Using cyclohexene as model substrate, we observed near quantitative conversion to cyclohexane (∼98%). The regeneration studies showed that our new Pt/membrane catalysts are stable and can be reused for five consecutive reaction cycles for a total duration of 120 h including 60 h of heating at 100 °C under vacuum for substrate, product, and solvent removal with no detectable loss of cyclohexene hydrogenation activity. The overall results of our study point to a promising, versatile, and scalable path for the integration of catalytic membranes with in situ synthesized SDP hosts for Pt(0) nanoparticles into high-throughput modules and systems for heterogeneous catalytic hydrogenations, an important class of reactions that are widely utilized in industry to produce pharmaceuticals, agrochemicals, and specialty chemicals.
Collapse
Affiliation(s)
- Madhusudhana Rao Kotte
- Graduate School of EEWS (Energy, Environment, Water and Sustainability) , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea
| | - Alex T Kuvarega
- Nanotechnolgy and Water Sustainability Research Unit, College of Science, Engineering and Technology , University of South Africa (UNISA), UNISA Science Campus , 1709 Johannesburg , Republic of South Africa
| | - Siddulu N Talapaneni
- Graduate School of EEWS (Energy, Environment, Water and Sustainability) , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea
| | - Manki Cho
- Graduate School of EEWS (Energy, Environment, Water and Sustainability) , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea
| | - Ali Coskun
- Graduate School of EEWS (Energy, Environment, Water and Sustainability) , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea
| | - Mamadou S Diallo
- Graduate School of EEWS (Energy, Environment, Water and Sustainability) , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea
- Division of Chemistry and Chemical Engineering California Institute of Technology , 1200 East California Boulevard , Pasadena , California 91125 , United States
| |
Collapse
|
15
|
He J, Cui A, Deng S, Chen JP. Treatment of methylene blue containing wastewater by a cost-effective micro-scale biochar/polysulfone mixed matrix hollow fiber membrane: Performance and mechanism studies. J Colloid Interface Sci 2018; 512:190-197. [DOI: 10.1016/j.jcis.2017.09.106] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/29/2017] [Accepted: 09/27/2017] [Indexed: 01/11/2023]
|
16
|
Ji YL, An QF, Weng XD, Hung WS, Lee KR, Gao CJ. Microstructure and performance of zwitterionic polymeric nanoparticle/polyamide thin-film nanocomposite membranes for salts/organics separation. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.11.057] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
|
18
|
Progress and perspectives for synthesis of sustainable antifouling composite membranes containing in situ generated nanoparticles. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2016.11.040] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Osmotically driven membrane processes: Exploring the potential of branched polyethyleneimine as draw solute using porous FO membranes with NF separation layers. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.02.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Zhao FY, An QF, Ji YL, Gao CJ. A novel type of polyelectrolyte complex/MWCNT hybrid nanofiltration membranes for water softening. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2015.05.041] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Diallo MS, Kotte MR, Cho M. Mining Critical Metals and Elements from Seawater: Opportunities and Challenges. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:9390-9. [PMID: 25894365 DOI: 10.1021/acs.est.5b00463] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The availability and sustainable supply of technology metals and valuable elements is critical to the global economy. There is a growing realization that the development and deployment of the clean energy technologies and sustainable products and manufacturing industries of the 21st century will require large amounts of critical metals and valuable elements including rare-earth elements (REEs), platinum group metals (PGMs), lithium, copper, cobalt, silver, and gold. Advances in industrial ecology, water purification, and resource recovery have established that seawater is an important and largely untapped source of technology metals and valuable elements. This feature article discusses the opportunities and challenges of mining critical metals and elements from seawater. We highlight recent advances and provide an outlook of the future of metal mining and resource recovery from seawater.
Collapse
Affiliation(s)
- Mamadou S Diallo
- †Graduate School of EEWS (Energy, Environment, Water and Sustainability), Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon, South Korea
- ‡Environmental Science and Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Madhusudhana Rao Kotte
- †Graduate School of EEWS (Energy, Environment, Water and Sustainability), Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon, South Korea
| | - Manki Cho
- †Graduate School of EEWS (Energy, Environment, Water and Sustainability), Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon, South Korea
| |
Collapse
|
22
|
Hwang T, Kotte MR, Han JI, Oh YK, Diallo MS. Microalgae recovery by ultrafiltration using novel fouling-resistant PVDF membranes with in situ PEGylated polyethyleneimine particles. WATER RESEARCH 2015; 73:181-192. [PMID: 25659965 DOI: 10.1016/j.watres.2014.12.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 10/28/2014] [Accepted: 12/03/2014] [Indexed: 06/04/2023]
Abstract
In this article, we report the preparation, characterization and microalgae recovery potential of a new family of fouling-resistant polyvinylidene fluoride (PVDF) ultrafiltration (UF) membranes embedded with hydrophilic and PEGylated polymeric particles. To optimize membrane performance for microalgae harvesting, we investigate the effects of three hydrophilic additives (Pluronic F-127, polyvinylpyrrolidone and polyethylene glycol) on the morphology, pore size, bulk composition, surface composition, wettability and surface charge, flux and fouling resistance of the mixed matrix PVDF membranes with in situ PEGylated polyethyleneimine (PEI) particles. Our filtration experiments show that a mixed matrix PVDF membrane with PEGylated PEI particles and Pluronic F-127 additive (PNSM-1) has an algae retention of 100% with a permeate flux of 96 L/m(2)/hr that is larger (by ∼50%) than that of a commercial and hydrophilic PVDF UF membrane with a molecular weight cut-off of 30 kDa using a suspension of Chlorella sp. KR-1 microalgae with 1.2-1.4 g/L of dry biomass. The algae and water flux recovery rates of our new PNSM-1 are equal to∼ 94% and 100%, respectively, following a simulated membrane wash with deionized water and two subsequent water and microalgae filtration cycles.
Collapse
Affiliation(s)
- Taewoon Hwang
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305701, Republic of Korea
| | - Madhusudhana Rao Kotte
- Graduate School of Energy, Environment, Water and Sustainability (EEWS), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Jong-In Han
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305701, Republic of Korea
| | - You-Kwan Oh
- Biomass and Waste Energy Laboratory, Climate Change Research Division, Korea Institute of Energy Research (KIER), Daejeon 305-343, Republic of Korea
| | - Mamadou S Diallo
- Graduate School of Energy, Environment, Water and Sustainability (EEWS), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea.
| |
Collapse
|
23
|
Fang X, Li J, Li X, Sun X, Shen J, Han W, Wang L. Polyethyleneimine, an effective additive for polyethersulfone ultrafiltration membrane with enhanced permeability and selectivity. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2014.11.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
24
|
Rao Kotte M, Hwang T, Han JI, Diallo MS. A one-pot method for the preparation of mixed matrix polyvinylidene fluoride membranes with in situ synthesized and PEGylated polyethyleneimine particles. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2014.09.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): An overview on current status and future directions. Prog Polym Sci 2014. [DOI: 10.1016/j.progpolymsci.2014.01.003] [Citation(s) in RCA: 450] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|