1
|
Wu Y, Chen Z, Lu C, Hu C, Qu J. Pulsatile Ion Transport in Nanofiltration Membranes Coupled with Electrically Tunable Pore and Hydroxyl Electrostatic Interactions. ACS NANO 2025; 19:4993-5004. [PMID: 39848794 DOI: 10.1021/acsnano.4c17637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Pulsatile ion transport facilitates the adjusted transfer of substances, meeting the requirements for the gradient and timed separation of multiple components in membrane processes. Responsive nanofiltration membranes are thus currently receiving widespread attention but face limitations due to their narrow performance adjustment range. Herein, hydroxyl functional groups were introduced into electrically responsive nanofiltration membranes to broaden the adjustment range of separation performance through a combination of pore size sieving and functional group interactions, resulting in a greater change in rejection and flux compared to the original membrane. Membrane pore size is regulated by polypyrrole volume changes and becomes more variable when the cation's hydration radius is smaller. Although the hydroxyl group did not affect the charge transfer or volume change capacity of polypyrrole, it enhanced ion-pore interactions during ion transport, which was particularly pronounced in smaller nanochannels. The size effect of functional group interactions more strongly enhances the transmembrane energy barrier in the reduced state compared with the oxidized state, ultimately resulting in greater modulation of performance. This coupling strategy provides insights into the design of responsive membranes, offering the potential to achieve gradient separation of various solutes.
Collapse
Affiliation(s)
- You Wu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhibin Chen
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenghai Lu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiuhui Qu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Vickers R, Weigand TM, Coronell O, Miller CT. Water transport mechanisms during pressure-driven transport through polyamide nanogaps. PHYSICS OF FLUIDS (WOODBURY, N.Y. : 1994) 2025; 37:012020. [PMID: 39811080 PMCID: PMC11726587 DOI: 10.1063/5.0248257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025]
Abstract
Molecular-scale simulations of pressure-driven transport through polyamide nanogaps (5-100 Å) were performed to investigate fundamental transport mechanisms. Results show that transport in nanogaps ≤ 10 Å is always subdiffusive, but superdiffusive transport was observed in nanogaps ≥ 20 Å. Near typical operating pressures for applications ( Δ p = 100 atm), only the 100 Å nanogap exhibited superdiffusive behavior. Since openings in common membrane materials are typically <20 Å, results indicate that subdiffusive to diffusive transport dominates for typical applications, such as reverse osmosis.
Collapse
Affiliation(s)
- Riley Vickers
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7431, USA
| | - Timothy M. Weigand
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7431, USA
| | - Orlando Coronell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7431, USA
| | - Cass T. Miller
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7431, USA
| |
Collapse
|
3
|
Zhu H, Szymczyk A, Ghoufi A. Multiscale modelling of transport in polymer-based reverse-osmosis/nanofiltration membranes: present and future. DISCOVER NANO 2024; 19:91. [PMID: 38771417 PMCID: PMC11109084 DOI: 10.1186/s11671-024-04020-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/22/2024] [Indexed: 05/22/2024]
Abstract
Nanofiltration (NF) and reverse osmosis (RO) processes are physical separation technologies used to remove contaminants from liquid streams by employing dense polymer-based membranes with nanometric voids that confine fluids at the nanoscale. At this level, physical properties such as solvent and solute permeabilities are intricately linked to molecular interactions. Initially, numerous studies focused on developing macroscopic transport models to gain insights into separation properties at the nanometer scale. However, continuum-based models have limitations in nanoconfined situations that can be overcome by force field molecular simulations. Continuum-based models heavily rely on bulk properties, often neglecting critical factors like liquid structuring, pore geometry, and molecular/chemical specifics. Molecular/mesoscale simulations, while encompassing these details, often face limitations in time and spatial scales. Therefore, achieving a comprehensive understanding of transport requires a synergistic integration of both approaches through a multiscale approach that effectively combines and merges both scales. This review aims to provide a comprehensive overview of the state-of-the-art in multiscale modeling of transport through NF/RO membranes, spanning from the nanoscale to continuum media.
Collapse
Affiliation(s)
- Haochen Zhu
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai, 200092, China.
| | - Anthony Szymczyk
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, Univ Rennes, 35000, Rennes, France.
| | - Aziz Ghoufi
- CNRS, ICMPE (Institut de Chimie et des Matériaux Paris-Est) - UMR 7182, Univ Paris-East Creteil, 94320, Thiais, France.
- CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, Univ Rennes, 35000, Rennes, France.
| |
Collapse
|
4
|
Joseph TM, Al-Hazmi HE, Śniatała B, Esmaeili A, Habibzadeh S. Nanoparticles and nanofiltration for wastewater treatment: From polluted to fresh water. ENVIRONMENTAL RESEARCH 2023; 238:117114. [PMID: 37716387 DOI: 10.1016/j.envres.2023.117114] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/01/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
Water pollution poses significant threats to both ecosystems and human health. Mitigating this issue requires effective treatment of domestic wastewater to convert waste into bio-fertilizers and gas. Neglecting liquid waste treatment carries severe consequences for health and the environment. This review focuses on intelligent technologies for water and wastewater treatment, targeting waterborne diseases. It covers pollution prevention and purification methods, including hydrotherapy, membrane filtration, mechanical filters, reverse osmosis, ion exchange, and copper-zinc cleaning. The article also highlights domestic purification, field techniques, heavy metal removal, and emerging technologies like nanochips, graphene, nanofiltration, atmospheric water generation, and wastewater treatment plants (WWTPs)-based cleaning. Emphasizing water cleaning's significance for ecosystem protection and human health, the review discusses pollution challenges and explores the integration of wastewater treatment, coagulant processes, and nanoparticle utilization in management. It advocates collaborative efforts and innovative research for freshwater preservation and pollution mitigation. Innovative biological systems, combined with filtration, disinfection, and membranes, can elevate recovery rates by up to 90%, surpassing individual primary (<10%) or biological methods (≤50%). Advanced treatment methods can achieve up to 95% water recovery, exceeding UN goals for clean water and sanitation (Goal 6). This progress aligns with climate action objectives and safeguards vital water-rich habitats (Goal 13). The future holds promise with advanced purification techniques enhancing water quality and availability, underscoring the need for responsible water conservation and management for a sustainable future.
Collapse
Affiliation(s)
- Tomy Muringayil Joseph
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12 80-233, Gdańsk, Poland
| | - Hussein E Al-Hazmi
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Narutowicza 11/12, 80-233 Gdansk, Poland.
| | - Bogna Śniatała
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Amin Esmaeili
- Department of Chemical Engineering, School of Engineering Technology, and Industrial Trades, College of the North Atlantic-Qatar, Doha, Qatar
| | - Sajjad Habibzadeh
- Surface Reaction and Advanced Energy Materials Laboratory, Chemical Engineering Department, Amirkabir University of Technology, Tehran 1599637111, Iran.
| |
Collapse
|
5
|
Zhao G, Gao H, Qu Z, Fan H, Meng H. Anhydrous interfacial polymerization of sub-1 Å sieving polyamide membrane. Nat Commun 2023; 14:7624. [PMID: 37993445 PMCID: PMC10665378 DOI: 10.1038/s41467-023-43291-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023] Open
Abstract
Highly permeable polyamide (PA) membrane capable of precise ionic sieving can be utilized for many energy-efficient chemical separations. To fulfill this target, it is crucial to innovate membrane-forming process to induce a narrow pore-size distribution. Herein, we report an anhydrous interfacial polymerization (AIP) at a solid-liquid interface where the amine layer sublimated is in direct contact with the alkane containing acyl chlorides. In such a heterophase interface, water-caused side reactions are eliminated, and the amines in compact arrangement enable an intensive and orderly IP reaction, leading to a unique PA layer with an ionic sieving accuracy of 0.5 Å. The AIP-PA membrane demonstrates excellent separation selectivities of monovalent and divalent cations such as Mg2+/Li+ (78.3) and anions such as Cl-/SO42- (29.2) together with a high water flux up to 13.6 L m-2 h-1 bar-1. Our AIP strategy may provide inspirations for engineering high-precision PA membranes available in various advanced separations.
