1
|
Raeva A, Matveev D, Anokhina T, Zhansitov AA, Khashirova S, Volkov V, Borisov I. Increasing the Permeability of Polyphenylene Sulfone Hollow Fiber Ultrafiltration Membranes by Switching the Polymer End Groups. Polymers (Basel) 2024; 17:53. [PMID: 39795456 PMCID: PMC11722853 DOI: 10.3390/polym17010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
The influence of the molecular weight and chemical structure of polyphenylene sulfone (PPSU) end groups on the formation of the porous structure of ultrafiltration (UF) hollow fiber membranes was investigated. Polymers with a molecular weight ranging from 67 to 81 kg/mol and with a hydroxyl-to-chlorine end group ratio ranging from 0.43 to 17.0 were synthesized. The excess of end groups was achieved during polymer synthesis by adding one of the following monomers: hydroxyl (excess DHBP) or chlorine (excess DCDPS). For the first time, it was found that the stability of PPSU solutions is determined not by the molecular weight of the polymer, but by the chemical structure of its end groups. The stability of polymer solutions increases with the increasing proportion of chlorine groups. The SEM method showed that with the increasing molar fraction of chlorine end groups in the polymer, a more open porous structure forms on the outer surface of the hollow fiber membranes derived from it. The maximum UF permeance of the hollow fiber membranes for water was achieved with the PPSU sample containing the highest chlorine end group content, amounting to 136 L/(m2·h·bar), with a high rejection of the model substance Blue Dextran (at 94.7%). This represents the best result currently reported among unmodified PPSU hollow fiber membranes.
Collapse
Affiliation(s)
- Alisa Raeva
- Center for Progressive Materials and Additive Technologies, Kabardino-Balkarian State University Named After H.M. Berbekov, 360004 Nalchik, Russia; (A.A.Z.); (S.K.); (V.V.)
| | - Dmitry Matveev
- Laboratory of Polymeric Membranes, A.V. Topchiev Institute of Petrochemical Synthesis Russian Academy of Sciences, 119991 Moscow, Russia; (D.M.); (T.A.)
| | - Tatyana Anokhina
- Laboratory of Polymeric Membranes, A.V. Topchiev Institute of Petrochemical Synthesis Russian Academy of Sciences, 119991 Moscow, Russia; (D.M.); (T.A.)
| | - Azamat A. Zhansitov
- Center for Progressive Materials and Additive Technologies, Kabardino-Balkarian State University Named After H.M. Berbekov, 360004 Nalchik, Russia; (A.A.Z.); (S.K.); (V.V.)
| | - Svetlana Khashirova
- Center for Progressive Materials and Additive Technologies, Kabardino-Balkarian State University Named After H.M. Berbekov, 360004 Nalchik, Russia; (A.A.Z.); (S.K.); (V.V.)
| | - Vladimir Volkov
- Center for Progressive Materials and Additive Technologies, Kabardino-Balkarian State University Named After H.M. Berbekov, 360004 Nalchik, Russia; (A.A.Z.); (S.K.); (V.V.)
| | - Ilya Borisov
- Center for Progressive Materials and Additive Technologies, Kabardino-Balkarian State University Named After H.M. Berbekov, 360004 Nalchik, Russia; (A.A.Z.); (S.K.); (V.V.)
| |
Collapse
|
2
|
Burts K, Plisko T, Penkova A, Ermakov S, Bildyukevich A. Influence of PEG-PPG-PEG Block Copolymer Concentration and Coagulation Bath Temperature on the Structure Formation of Polyphenylsulfone Membranes. Polymers (Basel) 2024; 16:1349. [PMID: 38794542 PMCID: PMC11124811 DOI: 10.3390/polym16101349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
The effect of amphiphilic block copolymer polyethylene glycol (PEG)-polypropylene glycol (PPG)-PEG concentration in the polyphenylsulfone (PPSU) casting solution and coagulation bath temperature (CBT) on the structure, separation, and antifouling performance of PPSU ultrafiltration membranes was studied for the first time. According to the phase diagram obtained, PPSU/PEG-PPG-PEG/N-methyl-2-pyrrolidone (NMP) systems are characterized by a narrow miscibility gap. It was found that 20 wt.% PPSU solutions in NMP with the addition of 5-15 wt.% of PEG-PPG-PEG block copolymer feature upper critical solution temperature, gel point, and lower critical solution temperature. Membrane composition and structure were studied by Fourier-transform infrared spectroscopy, scanning electron and atomic force microscopies, and water contact angle measurements. The addition of PEG-PPG-PPG to the PPSU casting solution was found to increase the hydrophilicity of the membrane surface (water contact angle decreased from 78° for the reference PPSU membrane down to 50° for 20 wt.%PPSU/15 wt.% PEG-PPG-PEG membrane). It was revealed that the pure water flux increased with the rise of CBT from 18-20 L·m-2·h-1 for the reference PPSU membrane up to 38-140 L·m-2·h-1 for 20 wt.% PPSU/10-15 wt.% PEG-PPG-PEG membranes. However, the opposite trend was observed for 20 wt.% PPSU/5-7 wt.% PEG-PPG-PEG membranes: pure water flux decreased with an increase in CBT. This is due to the differences in the mechanism of phase separation (non-solvent-induced phase separation (NIPS) or a combination of NIPS and temperature-induced phase separation (TIPS)). It was shown that 20 wt.% PPSU/10 wt.% PEG-PPG-PEG membranes were characterized by significantly higher antifouling performance (FRR-81-89%, DRr-26-32%, DRir-10-20%, DT-33-45%) during the ultrafiltration of bovine serum albumin solutions compared to the reference PPSU membrane prepared at different CBTs (FRR-29-38%, DRr-6-14%, DRir-74-89%, DT-88-94%).
