1
|
Qi C, Chen L. Progress of ligand-modified agarose microspheres for protein isolation and purification. Mikrochim Acta 2024; 191:149. [PMID: 38376601 DOI: 10.1007/s00604-024-06224-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/20/2024] [Indexed: 02/21/2024]
Abstract
Proteins are the material basis of life and the primary carriers of life activities, containing various impurities that must be removed before use. To keep pace with the increasing complexity of protein samples, it is essential to constantly work on developing new purification technologies for downstream processes. While traditional downstream purification methods rely heavily on protein A affinity chromatography, there is still a lot of interest in finding safer and more cost-effective alternatives to protein A. Many non-affinity ligands and technologies have also been developed in biological purification recently. Here, the current status of biotechnology and the progress of protein separation technology from 2018 to 2023 are reviewed from the aspects of new preparation methods and new composite materials of commonly used separation media. The research status of new ligands with different mechanisms of action was reviewed, including the expanded application of affinity ligands, the development prospect of biotechnology such as polymer grafting, continuous column technology, and its new applications.
Collapse
Affiliation(s)
- Chongdi Qi
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Lei Chen
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| |
Collapse
|
2
|
Priyadarshani J, Awasthi P, Das S, Chakraborty S. Thermally-modulated shape transition at the interface of soft gel filament and hydrophobic substrate. J Colloid Interface Sci 2023; 640:246-260. [PMID: 36863181 DOI: 10.1016/j.jcis.2023.02.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 02/21/2023]
Abstract
A liquid filament may pinch off into different shapes on interacting with a soft surface, as modulated by the interplay of inertial, capillary, and viscous forces. While similar shape transitions may intuitively be realized for more complex materials such as soft gel filaments as well, their intricate controllability towards deriving precise and stable morphological features remains challenging, as attributed to the complexities stemming from the underlying interfacial interactions over the relevant length and time scales during the sol-gel transition process. Circumventing these deficits in the reported literature, here we report a new means of precisely-controlled fabrication of gel microbeads via exploiting thermally-modulated instabilities of a soft filament atop a hydrophobic substrate. Our experiments reveal that abrupt morphological transitions of the gel material set in at a threshold temperature, resulting in spontaneous capillary thinning and filament breakup. We show that this phenomenon may be precisely modulated by an alteration in the hydration state of the gel material that may be preferentially dictated by its intrinsic glycerol content. Our results demonstrate that the consequent morphological transitions give rise to topologically-selective microbeads as an exclusive signature of the interfacial interactions of the gel material with the deformable hydrophobic interface underneath. Thus, intricate control may be imposed on the spatio-temporal evolution of the deforming gel, facilitating the inception of highly ordered structures of specific shapes and dimensionalities on demand. This is likely to advance the strategies of long shelf-life analytical biomaterial encapsulations via realizing one-step physical immobilization of bio-analytes on the bead surfaces as a new route to controlled materials processing, without demanding any resourced microfabrication facility or delicate consumable materials.
Collapse
Affiliation(s)
- Jyotsana Priyadarshani
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India; Department of Mechanical Engineering, KU Leuven, Leuven 3001, Belgium
| | - Prasoon Awasthi
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Soumen Das
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Suman Chakraborty
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
3
|
Chen SJ, Chang Y, Liang CS, Lin JP, Lu YW. Platelet concentrates preparation using a rotating membrane with Taylor vortices and axial flow. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Jia J, Liu RK, Gu YH, Sun Q, Wang JX, Chen JF. High-gravity-assisted Fabrication of Self-assembled Colloidosomes. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Jia Jia
- State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Rong-Kun Liu
- State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yu-Hang Gu
- State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Qian Sun
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Jie-Xin Wang
- State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Jian-Feng Chen
- State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
5
|
|
6
|
Liang YJ, Yu H, Feng G, Zhuang L, Xi W, Ma M, Chen J, Gu N, Zhang Y. High-Performance Poly(lactic-co-glycolic acid)-Magnetic Microspheres Prepared by Rotating Membrane Emulsification for Transcatheter Arterial Embolization and Magnetic Ablation in VX 2 Liver Tumors. ACS APPLIED MATERIALS & INTERFACES 2017; 9:43478-43489. [PMID: 29116741 DOI: 10.1021/acsami.7b14330] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Interventional embolization is a popular minimally invasive vascular therapeutic technique and has been widely applied for hepatocellular carcinoma (HCC) therapy. However, harmful effects caused by transcatheter arterial chemoembolization (TACE) and radioembolization, such as the toxicity of chemotherapy or excessive radiation damage, are serious disadvantages and significantly reduce the therapeutic efficacy. Here, a synergistic therapeutic strategy combined transcatheter arterial embolization and magnetic ablation (TAEMA) by using poly(lactic-co-glycolic acid) (PLGA)-magnetic microspheres (MMs) has been successfully applied to orthotopic VX2 liver tumors of rabbits. These MMs fabricated by novel rotating membrane emulsification system with well-controlled sizes (100-1000 μm) exhibited extremely low hemolysis ratio and excellent biocompatibility with HepG2 cells and L02 cells. Moreover, experimental results demonstrated that, while exposed to alternating magnetic field (AMF) after TAE, the tumor edge could be heated up by more than 15 °C both in vivo and in vitro, whereas only a negligible increase of temperature was observed in the normal hepatic parenchyma (NHP) nearby. Sufficient temperature increase induces apoptosis of tumor cells. This can further inhibit the tumor angiogenesis and results in necrosis compared to the rabbits only treated with TAE. In stark contrast, tumors rapidly grow and subtotal metastasis occurs in the lungs or kidneys, causing severe complications for rabbits only irradiated under AMF. Importantly, the results from the biochemical examination and the gene expression of relative HCC markers further confirmed that the treatment protocol using PLGA-MMs could achieve good biosafety and excellent therapeutic efficacy, which are promising for liver cancer therapy.