Collapse
Affiliation(s)
- Guangjin Zhao
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Haiqi Gao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830046, PR China
| | - Zhou Qu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Hongwei Fan
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| | - Hong Meng
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830046, PR China.
| |
Collapse
|
6
|
Wang J, Ji Z, Fan P, Duan J, Xiong J, Liu Z, Hou Y, Wang N. Effects of inorganic ions with different concentrations on the nanofiltration separation performance of perfluorobutane sulfonic acid (PFBS). CHEMOSPHERE 2023; 337:139334. [PMID: 37379976 DOI: 10.1016/j.chemosphere.2023.139334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 06/30/2023]
Abstract
Perfluorobutane sulfonic acid (PFBS) is a kind of anthropogenic recalcitrant contaminant that has posed a threat to drinking water safety and brought widespread public health concerns. Nanofiltration (NF) is an effective way to remove PFBS from drinking water, while the removal is influenced by coexisting ions. To investigate the effects and intrinsic mechanisms of coexisting ions on the rejection of PFBS, poly(piperazineamide) NF membrane was utilized in this work. Results showed that most cations and anions in the feedwater could effectively improve PFBS rejection and simultaneously reduce NF membrane permeability. In most cases, the decrease in NF membrane permeability corresponded to an increase in the valence of cations or anions. When cations (Na+, K+, Ca2+, and Mg2+) were present, the rejection of PFBS was effectively improved from 79% to more than 91.07%. Under these conditions, electrostatic exclusion was the dominant NF rejection mechanism. This was also the leading mechanism for 0.1 mmol/L Fe3+ coexisted condition. As the concentration of Fe3+ increased to 0.5-1 mmol/L, intensified hydrolyzation would accelerate the formation of the cake layers. The differences in the cake layer characteristics led to the different rejection trends of PFBS. For anions (SO42- and PO43-), both sieving effects and electrostatic exclusion were enhanced. As anionic concentration raised, the NF rejection of PFBS increased to above 90.15%. By contrast, the effect of Cl- on PFBS rejection was also affected by coexisting cations in the solution. The dominant NF rejection mechanism was electrostatic exclusion. Accordingly, it is suggested that the usage of negatively charged NF membranes could facilitate the efficient separation of PFBS under ionic coexisting conditions, thereby ensuring the safety of drinking water.
Collapse
Affiliation(s)
- Jiaxuan Wang
- School of Architecture & Civil Engineering, Xi'an University of Science and Technology, Yan Ta Road, No. 58, Xi'an, 710054, China; Shaanxi Yulin Changjialiang Shengli Coal Mine Co., Ltd., Niujialiang Town, Yulin, 719000, China; Research Institute of Membrane Separation Technology of Shaanxi Province, Xi'an University of Architecture & Technology, Yan Ta Road, No. 13, Xi'an, 710055, China.
| | - Zhengxuan Ji
- School of Architecture & Civil Engineering, Xi'an University of Science and Technology, Yan Ta Road, No. 58, Xi'an, 710054, China
| | - Peiru Fan
- School of Environmental & Municipal Engineering, Xi'an University of Architecture & Technology, Yan Ta Road, No. 13, Xi'an, 710055, China
| | - Jiaqi Duan
- School of Architecture & Civil Engineering, Xi'an University of Science and Technology, Yan Ta Road, No. 58, Xi'an, 710054, China
| | - Jiaqing Xiong
- School of Environmental & Municipal Engineering, Xi'an University of Architecture & Technology, Yan Ta Road, No. 13, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhe Liu
- School of Environmental & Municipal Engineering, Xi'an University of Architecture & Technology, Yan Ta Road, No. 13, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Yulin Ecological Environment Monitoring Station, High-tech Zone Xingda Road, Yulin, 719000, China
| | - Yushi Hou
- Shaanxi Architectural Design and Research Institute (Group) Co., Ltd., Wen Jing Road, No. 58, Xi'an, 710018, China
| | - Na Wang
- School of Architecture & Civil Engineering, Xi'an University of Science and Technology, Yan Ta Road, No. 58, Xi'an, 710054, China
| |
Collapse
|
7
|
Lu C, Hu C, Chen Z, Wang P, Feng F, He G, Wang F, Zhang Y, Liu JZ, Zhang X, Qu J. Dehydration-enhanced ion-pore interactions dominate anion transport and selectivity in nanochannels. SCIENCE ADVANCES 2023; 9:eadf8412. [PMID: 37418527 PMCID: PMC10328398 DOI: 10.1126/sciadv.adf8412] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 06/06/2023] [Indexed: 07/09/2023]
Abstract
State-of-the-art ion-selective membranes with ultrahigh precision are of significance for water desalination and energy conservation, but their development is limited by the lack of understanding of the mechanisms of ion transport at the subnanometer scale. Herein, we investigate transport of three typical anions (F-, Cl-, and Br-) under confinement using in situ liquid time-of-flight secondary ion mass spectrometry in combination with transition-state theory. The operando analysis reveals that dehydration and related ion-pore interactions govern anion-selective transport. For strongly hydrated ions [(H2O)nF- and (H2O)nCl-], dehydration enhances ion effective charge and thus the electrostatic interactions with membrane, observed as an increase in decomposed energy from electrostatics, leading to more hindered transport. Contrarily, weakly hydrated ions [(H2O)nBr-] have greater permeability as they allow an intact hydration structure during transport due to their smaller size and the most right-skewed hydration distribution. Our work demonstrates that precisely regulating ion dehydration to maximize the difference in ion-pore interactions could enable the development of ideal ion-selective membranes.