Collapse
Affiliation(s)
- Katsiaryna Burts
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Tatiana Plisko
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Anastasia Penkova
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Sergey Ermakov
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Alexandr Bildyukevich
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, Surganov Str., 13, 220072 Minsk, Belarus
| |
Collapse
|
3
|
Ayyaru S, Ahn YH. Fabrication and application of novel high strength sulfonated PVDF ultrafiltration membrane for production of reclamation water. CHEMOSPHERE 2022; 305:135416. [PMID: 35738407 DOI: 10.1016/j.chemosphere.2022.135416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Advanced treated water (ATW) produced in wastewater treatment facilities was assessed as an excellent alternative water resource that can be used as reclamation water, such as indirect and direct potable reuse. The development of cutting-edge technology for simple but best practices is essential for the reliable production of safe reclamation water from wastewater. This study prepared a novel high strength sulfonated polyvinylidene fluoride (HSPVDF) ultrafiltration membrane and investigated to produce ATW, and performances were compared to sulfonated PVDF (SPVDF) (which was prepared without thermal treatment) and bare PVDF. To compare the properties of HSPVDF to hydrocarbon polymer, the polyetherimide (PEI) and Sulfonated PEI (SPEI) membrane were prepared. HSPVDF showed excellent membrane morphology, porosity, MWCO, and hydrophilicity, resulting in higher pure water flux (712 ± 6 L m-2 h-1) antifouling properties (Rir 1.3% and FRR 98.6%) compared to PVDF. It is an interesting fact that the tensile strength of the HSPVDF (3.4 ± 0.2 MPa) tremendously increased (3 folders) when compere to PVDF (1.3 ± 0.1 MPa). The HSPVDF membrane showed good removal efficiency up to 96 ± 05% and 97 ± 09% rejection for bovine serum albumin (BSA) and humic acid (HA), respectively. The membrane application studies for wastewater treatment showed that the tertiary HSPVDF UF membrane filtration following the nutrient removal activated sludge (NRAS) process can produce reliable and economic performance (125 ± 2 L m-2 h-1, 0.25 ± 0.05 NTU, no pathogens), suggesting that it can be a best practice technique that can replace the complicated multi-staged tertiary processes to produce reclamation water.
Collapse
Affiliation(s)
- Sivasankaran Ayyaru
- Department of Civil Engineering, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Young-Ho Ahn
- Department of Civil Engineering, Yeungnam University, Gyeongsan, 38541, South Korea.
| |
Collapse
|
4
|
Advanced Polymeric Nanocomposites for Water Treatment Applications: A Holistic Perspective. Polymers (Basel) 2022; 14:polym14122462. [PMID: 35746038 PMCID: PMC9231113 DOI: 10.3390/polym14122462] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 12/15/2022] Open
Abstract
Water pollution remains one of the greatest challenges in the modern era, and water treatment strategies have continually been improved to meet the increasing demand for safe water. In the last few decades, tremendous research has been carried out toward developing selective and efficient polymeric adsorbents and membranes. However, developing non-toxic, biocompatible, cost-effective, and efficient polymeric nanocomposites is still being explored. In polymer nanocomposites, nanofillers and/or nanoparticles are dispersed in polymeric matrices such as dendrimer, cellulose, resins, etc., to improve their mechanical, thermophysical, and physicochemical properties. Several techniques can be used to develop polymer nanocomposites, and the most prevalent methods include mixing, melt-mixing, in-situ polymerization, electrospinning, and selective laser sintering techniques. Emerging technologies for polymer nanocomposite development include selective laser sintering and microwave-assisted techniques, proffering solutions to aggregation challenges and other morphological defects. Available and emerging techniques aim to produce efficient, durable, and cost-effective polymer nanocomposites with uniform dispersion and minimal defects. Polymer nanocomposites are utilized as filtering membranes and adsorbents to remove chemical contaminants from aqueous media. This study covers the synthesis and usage of various polymeric nanocomposites in water treatment, as well as the major criteria that influence their performance, and highlights challenges and considerations for future research.
Collapse
|
5
|
Tan Z, Chen S, Mao X, Lv H, Wang Y, Ye X. Antifouling BaTiO 3/PVDF piezoelectric membrane for ultrafiltration of oily bilge water. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:2980-2992. [PMID: 35638800 DOI: 10.2166/wst.2022.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Barium titanate/polyvinylidene fluoride (BaTiO3/PVDF) piezoelectric membrane was successfully prepared and generated in-situ vibrations to reduce membrane fouling by applying alternating current (AC) signal for oily bilge water ultrafiltration. The effect of in-situ vibration on membrane fouling was investigated through changing in the excitation alternating voltage and its frequency, pH, crossflow rate. The results indicated that the piezoelectric membrane by applying AC signal remarkably alleviated the membrane fouling for bilge water ultrafiltration. The membrane fouling decreased with increasing the AC signal voltage. The final steady-state permeate flux from the piezoelectric membrane for bilge water ultrafiltration increased with the AC signal voltage, raising it by up to 63.4% at AC signal voltage of 20 V compared to that of the membrane without applying AC voltage. The high permeate flux was obtained at the resonant frequency of 220 kHz. During the 50-h ultrafiltration of bilge water with the piezoelectric membrane excited at 220 kHz and 15 V, the permeate flux from the membrane was stable. The oil concentration in outflow from the piezoelectric membrane was below 14 ppm, which met the discharged level required by IMO convention. The total organic carbon removal rate in bilge water was over 94%.