Collapse
Affiliation(s)
- Yi-Jun Liang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, PR China
- Collaborative Innovation Center of Suzhou Nano-Science and Technology, Suzhou Key Laboratory of Biomaterials and Technologies , Suzhou 215123, PR China
| | - Hui Yu
- Jiangsu Cancer Hospital, The Cancer Hospital of Nanjing Medical University , Nanjing 210009, PR China
| | - Guodong Feng
- Jiangsu Cancer Hospital, The Cancer Hospital of Nanjing Medical University , Nanjing 210009, PR China
| | - Linlin Zhuang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, PR China
| | - Wei Xi
- Jiangsu Cancer Hospital, The Cancer Hospital of Nanjing Medical University , Nanjing 210009, PR China
| | - Ming Ma
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, PR China
- Collaborative Innovation Center of Suzhou Nano-Science and Technology, Suzhou Key Laboratory of Biomaterials and Technologies , Suzhou 215123, PR China
| | - Jun Chen
- Jiangsu Cancer Hospital, The Cancer Hospital of Nanjing Medical University , Nanjing 210009, PR China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, PR China
- Collaborative Innovation Center of Suzhou Nano-Science and Technology, Suzhou Key Laboratory of Biomaterials and Technologies , Suzhou 215123, PR China
| | - Yu Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, PR China
- Collaborative Innovation Center of Suzhou Nano-Science and Technology, Suzhou Key Laboratory of Biomaterials and Technologies , Suzhou 215123, PR China
| |
Collapse
|
7
|
A facile method for preparation of emulsion using the high gravity technique. J Colloid Interface Sci 2017; 506:120-125. [DOI: 10.1016/j.jcis.2017.06.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/11/2017] [Accepted: 06/12/2017] [Indexed: 11/21/2022]
|
8
|
Aryanti N, Williams RA. Analysis of rotating membrane emulsification performance for oil droplet production based on the Taylor vortices approach. PARTICULATE SCIENCE AND TECHNOLOGY 2017. [DOI: 10.1080/02726351.2017.1326995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Nita Aryanti
- Chemical Engineering Department, Diponegoro University, Semarang, Indonesia
| | | |
Collapse
|
9
|
Zucca P, Fernandez-Lafuente R, Sanjust E. Agarose and Its Derivatives as Supports for Enzyme Immobilization. Molecules 2016; 21:E1577. [PMID: 27869778 PMCID: PMC6273708 DOI: 10.3390/molecules21111577] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/12/2016] [Accepted: 11/16/2016] [Indexed: 01/06/2023] Open
Abstract
Agarose is a polysaccharide obtained from some seaweeds, with a quite particular structure that allows spontaneous gelation. Agarose-based beads are highly porous, mechanically resistant, chemically and physically inert, and sharply hydrophilic. These features-that could be further improved by means of covalent cross-linking-render them particularly suitable for enzyme immobilization with a wide range of derivatization methods taking advantage of chemical modification of a fraction of the polymer hydroxyls. The main properties of the polymer are described here, followed by a review of cross-linking and derivatization methods. Some recent, innovative procedures to optimize the catalytic activity and operational stability of the obtained preparations are also described, together with multi-enzyme immobilized systems and the main guidelines to exploit their performances.
Collapse
Affiliation(s)
- Paolo Zucca
- Dipartimento di Scienze Biomediche, Università di Cagliari, 09042 Monserrato (CA), Italy.
| | | | - Enrico Sanjust
- Dipartimento di Scienze Biomediche, Università di Cagliari, 09042 Monserrato (CA), Italy.
| |
Collapse
|
10
|
B.S. Albuquerque P, C.B.B. Coelho L, A. Teixeira J, G. Carneiro-da-Cunha M. Approaches in biotechnological applications of natural polymers. AIMS MOLECULAR SCIENCE 2016. [DOI: 10.3934/molsci.2016.3.386] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|