Collapse
Affiliation(s)
- Chenghai Lu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhibin Chen
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peiyao Wang
- Department of Mechanical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Fan Feng
- Department of Mechanical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Guangzhi He
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuyi Wang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yanyan Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jefferson Zhe Liu
- Department of Mechanical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Xiwang Zhang
- UQ Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Jiuhui Qu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Zhang K, Han Q, Feng L, Zhang L. A novel Solution-Diffusion-Flory-Rehner model to predict flux behavior during forward osmosis with thermo-responsive hydrogel as draw agent. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121553] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
9
|
Non-Solvent- and Temperature-Induced Phase Separations of Polylaurolactam Solutions in Benzyl Alcohol as Methods for Producing Microfiltration Membranes. COLLOIDS AND INTERFACES 2023. [DOI: 10.3390/colloids7010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The possibility of obtaining porous films through solutions of polylaurolactam (PA12) in benzyl alcohol (BA) was considered. The theoretical calculation of the phase diagram showed the presence of the upper critical solution temperature (UCST) for the PA12/BA system at 157 °C. The PA12 completely dissolved in BA at higher temperatures, but the resulting solutions underwent phase separation upon cooling down to 120–140 °C because of the PA12’s crystallization. The viscosity of the 10–40% PA12 solutions increased according to a power law but remained low and did not exceed 5 Pa·s at 160 °C. Regardless of the concentration, PA12 formed a dispersed phase when its solutions were cooled, which did not allow for the obtention of strong films. On the contrary, the phase separation of the 20–30% PA12 solutions under the action of a non-solvent (isopropanol) leads to the formation of flexible microporous films. The measurement of the porosity, wettability, strength, permeability, and rejection of submicron particles showed the best results for a porous film produced from a 30% solution by non-solvent-induced phase separation. This process makes it possible to obtain a membrane material with a 240 nm particle rejection of 99.6% and a permeate flow of 1.5 kg/m2hbar for contaminated water and 69.9 kg/m2hbar for pure water.
Collapse
|
10
|
Wang Z, Xu C, Fu Q, Nair S. Transport Properties of Graphene Oxide Nanofiltration Membranes: Electrokinetic Modeling and Experimental Validation. AIChE J 2022. [DOI: 10.1002/aic.17865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhongzhen Wang
- School of Chemical & Biomolecular Engineering Georgia Institute of Technology Atlanta GA USA
- Renewable Bioproducts Institute Georgia Institute of Technology Atlanta GA USA
| | - Chunyan Xu
- School of Civil and Environmental Engineering Georgia Institute of Technology Atlanta GA USA
| | - Qiang Fu
- School of Chemical & Biomolecular Engineering Georgia Institute of Technology Atlanta GA USA
- Renewable Bioproducts Institute Georgia Institute of Technology Atlanta GA USA
| | - Sankar Nair
- School of Chemical & Biomolecular Engineering Georgia Institute of Technology Atlanta GA USA
- Renewable Bioproducts Institute Georgia Institute of Technology Atlanta GA USA
| |
Collapse
|
11
|
Wünsch R, Hettich T, Prahtel M, Thomann M, Wintgens T, von Gunten U. Tradeoff between micropollutant abatement and bromate formation during ozonation of concentrates from nanofiltration and reverse osmosis processes. WATER RESEARCH 2022; 221:118785. [PMID: 35949072 DOI: 10.1016/j.watres.2022.118785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/02/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Water treatment with nanofiltration (NF) or reverse osmosis (RO) membranes results in a purified permeate and a retentate, where solutes are concentrated and have to be properly managed and discharged. To date, little is known on how the selection of a semi-permeable dense membrane impacts the dissolved organic matter in the concentrate and what the consequences are for micropollutant (MP) abatement and bromate formation during concentrate treatment with ozone. Laboratory ozonation experiments were performed with standardized concentrates produced by three membranes (two NFs and one low-pressure reverse osmosis (LPRO) membrane) from three water sources (two river waters and one lake water). The concentrates were standardized by adjustment of pH and concentrations of dissolved organic carbon, total inorganic carbon, selected micropollutants (MP) with a low to high ozone reactivity and bromide to exclude factors which are known to impact ozonation. NF membranes had a lower retention of bromide and MPs than the LPRO membrane, and if the permeate quality of the NF membrane meets the requirements, the selection of this membrane type is beneficial due to the lower bromate formation risks upon concentrate ozonation. The bromate formation was typically higher in standardized concentrates of LPRO than of NF membranes, but the tradeoff between MP abatement and bromate formation upon ozonation of the standardized concentrates was not affected by the membrane type. Furthermore, there was no difference for the different source waters. Overall, ozonation of concentrates is only feasible for abatement of MPs with a high to moderate ozone reactivity with limited bromate formation. Differences in the DOM composition between NF and LPRO membrane concentrates are less relevant than retention of MPs and bromide by the membrane and the required ozone dose to meet a treatment target.
Collapse
Affiliation(s)
- R Wünsch
- FHNW University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Institute for Ecopreneurship, 4132 Muttenz, Switzerland; School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - T Hettich
- FHNW University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Institute for Ecopreneurship, 4132 Muttenz, Switzerland
| | - M Prahtel
- FHNW University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Institute for Ecopreneurship, 4132 Muttenz, Switzerland; Chair of Urban Water Systems Engineering, Technical University of Munich, Garching, Germany
| | - M Thomann
- FHNW University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Institute for Ecopreneurship, 4132 Muttenz, Switzerland
| | - T Wintgens
- RWTH Aachen University, Institute of Environmental Engineering, 52074 Aachen, Germany
| | - U von Gunten
- School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland.
| |
Collapse
|
12
|
Barta T, Sandtner W, Wachlmayr J, Hannesschlaeger C, Ebert A, Speletz A, Horner A. Modeling of SGLT1 in Reconstituted Systems Reveals Apparent Ion-Dependencies of Glucose Uptake and Strengthens the Notion of Water-Permeable Apo States. Front Physiol 2022; 13:874472. [PMID: 35784872 PMCID: PMC9242095 DOI: 10.3389/fphys.2022.874472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
The reconstitution of secondary active transporters into liposomes shed light on their molecular transport mechanism. The latter are either symporters, antiporters or exchangers, which use the energy contained in the electrochemical gradient of ions to fuel concentrative uptake of their cognate substrate. In liposomal preparations, these gradients can be set by the experimenter. However, due to passive diffusion of the ions and solutes through the membrane, the gradients are not stable and little is known on the time course by which they dissipate and how the presence of a transporter affects this process. Gradient dissipation can also generate a transmembrane potential (VM). Because it is the effective ion gradient, which together with VM fuels concentrative uptake, knowledge on how these parameters change within the time frame of the conducted experiment is key to understanding experimental outcomes. Here, we addressed this problem by resorting to a modelling approach. To this end, we mathematically modeled the liposome in the assumed presence and absence of the sodium glucose transporter 1 (SGLT1). We show that 1) the model can prevent us from reaching erroneous conclusions on the driving forces of substrate uptake and we 2) demonstrate utility of the model in the assignment of the states of SGLT1, which harbor a water channel.
Collapse
Affiliation(s)
- Thomas Barta
- Department of Molecular Biophysics and Membrane Biophysics, Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Walter Sandtner
- Center of Physiology and Pharmacology, Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Medical University of Vienna, Vienna, Austria
| | - Johann Wachlmayr
- Department of Molecular Biophysics and Membrane Biophysics, Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Christof Hannesschlaeger
- Department of Molecular Biophysics and Membrane Biophysics, Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Andrea Ebert
- Department of Analytical Environmental Chemistry, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
| | - Armin Speletz
- Department of Molecular Biophysics and Membrane Biophysics, Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Andreas Horner
- Department of Molecular Biophysics and Membrane Biophysics, Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| |
Collapse
|
13
|
Comparative analysis of separation methods used for the elimination of pharmaceuticals and personal care products (PPCPs) from water – A critical review. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Mahlangu OT, Motsa MM, Nkambule TI, Mamba BB. Rejection of trace organic compounds by membrane processes: mechanisms, challenges, and opportunities. REV CHEM ENG 2022. [DOI: 10.1515/revce-2021-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
This work critically reviews the application of various membrane separation processes (MSPs) in treating water polluted with trace organic compounds (TOrCs) paying attention to nanofiltration (NF), reverse osmosis (RO), membrane bioreactor (MBR), forward osmosis (FO), and membrane distillation (MD). Furthermore, the focus is on loopholes that exist when investigating mechanisms through which membranes reject/retain TOrCs, with the emphasis on the characteristics of the model TOrCs which would facilitate the identification of all the potential mechanisms of rejection. An explanation is also given as to why it is important to investigate rejection using real water samples, especially when aiming for industrial application of membranes with novel materials. MSPs such as NF and RO are prone to fouling which often leads to lower permeate flux and solute rejection, presumably due to cake-enhanced concentration polarisation (CECP) effects. This review demonstrates why CECP effects are not always the reason behind the observed decline in the rejection of TOrCs by fouled membranes. To mitigate for fouling, researchers have often modified the membrane surfaces by incorporating nanoparticles. This review also attempts to explain why nano-engineered membranes have not seen a breakthrough at industrial scale. Finally, insight is provided into the possibility of harnessing solar and wind energy to drive energy intensive MSPs. Focus is also paid into how low-grade energy could be stored and applied to recover diluted draw solutions in FO mode.