Collapse
Affiliation(s)
- Zhirong Tan
- School of Navigation, Wuhan University of Technology, Wuhan 430063, PR China; Hubei Key Laboratory of Inland Shiping Technology, Wuhan 430063, PR China
| | - Shuiping Chen
- School of Resource & Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China E-mail:
| | - Xin Mao
- School of Navigation, Wuhan University of Technology, Wuhan 430063, PR China; Hubei Key Laboratory of Inland Shiping Technology, Wuhan 430063, PR China
| | - Heng Lv
- School of Resource & Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China E-mail:
| | - Yong Wang
- School of the Environment, Nanjing University, NanJing 210023, PR China
| | - Xiaoqing Ye
- School of Navigation, Wuhan University of Technology, Wuhan 430063, PR China; Hubei Key Laboratory of Inland Shiping Technology, Wuhan 430063, PR China
| |
Collapse
|
6
|
Khan H, Khan SU, Hussain S, Ullah A. Modelling of transmembrane pressure using slot/pore blocking model, response surface and artificial intelligence approach. CHEMOSPHERE 2022; 290:133313. [PMID: 34921859 DOI: 10.1016/j.chemosphere.2021.133313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
This work investigates the application of empirical, statistical and machine learning methods to appraise the prediction of transmembrane pressure (TMP) by oscillating slotted pore membrane for the treatment of two kinds of deformable oil drops. Here, we utilized the previous experimental runs with permeate flux, shear rate and filtration time as features, while TMP of crude oil and Tween-20 were two distinct targets. For 87 experimental runs, Response surface methodology (RSM) and Artificial Neural network (ANN) modelling were opted as statistical and machine learning tools, respectively, which were comprehensively compared with empirical slot-pore blocking model (SBM) considering accuracy and generalization. ANN with 10 neurons in the hidden layer could approximate the TMP of both oils better than RSM and SBM, which is reflected by computed performance metrics. Under the given conditions, almost similar analysis were predicted for TMP of both oils except changes in magnitude which were interpreted by (1) line plots, which showed that TMP of crude oil and Tween-20 were linearly related to flux rate and filtration time, and there was an inverse relationship between TMP and shear rate, (2) contour plots, which illustrated the strong interaction effect of flux rate and time on TMP, and (3)- sensitivity analysis, which revealed the influential sequence of variables on TMP as; flux rate > filtration time > shear rate, for both cases. The optimisation of the process showed that minimum TMP can be attained by maintaining higher shear rate and lower flux rate and time. Conclusively, the current findings indicate the utilization of ANN for the accurate assessment of TMP and can be helpful for the process designing and scale up.
Collapse
Affiliation(s)
- Hammad Khan
- Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi, Pakistan
| | - Saad Ullah Khan
- Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi, Pakistan
| | - Sajjad Hussain
- Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi, Pakistan
| | - Asmat Ullah
- Department of Chemical Engineering, Faculty of Mechanical, Chemical & Industrial Engineering, University of Engineering and Technology Peshawar, KPK, Pakistan.
| |
Collapse
|
7
|
Shukla AK, Alam J, Alhoshan M. Recent Advancements in Polyphenylsulfone Membrane Modification Methods for Separation Applications. MEMBRANES 2022; 12:247. [PMID: 35207168 PMCID: PMC8876851 DOI: 10.3390/membranes12020247] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023]
Abstract
Polyphenylsulfone (PPSU) membranes are of fundamental importance for many applications such as water treatment, gas separation, energy, electronics, and biomedicine, due to their low cost, controlled crystallinity, chemical, thermal, and mechanical stability. Numerous research studies have shown that modifying surface properties of PPSU membranes influences their stability and functionality. Therefore, the modification of the PPSU membrane surface is a pressing issue for both research and industrial communities. In this review, various surface modification methods and processes along with their mechanisms and performance are considered starting from 2002. There are three main approaches to the modification of PPSU membranes. The first one is bulk modifications, and it includes functional groups inclusion via sulfonation, amination, and chloromethylation. The second is blending with polymer (for instance, blending nanomaterials and biopolymers). Finally, the third one deals with physical and chemical surface modifications. Obviously, each method has its own limitations and advantages that are outlined below. Generally speaking, modified PPSU membranes demonstrate improved physical and chemical properties and enhanced performance. The advancements in PPSU modification have opened the door for the advance of membrane technology and multiple prospective applications.
Collapse
Affiliation(s)
- Arun Kumar Shukla
- King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Javed Alam
- King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Mansour Alhoshan
- King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
- Department of Chemical Engineering, College of Engineering, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- K.A. CARE Energy Research and Innovation Center at Riyadh, P.O. Box 2022, Riyadh 11451, Saudi Arabia
| |
Collapse
|
8
|
Xu Q, Chen Y, Xiao T, Yang X. A Facile Method to Control Pore Structure of PVDF/SiO 2 Composite Membranes for Efficient Oil/Water Purification. MEMBRANES 2021; 11:membranes11110803. [PMID: 34832032 PMCID: PMC8619804 DOI: 10.3390/membranes11110803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 11/16/2022]
Abstract
The use of poly(vinylidene fluoride) (PVDF) microfiltration (MF) membranes to purify oily water has received much attention. However, it is challenging to obtain high-performance PVDF microfiltration membranes due to severe surface fouling and rapid decline of permeability. This study explored a new approach to fabricate high-performance PVDF/silica (SiO2) composite membrane via the use of a polymer solution featuring lower critical solution temperature (LCST) characteristics and the non-solvent thermally induced phase separation method (NTIPS). Coupling with morphological observations, the membrane formation kinetics were analyzed in depth to understand the synergistic effect between the LCST solution properties and fabrication conditions in NTIPS. Utilizing such a synergistic effect, the transition from finger-like macrovoid pores to bi-continuous highly connected pores could be flexibly tuned by increasing the PVDF concentration and the weight ratio of SiO2/PVDF in the dope solution and by raising the coagulation temperature to above the LCST of the solution. The filtration experiments with surfactant-stabilized oil-water emulsion showed that the permeation flux of the PVDF/SiO2 composite membranes was higher than 318 L·m-2·h-1·bar-1 and the rejection above 99.2%. It was also shown that the PVDF/SiO2 composite membranes, especially those fabricated above the LCST, demonstrated better hydrophilicity, which resulted in significant enhancement in the anti-fouling properties for oil/water emulsion separation. Compared to the benchmark pure PVDF membrane in oily water purification, the optimal composite membrane T70 was demonstrated via the 3-cycle filtration experiments with a significantly improved flux recovery ratio (Frr) and minimal reduced irreversible fouling (Rir). Overall, with the developed method in this work, facile procedure to tune the membrane morphology and pore structure was demonstrated, resulting in high performance composite membranes suitable for oil/water emulsion separation.