Collapse
Affiliation(s)
- Oranso T. Mahlangu
- College of Engineering, Science and Technology, Institute for Nanotechnology and Water Sustainability, University of South Africa, Florida Science Campus , Roodepoort 1709 , South Africa
| | - Machawe M. Motsa
- College of Engineering, Science and Technology, Institute for Nanotechnology and Water Sustainability, University of South Africa, Florida Science Campus , Roodepoort 1709 , South Africa
| | - Thabo I. Nkambule
- College of Engineering, Science and Technology, Institute for Nanotechnology and Water Sustainability, University of South Africa, Florida Science Campus , Roodepoort 1709 , South Africa
| | - Bhekie B. Mamba
- College of Engineering, Science and Technology, Institute for Nanotechnology and Water Sustainability, University of South Africa, Florida Science Campus , Roodepoort 1709 , South Africa
| |
Collapse
|
15
|
Ma S, Liu N, Cheng P, Hu W, Jia X, Guo Q, Xia M, Cheng Q, Liu K, Wang D. High Performance PA Nanofiltration Membrane with Coral‐reef‐like Morphology atop Polydopamine Decorated EVOH Nanofiber Scaffold. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Siqi Ma
- Key Laboratory of Textile Fiber and Products Ministry of Education Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application Wuhan Textile University Wuhan 430200 China
| | - Nian Liu
- Key Laboratory of Textile Fiber and Products Ministry of Education Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application Wuhan Textile University Wuhan 430200 China
| | - Pan Cheng
- College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China
| | - Wei Hu
- Key Laboratory of Textile Fiber and Products Ministry of Education Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application Wuhan Textile University Wuhan 430200 China
| | - Xiaodan Jia
- Key Laboratory of Textile Fiber and Products Ministry of Education Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application Wuhan Textile University Wuhan 430200 China
| | - Qihao Guo
- Key Laboratory of Textile Fiber and Products Ministry of Education Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application Wuhan Textile University Wuhan 430200 China
| | - Ming Xia
- Key Laboratory of Textile Fiber and Products Ministry of Education Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application Wuhan Textile University Wuhan 430200 China
| | - Qin Cheng
- Key Laboratory of Textile Fiber and Products Ministry of Education Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application Wuhan Textile University Wuhan 430200 China
| | - Ke Liu
- Key Laboratory of Textile Fiber and Products Ministry of Education Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application Wuhan Textile University Wuhan 430200 China
| | - Dong Wang
- Key Laboratory of Textile Fiber and Products Ministry of Education Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application Wuhan Textile University Wuhan 430200 China
- College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China
| |
Collapse
|
16
|
Vergara-Araya M, Oeltze H, Radeva J, Roth AG, Göbbert C, Niestroj-Pahl R, Dähne L, Wiese J. Operation of Hybrid Membranes for the Removal of Pharmaceuticals and Pollutants from Water and Wastewater. MEMBRANES 2022; 12:membranes12050502. [PMID: 35629828 PMCID: PMC9144941 DOI: 10.3390/membranes12050502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023]
Abstract
Hybrid ceramic membranes (i.e., membranes with a layer-by-layer (LbL) coating) are an emerging technology to remove diverse kinds of micropollutants from water. Hybrid ceramic membranes were tested under laboratory conditions as single-channel (filter area = 0.00754 m2) and multi-channel (0.35 m2) variants for the removal of pharmaceuticals (sulfamethoxazole, diclofenac, clofibric acid, and ibuprofen) and typical wastewater pollutants (i.e., COD, TOC, PO4-P, and TN) from drinking water and treated wastewater. The tests were conducted with two low transmembrane pressures (TMP) of 2 and 4 bar and constant temperatures and flow velocities, which showed rejections above 80% for all the tested pharmaceuticals as well for organic pollutants and phosphorous in the treated wastewater. Tests regarding sufficient cleaning regimes also showed that the LbL coating is stable and resistant to pHs between 2 and 10 with the use of typical cleaning agents (citric acid and NaOH) but not to higher pHs, a commercially available enzymatic solution, or backwashing. The hybrid membranes can contribute to the advanced treatment of water and wastewater with low operational costs, and their application at a larger scale is viable. However, the cleaning of the membranes must be further investigated to assure the stability and durability of the LbL coating.
Collapse
Affiliation(s)
- Mónica Vergara-Araya
- Department for Water, Environment, Construction, and Safety, Magdeburg-Stendal University of Applied Sciences, Breitscheidstr. 2, 39114 Magdeburg, Germany; (H.O.); (J.W.)
- Correspondence: ; Tel.: +49-(0391)866-4547
| | - Henning Oeltze
- Department for Water, Environment, Construction, and Safety, Magdeburg-Stendal University of Applied Sciences, Breitscheidstr. 2, 39114 Magdeburg, Germany; (H.O.); (J.W.)
| | - Jenny Radeva
- Nanostone Water GmbH, Am Bahndamm 12, 38820 Halberstadt, Germany; (J.R.); (A.G.R.); (C.G.)
| | - Anke Gundula Roth
- Nanostone Water GmbH, Am Bahndamm 12, 38820 Halberstadt, Germany; (J.R.); (A.G.R.); (C.G.)
| | - Christian Göbbert
- Nanostone Water GmbH, Am Bahndamm 12, 38820 Halberstadt, Germany; (J.R.); (A.G.R.); (C.G.)
| | - Robert Niestroj-Pahl
- Surflay Nanotec GmbH, Max-Planck-Str. 3, 12489 Berlin, Germany; (R.N.-P.); (L.D.)
| | - Lars Dähne
- Surflay Nanotec GmbH, Max-Planck-Str. 3, 12489 Berlin, Germany; (R.N.-P.); (L.D.)
| | - Jürgen Wiese
- Department for Water, Environment, Construction, and Safety, Magdeburg-Stendal University of Applied Sciences, Breitscheidstr. 2, 39114 Magdeburg, Germany; (H.O.); (J.W.)
| |
Collapse
|
17
|
Ignacz G, Szekely G. Deep learning meets quantitative structure–activity relationship (QSAR) for leveraging structure-based prediction of solute rejection in organic solvent nanofiltration. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120268] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
18
|
A simple and efficient cryopreservation method for mouse small intestinal and colon organoids for regenerative medicine. Biochem Biophys Res Commun 2022; 595:14-21. [DOI: 10.1016/j.bbrc.2021.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 11/18/2022]
|
19
|
Vickers R, Weigand TM, Miller CT, Coronell O. Molecular Methods for Assessing the Morphology, Topology, and Performance of Polyamide Membranes. J Memb Sci 2022; 644:120110. [PMID: 35082452 PMCID: PMC8786217 DOI: 10.1016/j.memsci.2021.120110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The molecular-scale morphology and topology of polyamide composite membranes determine the performance characteristics of these materials. However, molecular-scale simulations are computationally expensive and morphological and topological characterization of molecular structures are not well developed. Molecular dynamics simulation and analysis methods for the polymerization, hydration, and quantification of polyamide membrane structures were developed and compared to elucidate efficient approaches for producing and analyzing the polyamide structure. Polymerization simulations that omitted the reaction-phase solvent did not change the observed hydration, pore-size distribution, or water permeability, while improving the simulation efficiency. Pre-insertion of water into the aggregate pores (radius ≈ 4 Å) of dry domains enabled shorter hydration simulations and improved simulation scaling, without altering pore structure, properties, or performance. Medial axis and Minkowski functional methods were implemented to identify permeation pathways and quantify the polyamide morphology and topology, respectively. Better agreement between simulations and experimentally observed systems was accomplished by increasing the domain size rather than increasing the number of ensemble realizations of smaller systems. The largest domain hydrated was an order of magnitude larger by volume than the largest domain previously reported. This work identifies methods that can enable more efficient and meaningful fundamental modeling of membrane materials.
Collapse
Affiliation(s)
- Riley Vickers
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
| | - Timothy M. Weigand
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
| | - Cass T. Miller
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
| | - Orlando Coronell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
| |
Collapse
|
20
|
Grzegorczyn S, Ślęzak A. Study of thin layer film evolution near bacterial cellulose membrane by Ag|AgCl electrodes in chamber with lower concentration. PLoS One 2022; 17:e0263059. [PMID: 35108308 PMCID: PMC8809578 DOI: 10.1371/journal.pone.0263059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 01/11/2022] [Indexed: 12/02/2022] Open
Abstract
We used the method of measuring potential difference between two Ag|AgCl electrodes immersed directly into electrolyte solution with lower concentration and at different distances from membrane. The bacterial cellulose membrane was placed in horizontal plane in the membrane system with configurations with higher NaCl concentration and density under (A) and over the membrane (B). In both configurations at the initial moment the voltage between electrodes amounted to zero. After turning off mechanical stirring of solutions, in configuration A we observed the monotonic increase and next stabilization of voltage while in configuration B after short time dependent on the initial quotient of NaCl concentrations on the membrane we observed appearance of pulsations of measured voltage and gradual decrease of mean voltage over time. Smooth changes of voltage are connected with diffusional reconstruction of Concentration Boundary Layers (CBLs) while fast increase and subsequent pulsations of voltage are connected with the appearance of hydrodynamic instabilities (gravitational convection) near membrane imposed on diffusive reconstruction of thin layer. The time needed for the appearance of hydrodynamic instabilities in CBL depended nonlinearly on the initial ratio of electrolyte concentrations on the membrane.
Collapse
Affiliation(s)
- Sławomir Grzegorczyn
- Department of Biophysics, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Zabrze, Poland
- * E-mail:
| | - Andrzej Ślęzak
- Department of Health Science, Jan Dlugosz University, Częstochowa, Poland
| |
Collapse
|
21
|
Pavluchkov V, Shefer I, Peer-Haim O, Blotevogel J, Epsztein R. Indications of ion dehydration in diffusion-only and pressure-driven nanofiltration. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120358] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
22
|
Sun M, Zheng J, Liu X, Yu T, Zhang H, Yang W, Wang R, Jia X. Controlled release fertilizers coated by alkylamine-poly (tannic acid) building block with tunable wettability via spraying co-deposition. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
|
24
|
Bacchin P, Leng J, Salmon JB. Microfluidic Evaporation, Pervaporation, and Osmosis: From Passive Pumping to Solute Concentration. Chem Rev 2021; 122:6938-6985. [PMID: 34882390 DOI: 10.1021/acs.chemrev.1c00459] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Evaporation, pervaporation, and forward osmosis are processes leading to a mass transfer of solvent across an interface: gas/liquid for evaporation and solid/liquid (membrane) for pervaporation and osmosis. This Review provides comprehensive insight into the use of these processes at the microfluidic scales for applications ranging from passive pumping to the screening of phase diagrams and micromaterials engineering. Indeed, for a fixed interface relative to the microfluidic chip, these processes passively induce flows driven only by gradients of chemical potential. As a consequence, these passive-transport phenomena lead to an accumulation of solutes that cannot cross the interface and thus concentrate solutions in the microfluidic chip up to high concentration regimes, possibly up to solidification. The purpose of this Review is to provide a unified description of these processes and associated microfluidic applications to highlight the differences and similarities between these three passive-transport phenomena.
Collapse
Affiliation(s)
- Patrice Bacchin
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31000 Toulouse, France
| | - Jacques Leng
- CNRS, Solvay, LOF, UMR 5258, Université de Bordeaux, 33600 Pessac, France
| | | |
Collapse
|
25
|
Foo ZH, Rehman D, Coombs OZ, Deshmukh A, Lienhard JH. Multicomponent Fickian solution-diffusion model for osmotic transport through membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Stochastic optimization-based approach for simultaneous process design and HEN synthesis of tightly-coupled RO-ORC-HI systems under seasonal uncertainty. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Liu X, Zhang L, Cui X, Zhang Q, Hu W, Du J, Zeng H, Xu Q. 2D Material Nanofiltration Membranes: From Fundamental Understandings to Rational Design. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102493. [PMID: 34668340 PMCID: PMC8655186 DOI: 10.1002/advs.202102493] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/07/2021] [Indexed: 05/05/2023]
Abstract
Since the discovery of 2D materials, 2D material nanofiltration (NF) membranes have attracted great attention and are being developed with a tremendously fast pace, due to their energy efficiency and cost effectiveness for water purification. The most attractive aspect for 2D material NF membranes is that, anomalous water and ion permeation phenomena have been constantly observed because of the presence of the severely confined nanocapillaries (<2 nm) in the membrane, leading to its great potential in achieving superior overall performance, e.g., high water flux, high rejection rates of ions, and high resistance to swelling. Hence, fundamental understandings of such water and ion transport behaviors are of great significance for the continuous development of 2D material NF membranes. In this work, the microscopic understandings developed up to date on 2D material NF membranes regarding the abnormal transport phenomena are reviewed, including ultrafast water and ion permeation rates with the magnitude several orders higher than that predicted by conventional diffusion behavior, ion dehydration, ionic Coulomb blockade, ion-ion correlations, etc. The state-of-the-art structural designs for 2D material NF membranes are also reviewed. Discussion and future perspectives are provided highlighting the rational design of 2D material membrane structures in the future.