Collapse
Affiliation(s)
- Qianqian Xu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China; (Q.X.); (Y.C.)
| | - Yuchao Chen
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China; (Q.X.); (Y.C.)
| | - Tonghu Xiao
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China; (Q.X.); (Y.C.)
- Correspondence: (T.X.); (X.Y.)
| | - Xing Yang
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
- Correspondence: (T.X.); (X.Y.)
| |
Collapse
|
9
|
Gryta M. Resistance of Polypropylene Membrane to Oil Fouling during Membrane Distillation. MEMBRANES 2021; 11:membranes11080552. [PMID: 34436315 PMCID: PMC8400933 DOI: 10.3390/membranes11080552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022]
Abstract
The influence of oil emulsion presence in the water on the course of water desalination by membrane distillation was studied. The feed water was contaminated by oil collected from the bilge water. The impact of feed composition on the wetting resistance of hydrophobic polypropylene membranes was evaluated during long-term studies. Two types of the capillary membranes fabricated by thermally induced phase separation method were tested. It has been found that these membranes were non-wetted during the separation of NaCl solutions over a period of 500 h of modules exploitation. The addition of oil (5-100 mg/L) to the feed caused a progressive decline of the permeate flux up to 30%; however, the applied hydrophobic membranes retained their non-wettability for the consecutive 2400 h of the process operation. It was indicated that several compounds containing the carbonyl group were formed on the membranes surface during the process. These hydrophilic compounds facilitated the water adsorption on the surface of polypropylene which restricted the oil deposition on the membranes used.
Collapse
Affiliation(s)
- Marek Gryta
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, ul. Pułaskiego 10, 70-322 Szczecin, Poland
| |
Collapse
|
10
|
Nayak K, Kumar A, Das P, Tripathi BP. Amphiphilic antifouling membranes by polydopamine mediated molecular grafting for water purification and oil/water separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119306] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Rabajczyk A, Zielecka M, Cygańczuk K, Pastuszka Ł, Jurecki L. The Use of Polymer Membranes to Counteract the Risk of Environmental of Soil and Water Contamination. MEMBRANES 2021; 11:membranes11060426. [PMID: 34199707 PMCID: PMC8226685 DOI: 10.3390/membranes11060426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022]
Abstract
Chemical, biological, radiological, or nuclear (CBRN) contamination of the environment is a significant threat to human health and life as well as environmental safety. It is then necessary to take actions aimed at minimizing and eliminating the threat. Depending on the type of contamination, various methods are used, including sorption, biodegradation, separation, or ion exchange processes in which membranes play an important role. The type of membrane is selected in respect of both the environment and the type of neutralized pollutants. Therefore, the production and modification of membranes are being adapted to the type of contamination and the purpose of the work. This article presents examples of membranes and their possible applications depending on the part of the environment subject to reclamation and the type of contamination.
Collapse
|
12
|
Marzouk SS, Naddeo V, Banat F, Hasan SW. Preparation of TiO 2/SiO 2 ceramic membranes via dip coating for the treatment of produced water. CHEMOSPHERE 2021; 273:129684. [PMID: 33486347 DOI: 10.1016/j.chemosphere.2021.129684] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/16/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Produced water, a by-product generated from the oil and gas extraction processes, represents a major challenge in the oil and gas industry as it is generally characterized with a very high salinity and oil content. Currently used ceramic membranes for oil-water separation suffer from the low water flux in spite of their several distinctive advantages. To overcome this limitation and to increase the water flux and oil rejection, commercial ceramic TiO2 membranes were dip coated with silica (SiO2) nanoparticles at different concentrations of 0.25, 0.50, 0.75, and 1.0 wt %. Coated membranes were characterized using scanning electron microscopy (SEM), energy-dispersive x-ray sSpectroscopy (EDS), Fourier-transform infrared spectroscopy (FTIR) and Raman Spectroscopy and contact angle. Results showed that SiO2 nanoparticles were successfully deposited on the surface of the ceramic membranes confirming the dip coating approach. Furthermore, water flux of 817, 2724, 3636, 627, and 1292 L m-2 h-1 (LMH) was reported at control, 0.25, 0.50, 0.75 and 1.0 wt%; respectively. Also, contact angle reported 75°, 50°, 40°, 24°, 0° at control, 0.25, 0.50, 0.75 and 1.0 wt%; respectively. Finally, total organic carbon (TOC) in the treated water samples reported 100, 28, 11, 9, 10, 13 mg L-1 at control, 0.25, 0.50, 0.75 and 1.0 wt%, respectively. This study can be a preliminary to further studies that accommodate industry-like conditions to help decrease the gap between ideal laboratory setups and harsh real life conditions to fully optimize and exploit the advantages of ceramic membranes in oil-water separation.