Collapse
Affiliation(s)
- Xiaopeng Liu
- College of Materials Science and EngineeringZhengzhou UniversityZhengzhou450001P. R. China
| | - Ling Zhang
- School of Chemical EngineeringZhengzhou UniversityZhengzhou450001P. R. China
| | - Xinwei Cui
- College of Materials Science and EngineeringZhengzhou UniversityZhengzhou450001P. R. China
- Institutes of Advanced TechnologyZhengzhou UniversityZhengzhou450052P. R. China
| | - Qian Zhang
- Institutes of Advanced TechnologyZhengzhou UniversityZhengzhou450052P. R. China
| | - Wenjihao Hu
- School of Metallurgy & EnvironmentCentral South UniversityChangshaHunan410083China
| | - Jiang Du
- College of Materials Science and EngineeringZhengzhou UniversityZhengzhou450001P. R. China
| | - Hongbo Zeng
- Department of Chemical and Materials EngineeringUniversity of AlbertaEdmontonAlbertaT6G 1H9Canada
| | - Qun Xu
- College of Materials Science and EngineeringZhengzhou UniversityZhengzhou450001P. R. China
- Institutes of Advanced TechnologyZhengzhou UniversityZhengzhou450052P. R. China
| |
Collapse
|
28
|
Li X, Wang Z, Han X, Liu Y, Wang C, Yan F, Wang J. Regulating the interfacial polymerization process toward high-performance polyamide thin-film composite reverse osmosis and nanofiltration membranes: A review. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119765] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
29
|
Flow Rate Prediction for a Semi-permeable Membrane at Low Reynolds Number in a Circular Pipe. Transp Porous Media 2021. [DOI: 10.1007/s11242-021-01716-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractA concise and accurate prediction method is required for membrane permeability in chemical engineering and biological fields. As a preliminary study on this topic, we propose the concentration polarization model (CPM) of the permeate flux and flow rate under dominant effects of viscosity and solute diffusion. In this model, concentration polarization is incorporated for the solution flow through a semi-permeable membrane (i.e., permeable for solvent but not for solute) in a circular pipe. The effect of the concentration polarization on the flow field in a circular pipe under a viscous-dominant condition (i.e., at a low Reynolds number) is discussed by comparing the CPM with the numerical simulation results and infinitesimal Péclet number model (IPM) for the membrane permeability, strength of the osmotic pressure, and Péclet number. The CPM and IPM are confirmed to be a reasonable extension of the model for a pure fluid, which was proposed previously. The application range of the IPM is narrow because the advection of the solute concentration is not considered, whereas the CPM demonstrates superior applicability in a wide range of parameters, including the permeability coefficient, strength of the osmotic pressure, and Péclet number. This suggests the necessity for considering concentration polarization. Although the mathematical expression of the CPM is more complex than that of the IPM, the CPM exhibits a potential to accurately predict the permeability parameters for a condition in which a large permeate flux and osmotic pressure occur.
Collapse
|
30
|
Peters CD, Ng DYF, Hankins NP, She Q. A novel method for the accurate characterization of transport and structural parameters of deformable membranes utilized in pressure- and osmotically driven membrane processes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Evdochenko E, Kamp J, Dunkel R, Nikonenko V, Wessling M. Charge distribution in polyelectrolyte multilayer nanofiltration membranes affects ion separation and scaling propensity. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
32
|
Impacts of Surface Hydrophilicity of Carboxylated Polyethersulfone Supports on the Characteristics and Permselectivity of PA-TFC Nanofiltration Membranes. NANOMATERIALS 2021; 11:nano11102470. [PMID: 34684911 PMCID: PMC8541453 DOI: 10.3390/nano11102470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 11/16/2022]
Abstract
Our current study experimentally evaluates the impacts of surface hydrophilicity of supports on the properties of polyamide (PA) thin-film composite (TFC) nanofiltration (NF) membranes. A series of "carboxylated polyethersulfone" (CPES) copolymers with an increasing "molar ratio" (MR) of carboxyl units were used to prepare supports with diverse surface hydrophilicities by the classical nonsolvent-induced phase separation (NIPS) method. Then, the PA-TFC NF membranes were finely fabricated atop these supports by conventional interfacial polymerization (IP) reactions. The linkages between the surface hydrophilicity of the supports and the characteristics of the interfacially polymerized PA layers as well as the permselectivity of NF membranes were investigated systematically. The morphological details of the NF membranes indicate that the growth of PA layers can be adjusted through increasing the surface hydrophilicity of the supports. Moreover, the separation results reveal that the NF membrane fabricated on the relatively hydrophobic support exhibits lower permeability (7.04 L·m-2·h-1·bar-1) and higher selectivity (89.94%) than those of the ones prepared on the hydrophilic supports (14.64~18.99 L·m-2·h-1·bar-1 and 66.98~73.48%). A three-stage conceptual scenario is proposed to illustrate the formation mechanism of the PA layer in NF membranes, which is due to the variation of surface hydrophilicity of the supports. The overall findings specify how the surface hydrophilicity of the supports influences the formation of PA layers, which ultimately defines the separation performances of the corresponding NF membranes.
Collapse
|
33
|
|
34
|
Krizak D, Abbaszadeh M, Kundu S. Desalination membranes by deposition of polyamide on polyvinylidene fluoride supports using the automated layer-by-layer technique. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2021.1962349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Daniel Krizak
- Dave C. Swalm School of Chemical Engineering, Mississippi State University, United States
| | - Mahsa Abbaszadeh
- Dave C. Swalm School of Chemical Engineering, Mississippi State University, United States
| | - Santanu Kundu
- Dave C. Swalm School of Chemical Engineering, Mississippi State University, United States
| |
Collapse
|
35
|
Chen X, Boo C, Yip NY. Influence of Solute Molecular Diameter on Permeability-Selectivity Tradeoff of Thin-Film Composite Polyamide Membranes in Aqueous Separations. WATER RESEARCH 2021; 201:117311. [PMID: 34192614 DOI: 10.1016/j.watres.2021.117311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/17/2021] [Accepted: 05/25/2021] [Indexed: 06/13/2023]
Abstract
Fundamental understanding of the reverse osmosis (RO) transport phenomena is necessary for quantitative prediction of contaminant rejection and development of more selective membranes. The solution-diffusion (S-D) model predicts a tradeoff relationship between permeability and selectivity, and this tradeoff trend was recently reported for RO. But the first principles governing the relationship are not well understood for aqueous separation membranes. This study presents a framework to elucidate the underlying factors of the permeability-selectivity tradeoff relationship in thin-film composite polyamide (TFC-PA) membranes. Water and solute permeabilities of membranes with a range of selectivities are examined using six nonelectrolyte solutes of various sizes and dimensions. The permeability-selectivity tradeoff trend, as defined by S-D, was observed for all six solutes. Crucially, the slopes of the tradeoff lines, λ, are found to be related to the solute and solvent (i.e., water) diameters, ds and dw, respectively, by λ = (ds/dw)2 - 1, consistent with the S-D framework established for gas separation membranes. Additionally, the intercepts of the tradeoff lines are shown to be also influenced by ds. These results highlight that solute molecular diameter is a primary influence on the permeability-selectivity tradeoff for the permeants investigated in this study. Furthermore, a transport regime where solute permeation is only very weakly coupled to water transport, in addition to the conventional S-D, is identified for the first time. We demonstrate that the boundary delineating the two transport regimes can be determined by the solute diameter. The relationship between characteristic features of the "additional regime" and solute dimensions are analyzed. The study shows that the general principles of the S-D framework are applicable to TFC-PA membranes and the analysis quantified the principal role of solute size in governing RO transport. The experimental and analytical evidence suggest that nonelectrolyte solute transport can, in principle, be a priori predicted using molecular diameter. Findings of this investigation provide new insights for understanding the transport mechanisms in osmotic membrane processes.
Collapse
Affiliation(s)
- Xi Chen
- Department of Earth and Environmental Engineering, Columbia University, New York, New York 10027-6623, United States
| | - Chanhee Boo
- Department of Earth and Environmental Engineering, Columbia University, New York, New York 10027-6623, United States
| | - Ngai Yin Yip
- Department of Earth and Environmental Engineering, Columbia University, New York, New York 10027-6623, United States; Columbia Water Center, Columbia University, New York, New York 10027-6623, United States.
| |
Collapse
|
36
|
Pourmovahed P, Maisonneuve J. Thermodynamic limits of using fertilizer osmosis to produce mechanical work via pressure retarded osmosis. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Wang B, Zhao D. Polyamide layer sulfonation of a nanofiltration membrane to enhance perm‐selectivity via regulation of pore size and surface charge. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Biao Wang
- College of Civil Engineering and Architecture Nanyang Normal University Nanyang China
| | - Dongsheng Zhao
- College of Civil Engineering and Architecture Nanyang Normal University Nanyang China
| |
Collapse
|
38
|
Liu K, Liu N, Ma S, Cheng P, Hu W, Jia X, Cheng Q, Xu J, Guo Q, Wang D. Highly Permeable Polyamide Nanofiltration Membrane Mediated by an Upscalable Wet-Laid EVOH Nanofibrous Scaffold. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23142-23152. [PMID: 33960782 DOI: 10.1021/acsami.1c02776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
For energy-saving purposes, the pursuit of ultrahigh permeance nanofiltration membranes without sacrificing selectivity is never-ending in desalination, wastewater treatment, and industrial product separation. Herein, we reported a novel facile route to engineer a highly porous and superhydrophilic nanofibrous substrate to mediate the interfacial polymerization between trimesoyl chloride and piperazine, generating an ultrathin PA active layer (∼13 nm) with a hierarchical crumpled surface. The wet laying process and subsequent plasma treatment endowed a rougher and more hydrophilic surface for ethylene vinyl alcohol copolymer (EVOH) nanofibers in the thin compact nanofibrous scaffold (∼9 μm) with a mean pore size of 210 nm, radically different from the nanofibrous membrane by other methods. Nanofibrous scaffold with these features provide abundant thin-thick alternative continuous water layers between nanofibers and organic phase, facilitating the formation of the abovementioned PA layer. As a result, an ultrahigh permeance of 42.25 L·m-2 h-1 bar-1 and a reasonably high rejection of 95.97% to 1000 ppm Na2SO4 feed solution were obtained, superior to most state-of-the-art NF membranes reported so far. Our work provides an easy and scalable method to fabricate advanced PA NF membranes with outstanding performance, highlighting its great potential in liquid separation.
Collapse
Affiliation(s)
- Ke Liu
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Nian Liu
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Siqi Ma
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Pan Cheng
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Wei Hu
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Xiaodan Jia
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Qin Cheng
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Jia Xu
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Qihao Guo
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Dong Wang
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
39
|
Xu C, Chen Y. Understanding water and solute transport in thin film nanocomposite membranes by resistance-in-series theory combined with Monte Carlo simulation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
40
|
|
41
|
Using Pressure-Driven Membrane Processes to Remove Emerging Pollutants from Aqueous Solutions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18084036. [PMID: 33921335 PMCID: PMC8068841 DOI: 10.3390/ijerph18084036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 11/17/2022]
Abstract
Currently, there is great concern about global water pollution. Wastewater generally contains substances called emerging pollutants, and if the removal of these pollutants is not given sufficient attention, the pollutants can enter into the water cycle and reach the water supply for domestic use, causing adverse effects on the well-being of people. In order to avoid this menace, a multitude of techniques to reduce the high concentration levels of these substances dissolved in water are being researched and developed. One of the most-used techniques for this goal is the physical-chemical separation of contaminants in water through membrane technology. In this study, different membranes were tested with the objective of investigating the removal of three emerging pollutants: caffeine, metformin, and methyl-paraben. Initially, a nanofiltration (NF) membrane was selected, and the influence of pressure was evaluated in the rejection coefficients and permeate fluxes. Next, a screening of three new membranes to remove methyl paraben was completed. The influence of the operating variables, working pressure, and methyl paraben-feed concentration was checked. Finally, the solution-diffusion model was applied to predict the behavior of the different membranes in the removal of methyl paraben. A good correlation between experimental and calculated values of permeate flux and methyl paraben concentration was obtained.
Collapse
|
42
|
Junker MA, de Vos WM, Lammertink RG, de Grooth J. Bridging the gap between lab-scale and commercial dimensions of hollow fiber nanofiltration membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
43
|
Masoliver J. Telegraphic Transport Processes and Their Fractional Generalization: A Review and Some Extensions. ENTROPY 2021; 23:e23030364. [PMID: 33803883 PMCID: PMC8003232 DOI: 10.3390/e23030364] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/09/2021] [Accepted: 03/12/2021] [Indexed: 11/16/2022]
Abstract
We address the problem of telegraphic transport in several dimensions. We review the derivation of two and three dimensional telegrapher's equations-as well as their fractional generalizations-from microscopic random walk models for transport (normal and anomalous). We also present new results on solutions of the higher dimensional fractional equations.
Collapse
Affiliation(s)
- Jaume Masoliver
- Department of Condensed Matter Physics and Complex Systems Institute (UBICS), University of Barcelona, 08007 Barcelona, Catalonia, Spain
| |
Collapse
|
44
|
Wang J, Armstrong MD, Grzebyk K, Vickers R, Coronell O. Effect of Feed Water pH on the Partitioning of Alkali Metal Salts from Aqueous Phase into the Polyamide Active Layers of Reverse Osmosis Membranes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3250-3259. [PMID: 33600153 PMCID: PMC7949323 DOI: 10.1021/acs.est.0c06140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The partitioning of solutes into the polyamide active layers of reverse osmosis (RO) membranes is a key membrane property determining solute permeation. Quantification of partition coefficients and their dependence on feedwater pH would contribute to the development of predictive transport models of contaminant transport through RO membranes; however, neither solute partitioning nor the effect of feed solution pH on partitioning has been thoroughly characterized in the literature. Accordingly, we characterized the partitioning of all chloride salts of alkali metals (CsCl, RbCl, KCl, NaCl, and LiCl) from the aqueous phase into the polyamide active layers of five polyamide RO membranes, including one prepared in-house and four commercial membranes. We evaluated the effect of pH on the partitioning of alkali metal salts and whether the effect of pH on salt partitioning and rejection is consistent with Donnan theory predictions. Results showed that for all membranes, the partition coefficients of all salts were less than one and did not differ substantially among RO membranes. Results also indicated that for all membranes tested, Donnan theory provided an appropriate theoretical framework to estimate the effect of pH on salt partitioning (evaluated for all chloride salts of alkali metals) and salt rejection (evaluated for NaCl). Thus, we conclude that changes in salt rejection resulting from feed solution pH are primarily driven by changes in salt partitioning with comparatively small changes in salt diffusion coefficients.