Collapse
Affiliation(s)
- Sara S Marzouk
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Vincenzo Naddeo
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II #132, 84084, Fisciano (SA), Italy
| | - Fawzi Banat
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Shadi W Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
13
|
Yin J, Tang H, Xu Z, Li N. Enhanced mechanical strength and performance of sulfonated polysulfone/Tröger's base polymer blend ultrafiltration membrane. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119138] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
In-situ investigation of wetting patterns in polymeric multibore membranes via magnetic resonance imaging. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.119026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Abstract
In this study, a red clay/nano-activated carbon membrane was investigated for the removal of oil from industrial wastewater. The sintering temperature was minimized using CaF2 powder as a binder. The fabricated membrane was characterized by its mechanical properties, average pore size, and hydrophilicity. A contact angle of 67.3° and membrane spore size of 95.46 nm were obtained. The prepared membrane was tested by a cross-flow filtration process using an oil-water emulsion, and showed a promising permeate flux and oil rejection results. During the separation of oil from water, the flux increased from 191.38 to 284.99 L/m2 on increasing the applied pressure from 3 to 6 bar. In addition, high water permeability was obtained for the fabricated membrane at low operating pressure. However, the membrane flux decreased from 490.28 to 367.32 L/m2·h due to oil deposition on the membrane surface; regardless, the maximum oil rejection was 99.96% at an oil concentration of 80 NTU and a pressure of 5 bar. The fabricated membrane was negatively charged, as were the oil droplets, thereby facilitating membrane purification through backwashing. The obtained ceramic membrane functioned well as a hydrophilic membrane and showed potential for use in oil wastewater treatment.
Collapse
|
16
|
Wan Ikhsan SN, Yusof N, Mat Nawi NI, Bilad MR, Shamsuddin N, Aziz F, Ismail AF. Halloysite Nanotube-Ferrihydrite Incorporated Polyethersulfone Mixed Matrix Membrane: Effect of Nanocomposite Loading on the Antifouling Performance. Polymers (Basel) 2021; 13:441. [PMID: 33573140 PMCID: PMC7866554 DOI: 10.3390/polym13030441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/25/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022] Open
Abstract
Membrane filtration is an attractive process in water and wastewater treatment, but largely restricted by membrane fouling. In this study, the membrane fouling issue is addressed by developing polyethersulfone (PES)-based mixed matrix membranes (MMMs) with the incorporation of hydrophilic nanoparticles as an additive. Ultrafiltration MMMs were successfully fabricated by incorporating different loadings of halloysite nanotube-ferrihydrates (HNT-HFO) into a polyethersulfone (PES) matrix and their performance was evaluated for the separation of bovine serum albumin (BSA) solution and oil/water emulsion. The results show that wettability is endowed to the membrane by introducing the additive aided by the presence of abundant -OH groups from the HFO. The loading of additive also leads to more heterogeneous surface morphology and higher pure water fluxes (516.33-640.82 L/m2h) more than twice that of the pristine membrane as reference (34.69 L/m2h) without affecting the rejection. The MMMs also provide much enhanced antifouling properties. The filtration results indicate that the flux recovery ratio of the modified membrane reached 100% by washing with only distilled water and a total flux recovery ratio of >98% ± 0.0471 for HNT-HFO-loaded membranes in comparison with 59% ± 0.0169 for pristine PES membrane.
Collapse
Affiliation(s)
- Syarifah Nazirah Wan Ikhsan
- Advanced Membrane Technology Research Centre (AMTEC), N29A, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia; (S.N.W.I.); (F.A.); (A.F.I.)
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Norhaniza Yusof
- Advanced Membrane Technology Research Centre (AMTEC), N29A, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia; (S.N.W.I.); (F.A.); (A.F.I.)
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Normi Izati Mat Nawi
- Department of Chemical Engineering, Universiti Teknologi Petronas (UTP), Bandar Seri Iskandar 32610, Malaysia; (N.I.M.N.); (M.R.B.)
| | - Muhammad Roil Bilad
- Department of Chemical Engineering, Universiti Teknologi Petronas (UTP), Bandar Seri Iskandar 32610, Malaysia; (N.I.M.N.); (M.R.B.)
| | - Norazanita Shamsuddin
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Bandar Seri Begawan BE1410, Brunei;
| | - Farhana Aziz
- Advanced Membrane Technology Research Centre (AMTEC), N29A, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia; (S.N.W.I.); (F.A.); (A.F.I.)
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), N29A, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia; (S.N.W.I.); (F.A.); (A.F.I.)
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| |
Collapse
|
17
|
Bang Y, Obaid M, Jang M, Lee J, Lim J, Kim IS. Influence of bore fluid composition on the physiochemical properties and performance of hollow fiber membranes for ultrafiltration. CHEMOSPHERE 2020; 259:127467. [PMID: 32593811 DOI: 10.1016/j.chemosphere.2020.127467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Porous hollow fiber polysulfone (PSf) membranes were fabricated via a phase-inversion process and their performance during ultrafiltration (UF) was evaluated. The effects of the composition and concentration (0-50%) of different bore fluid mixtures, including N-methyl-2-pyrrolidone (NMP)/water, glycerol (G)/water, and ethylene glycol (EG)/water (in comparison with pure deionized water), on the structure, physicochemical properties, and performance of the fabricated membranes was investigated. Using these various bore fluid mixtures altered the thermodynamic and kinetic properties of the phase inversion system, and changed the morphology and structure of the fabricated membranes, especially on the lumen side. Increasing concentrations of NMP, G, and EG in the bore fluid resulted in increased pore size, porosity, and hydrophilicity. These bore fluid mixtures exhibited a strong influence on the perm-selectivity of the as-spun hollow fiber membranes. The membrane fabricated using 50% NMP/water as the bore fluid mixture exhibited the highest water flux of 166.98 LMH with a bovine serum albumin rejection rate of more than 97%. Overall, this study introduces an easy and effective way to control the structure of the membrane through bore fluid modification and shows how the inner skin layer properties can have a remarkable effect on water permeance, even in the out-in filtration test.