Collapse
Affiliation(s)
| | | | | | | | - Orlando Coronell
- Corresponding author [tel: +1-919-966-9010; fax:
+1- 919-966-7911; ]
| |
Collapse
|
45
|
Geng Z, Liang S, Sun M, Liu C, He N, Yang X, Cui X, Fan W, Wang X, Huo Y. High-Performance, Free-Standing Symmetric Hybrid Membranes for Osmotic Separation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8967-8975. [PMID: 33576595 DOI: 10.1021/acsami.0c22124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The internal concentration polarization (ICP) of asymmetric osmotic membranes with support layers greatly reduced membrane water permeability, therefore compromising membrane performance. In this study, a series of free-standing symmetric hybrid forward osmosis (FO) membranes without experiencing ICP were fabricated by covalently linking metal-organic framework (MOF) nanofillers with a polymer matrix. Owing to the introduction of MOFs, which allow only water permeation but reject salts by steric hindrance, the prepared hybrid membranes could approach the empirical permeability-selectivity trade-off. The optimized hybrid membrane displayed an outstanding water/Na2SO4 selectivity of ∼1208.4 L mol-1, compared with that of conventional membranes of ∼375.6 L mol-1. Additionally, the fabricated hybrid membranes showed excellent mechanical robustness, maintaining structural integrity during the long-term FO separation of high-salinity solution. This work provides an effective methodology to fabricate high-performance, symmetric MOF-based membranes for osmotic separation processes such as seawater desalination and water purification.
Collapse
Affiliation(s)
- Zhi Geng
- College of Environment, Research Centre for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| | - Shiqiang Liang
- College of Environment, Research Centre for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| | - Meng Sun
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Chuhan Liu
- College of Environment, Research Centre for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| | - Nan He
- College of Environment, Research Centre for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| | - Xia Yang
- College of Environment, Research Centre for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| | - Xiaochun Cui
- College of Environment, Research Centre for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| | - Wei Fan
- College of Environment, Research Centre for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| | - Xianze Wang
- College of Environment, Research Centre for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| | - Yang Huo
- College of Environment, Research Centre for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| |
Collapse
|
46
|
Nagy E, Hegedüs I, Rehman D, Wei QJ, Ahdab YD, Lienhard JH. The Need for Accurate Osmotic Pressure and Mass Transfer Resistances in Modeling Osmotically Driven Membrane Processes. MEMBRANES 2021; 11:membranes11020128. [PMID: 33672803 PMCID: PMC7918311 DOI: 10.3390/membranes11020128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 02/01/2023]
Abstract
The widely used van 't Hoff linear relation for predicting the osmotic pressure of NaCl solutions may result in errors in the evaluation of key system parameters, which depend on osmotic pressure, in pressure-retarded osmosis and forward osmosis. In this paper, the linear van 't Hoff approach is compared to the solutions using OLI Stream Analyzer, which gives the real osmotic pressure values. Various dilutions of NaCl solutions, including the lower solute concentrations typical of river water, are considered. Our results indicate that the disparity in the predicted osmotic pressure of the two considered methods can reach 30%, depending on the solute concentration, while that in the predicted power density can exceed over 50%. New experimental results are obtained for NanoH2O and Porifera membranes, and theoretical equations are also developed. Results show that discrepancies arise when using the van 't Hoff equation, compared to the OLI method. At higher NaCl concentrations (C > 1.5 M), the deviation between the linear approach and the real values increases gradually, likely indicative of a larger error in van 't Hoff predictions. The difference in structural parameter values predicted by the two evaluation methods is also significant; it can exceed the typical 50-70% range, depending on the operating conditions. We find that the external mass transfer coefficients should be considered in the evaluation of the structural parameter in order to avoid overestimating its value. Consequently, measured water flux and predicted structural parameter values from our own and literature measurements are recalculated with the OLI software to account for external mass transfer coefficients.
Collapse
Affiliation(s)
- Endre Nagy
- Chemical and Biochemical Procedures Laboratory, Institute of Biomolecular and Chemical Engineering, University of Pannonia, H-8200 Veszprem, Hungary;
- Correspondence: (E.N.); (J.H.L.); Tel.: +36-203-518-725 (E.N.)
| | - Imre Hegedüs
- Chemical and Biochemical Procedures Laboratory, Institute of Biomolecular and Chemical Engineering, University of Pannonia, H-8200 Veszprem, Hungary;
- Department of Biophysics and Radiation Biology, Semmelweis University, Tüzoltó u. 37-47, H-1094 Budapest, Hungary
| | - Danyal Rehman
- Rohsenow Kendall Heat Transfer Laboratory, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (D.R.); (Q.J.W.); (Y.D.A.)
| | - Quantum J. Wei
- Rohsenow Kendall Heat Transfer Laboratory, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (D.R.); (Q.J.W.); (Y.D.A.)
| | - Yvana D. Ahdab
- Rohsenow Kendall Heat Transfer Laboratory, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (D.R.); (Q.J.W.); (Y.D.A.)
| | - John H. Lienhard
- Rohsenow Kendall Heat Transfer Laboratory, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (D.R.); (Q.J.W.); (Y.D.A.)
- Correspondence: (E.N.); (J.H.L.); Tel.: +36-203-518-725 (E.N.)
| |
Collapse
|
47
|
Zhao Y, Tong T, Wang X, Lin S, Reid EM, Chen Y. Differentiating Solutes with Precise Nanofiltration for Next Generation Environmental Separations: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1359-1376. [PMID: 33439001 DOI: 10.1021/acs.est.0c04593] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Selective removal or enrichment of targeted solutes including micropollutants, valuable elements, and mineral scalants from complex aqueous matrices is both challenging and pivotal to the success of water purification and resource recovery from unconventional water resources. Membrane separation with precision at the subnanometer or even subangstrom scale is of paramount importance to address those challenges via enabling "fit-for-purpose" water and wastewater treatment. So far, researchers have attempted to develop novel membrane materials with precise and tailored selectivity by tuning membrane structure and chemistry. In this critical review, we first present the environmental challenges and opportunities that necessitate improved solute-solute selectivity in membrane separation. We then discuss the mechanisms and desired membrane properties required for better membrane selectivity. On the basis of the most recent progress reported in the literature, we examine the key principles of material design and fabrication, which create membranes with enhanced and more targeted selectivity. We highlight the important roles of surface engineering, nanotechnology, and molecular-level design in improving membrane selectivity. Finally, we discuss the challenges and prospects of highly selective NF membranes for practical environmental applications, identifying knowledge gaps that will guide future research to promote environmental sustainability through more precise and tunable membrane separation.
Collapse
Affiliation(s)
- Yangying Zhao
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Tiezheng Tong
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Xiaomao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shihong Lin
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Elliot M Reid
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yongsheng Chen
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
48
|
Gu K, Wang K, Zhou Y, Gao C. Ion-promoting-penetration phenomenon in the polyethyleneimine/trimesic acid nanofiltration membrane. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Impact of osmotic and thermal isolation barrier on concentration and temperature polarization and energy efficiency in a novel FO-MD integrated module. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
50
|
Liang Y, Gao F, Wang L, Lin S. In-situ monitoring of polyelectrolytes adsorption kinetics by electrochemical impedance spectroscopy: Application in fabricating nanofiltration membranes via layer-by-layer deposition. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118747] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|