Collapse
Affiliation(s)
- Yuna Bang
- Global Desalination Research Center (GDRC), School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, South Korea
| | - M Obaid
- Global Desalination Research Center (GDRC), School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, South Korea; Chemical Engineering Department, Faculty of Engineering, Minia University, El-Minia, 61111, Egypt
| | - Mihee Jang
- Global Desalination Research Center (GDRC), School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, South Korea
| | - Jangho Lee
- Global Desalination Research Center (GDRC), School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, South Korea
| | - Joohwan Lim
- Global Desalination Research Center (GDRC), School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, South Korea
| | - In S Kim
- Global Desalination Research Center (GDRC), School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, South Korea.
| |
Collapse
|
18
|
Facile pore structure control of poly(vinylidene fluoride) membrane for oil/water separation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117305] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
19
|
Gronwald O, Frost I, Ulbricht M, Kouchaki Shalmani A, Panglisch S, Grünig L, Handge UA, Abetz V, Heijnen M, Weber M. Hydrophilic poly(phenylene sulfone) membranes for ultrafiltration. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Chen W, Long N, Xiao T, Yang X. Tuning the Pore Structure of Poly(vinylidene fluoride) Membrane for Efficient Oil/Water Separation: A Novel Vapor-Induced Phase Separation Method Based on a Lower Critical Solution Temperature System. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02462] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Wei Chen
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Nengbing Long
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Tonghu Xiao
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Xing Yang
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
- Institute for Frontier Materials, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia
| |
Collapse
|
21
|
Tavangar T, Zokaee Ashtiani F, Karimi M. Morphological and performance evaluation of highly sulfonated polyethersulfone/polyethersulfone membrane for oil/water separation. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02202-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Li Z, Xu ZL, Huang BQ, Li YX, Wang M. Three-channel stainless steel hollow fiber membrane with inner layer modified by nano-TiO2 coating method for the separation of oil-in-water emulsions. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.03.102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Wypysek D, Rall D, Wiese M, Neef T, Koops GH, Wessling M. Shell and lumen side flow and pressure communication during permeation and filtration in a multibore polymer membrane module. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
24
|
Tanudjaja HJ, Hejase CA, Tarabara VV, Fane AG, Chew JW. Membrane-based separation for oily wastewater: A practical perspective. WATER RESEARCH 2019; 156:347-365. [PMID: 30928529 DOI: 10.1016/j.watres.2019.03.021] [Citation(s) in RCA: 221] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/26/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
The large volumes of oily wastewater generated by various industries, such as oil and gas, food and beverage, and metal processing, need to be de-oiled prior to being discharged into the environment. Compared to conventional technologies such as dissolved air flotation (DAF), coagulation or solvent extraction, membrane filtration can treat oily wastewater of a much broader compositional range and still ensure high oil removals. In the present review, various aspects related to the practical implementation of membranes for the treatment of oily wastewater are summarized. First, sources and composition of oily wastewater, regulations that stipulate the extent of treatment needed before discharge, and the conventional technologies that enable such treatment are appraised. Second, commercially available membranes, membrane modules, operation modes and hybrids are overviewed, and their economics are discussed. Third, challenges associated with membrane filtration are examined, along with means to quantify and mitigate membrane fouling. Finally, perspectives on state-of-the-art techniques to facilitate better monitoring and control of such systems are briefly discussed.
Collapse
Affiliation(s)
- Henry J Tanudjaja
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 37459, Singapore
| | - Charifa A Hejase
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Volodymyr V Tarabara
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Anthony G Fane
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore
| | - Jia Wei Chew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 37459, Singapore; Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore.
| |
Collapse
|
25
|
Kumar M, RaoT. S, Isloor AM, Ibrahim GS, Inamuddin, Ismail N, Ismail AF, Asiri AM. Use of cellulose acetate/polyphenylsulfone derivatives to fabricate ultrafiltration hollow fiber membranes for the removal of arsenic from drinking water. Int J Biol Macromol 2019; 129:715-727. [DOI: 10.1016/j.ijbiomac.2019.02.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/11/2019] [Accepted: 02/03/2019] [Indexed: 12/07/2022]
|
26
|
Back JO, Brandstätter R, Spruck M, Koch M, Penner S, Rupprich M. Parameter Screening of PVDF/PVP Multi-Channel Capillary Membranes. Polymers (Basel) 2019; 11:polym11030463. [PMID: 30960447 PMCID: PMC6473566 DOI: 10.3390/polym11030463] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/14/2019] [Accepted: 03/06/2019] [Indexed: 12/05/2022] Open
Abstract
The increasing research in the field of polymeric multi-channel membranes has shown that their mechanical stability is beneficial for a wide range of applications. The more complex interplay of formation process parameters compared to a single-channel geometry makes an investigation using Design of Experiments (DoE) appealing. In this study, seven-channel capillary membranes were fabricated in a steam–dry–wet spinning process, while varying the composition of the polymer solution and the process temperatures in a three-level fractional factorial linear screening design. The polymers polyvinylidene flouride (PVDF) was the chemically resistant main polymer and polyvinylpyrrolidone (PVP) was added as hydrophilic co-polymer. Scanning electron microscopy and atomic force microscopy were applied to study the membrane morphology. Fabrication process conditions were established to yield PVDF/PVP multi-channel membranes, which reached from high flux (permeability P = 321.4L/m2/h/bar, dextran 500 kDa retention R = 18.3%) to high retention (P = 66.8L/m2/h/bar, R = 80.0%). The concentration of the main polymer PVDF and the molecular weight of the co-polymer PVP showed linear relations with both P and R. The permeability could be increased using sodium hypochlorite post-treatment, although retention was slightly compromised. The obtained membranes may be suitable for micro- or ultra-filtration and, at the same time, demonstrate the merits and limitations of DoE for multi-channel membrane screening.
Collapse
Affiliation(s)
- Jan O Back
- Department of Environmental, Process & Energy Engineering, MCI-The Entrepreneurial School, Maximilianstrasse 2, 6020 Innsbruck, Austria.
| | - Rupert Brandstätter
- Department of Environmental, Process & Energy Engineering, MCI-The Entrepreneurial School, Maximilianstrasse 2, 6020 Innsbruck, Austria.
| | - Martin Spruck
- Department of Environmental, Process & Energy Engineering, MCI-The Entrepreneurial School, Maximilianstrasse 2, 6020 Innsbruck, Austria.
| | - Marc Koch
- Department of Environmental, Process & Energy Engineering, MCI-The Entrepreneurial School, Maximilianstrasse 2, 6020 Innsbruck, Austria.
| | - Simon Penner
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, 6020 Innsbruck, Austria.
| | - Marco Rupprich
- Department of Environmental, Process & Energy Engineering, MCI-The Entrepreneurial School, Maximilianstrasse 2, 6020 Innsbruck, Austria.
| |
Collapse
|
27
|
Ullah A, Ahmad J, Khan H, Khan SW, Zamani F, Hasan SW, Starov VM, Chew JW. Membrane oscillation and slot (pore) blocking in oil–water separation. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2018.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Plisko TV, Bildyukevich AV, Karslyan YA, Ovcharova AA, Volkov VV. Development of high flux ultrafiltration polyphenylsulfone membranes applying the systems with upper and lower critical solution temperatures: Effect of polyethylene glycol molecular weight and coagulation bath temperature. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.08.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Ahmad NA, Goh PS, Abdul Karim Z, Ismail AF. Thin Film Composite Membrane for Oily Waste Water Treatment: Recent Advances and Challenges. MEMBRANES 2018; 8:E86. [PMID: 30248932 PMCID: PMC6315848 DOI: 10.3390/membranes8040086] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/14/2018] [Accepted: 09/20/2018] [Indexed: 12/18/2022]
Abstract
Oily wastewater discharge from various industry processes and activities have caused dramatic impacts on the human and environment. Treatment of oily wastewater using membrane technology has gained worldwide attention due to its efficiency in removing the amount and concentration of oil and grease as well as other specific pollutants in order to be reused or to fulfill stringent discharge standard. The application of thin film composite (TFC) membrane in reverse osmosis (RO) and forward osmosis (FO) for oily wastewater treatment is an emerging and exciting alternative in this field. This review presents the recent and distinctive development of TFC membranes to address the issues related to oily wastewater treatment. The recent advances in terms of TFC membrane design and separation performance evaluation are reviewed. This article aims to provide useful information and strategies, in both scientific knowledge advancement and practical implementation point of view, for the application TFC membrane for oily wastewater treatment.
Collapse
Affiliation(s)
- Nor Akalili Ahmad
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malayisa, Johor 81310, Malaysia.
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malayisa, Johor 81310, Malaysia.
| | - Zulhairun Abdul Karim
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malayisa, Johor 81310, Malaysia.
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malayisa, Johor 81310, Malaysia.
| |
Collapse
|
30
|
Experimental investigation of oil-in-water microfiltration assisted by Dielectrophoresis: Operational condition optimization. Chem Eng Res Des 2018. [DOI: 10.1016/j.cherd.2018.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Huang S, Ras RH, Tian X. Antifouling membranes for oily wastewater treatment: Interplay between wetting and membrane fouling. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2018.02.002] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Ghotbi S, Pirzadeh B, Mohebbi-Kalhori D, Abdollahi A. Numerical investigation of UF membrane to reduce energy consumption using double porosity approach. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 77:2907-2916. [PMID: 30065143 DOI: 10.2166/wst.2018.280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hollow fiber (HF) membranes with circular geometry, are used in many separation processes such as water and wastewater treatment. Since optimization of energy efficiency is important for wastewater treatment, the aim of this study was to investigate the effect of non-circular geometry of the inner surface of the HF on the separation performance. To this purpose, the HF bundle has been assumed as a double porous media having two porosities and permeabilities. Since these two parameters are defined by the geometry of the porous medium, any change in the geometry affects their values and the media performance. Therefore, in this study a mathematical modeling has been divided into five categories, including circular, oval, square, rectangular and triangular geometries, and their geometric properties have been calculated based on three different strategies. The results have been compared with the data obtained from literature and showed that the membrane inner surface to cross-section area ratio (a), axial permeability, and porosity in the inner region for the non-circular HF are larger than that of the circular HF and a increased 16%, 27%, 35% and 65% in ellipse, square, rectangle and triangle geometry, respectively, in comparison with the circle. Axial permeability increased 98%, 68%, 63%, and 26% for a triangle, rectangle, ellipse, and square respectively in the third strategy when compared to the circle. Due to 50% feed flow rate reduction, maximum transmembrane pressure (TMP) reduction was 85% related to the rectangular geometry in the first strategy and minimum was 55% corresponding to the triangle in the third strategy. As a increased up to 65%, TMP reduced by up to 200% and consequently energy consumption and operating costs of the system are decreased.
Collapse
Affiliation(s)
- S Ghotbi
- Department of Civil Engineering, University of Sistan and Baluchestan, Zahedan, Iran E-mail:
| | - B Pirzadeh
- Department of Civil Engineering, University of Sistan and Baluchestan, Zahedan, Iran E-mail:
| | - Davod Mohebbi-Kalhori
- Department of Chemical Engineering, University of Sistan and Baluchestan, Zahedan, Iran
| | - A Abdollahi
- Department of Civil Engineering, University of Sistan and Baluchestan, Zahedan, Iran E-mail:
| |
Collapse
|
33
|
Yang X, Wang Z, Shao L. Construction of oil-unidirectional membrane for integrated oil collection with lossless transportation and oil-in-water emulsion purification. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.11.071] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Emin C, Kurnia E, Katalia I, Ulbricht M. Polyarylsulfone-based blend ultrafiltration membranes with combined size and charge selectivity for protein separation. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2017.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Nayak MC, Isloor AM, Moslehyani A, Ismail N, Ismail A. Fabrication of novel PPSU/ZSM-5 ultrafiltration hollow fiber membranes for separation of proteins and hazardous reactive dyes. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2017.11.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
Modi A, Verma SK, Bellare J. Graphene oxide nanosheets and d-α-Tocopheryl polyethylene glycol 1000 succinate (TPGS) doping improves biocompatibility and ultrafiltration in polyethersulfone hollow fiber membranes. J Colloid Interface Sci 2017; 504:86-100. [DOI: 10.1016/j.jcis.2017.05.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 01/08/2023]
|
37
|
Carpintero-Tepole V, Brito-de la Fuente E, Torrestiana-Sánchez B. Microfiltration of oil in water (O/W) emulsions: Effect of membrane microstructure and surface properties. Chem Eng Res Des 2017. [DOI: 10.1016/j.cherd.2017.08.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
38
|
Yin Q, Zhang Q, Cui Z, Li W, Xing W. Alkali resisting polyphenylsulfone ultrafiltration membrane with tailored microstructure. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.07.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Zoubeik M, Ismail M, Salama A, Henni A. New Developments in Membrane Technologies Used in the Treatment of Produced Water: A Review. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2017. [DOI: 10.1007/s13369-017-2690-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
40
|
Fabrication and characterization of dual-layer hollow-fiber ultrafiltration membranes. JOURNAL OF POLYMER RESEARCH 2017. [DOI: 10.1007/s10965-017-1271-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
41
|
Gebru KA, Das C. Effects of solubility parameter differences among PEG, PVP and CA on the preparation of ultrafiltration membranes: Impacts of solvents and additives on morphology, permeability and fouling performances. Chin J Chem Eng 2017. [DOI: 10.1016/j.cjche.2016.11.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Lawrence Arockiasamy D, Alhoshan M, Alam J, Muthumareeswaran MR, Figoli A, Arun Kumar S. Separation of proteins and antifouling properties of polyphenylsulfone based mixed matrix hollow fiber membranes. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2016.10.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
43
|
Luo L, Chung TS, Weber M, Staudt C, Maletzko C. Molecular interaction between acidic sPPSU and basic HPEI polymers and its effects on membrane formation for ultrafiltration. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2016.11.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Soyekwo F, Zhang Q, Gao R, Qu Y, Lin C, Huang X, Zhu A, Liu Q. Cellulose nanofiber intermediary to fabricate highly-permeable ultrathin nanofiltration membranes for fast water purification. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2016.11.019] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Karakulski K, Gryta M. The application of ultrafiltration for treatment of ships generated oily wastewater. CHEMICAL PAPERS 2016. [DOI: 10.1007/s11696-016-0108-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
46
|
Feng Y, Han G, Zhang L, Chen SB, Chung TS, Weber M, Staudt C, Maletzko C. Rheology and phase inversion behavior of polyphenylenesulfone (PPSU) and sulfonated PPSU for membrane formation. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.06.064] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Luo L, Zhou Z, Chung TS, Weber M, Staudt C, Maletzko C. Experiments and Modeling of Boric Acid Permeation through Double-Skinned Forward Osmosis Membranes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:7696-7705. [PMID: 27280490 DOI: 10.1021/acs.est.5b06166] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Boron removal is one of the great challenges in modern wastewater treatment, owing to the unique small size and fast diffusion rate of neutral boric acid molecules. As forward osmosis (FO) membranes with a single selective layer are insufficient to reject boron, double-skinned FO membranes with boron rejection up to 83.9% were specially designed for boron permeation studies. The superior boron rejection properties of double-skinned FO membranes were demonstrated by theoretical calculations, and verified by experiments. The double-skinned FO membrane was fabricated using a sulfonated polyphenylenesulfone (sPPSU) polymer as the hydrophilic substrate and polyamide as the selective layer material via interfacial polymerization on top and bottom surfaces. A strong agreement between experimental data and modeling results validates the membrane design and confirms the success of model prediction. The effects of key parameters on boron rejection, such as boron permeability of both selective layers and structure parameter, were also investigated in-depth with the mathematical modeling. This study may provide insights not only for boron removal from wastewater, but also open up the design of next generation FO membranes to eliminate low-rejection molecules in wider applications.
Collapse
Affiliation(s)
- Lin Luo
- NUS Graduate School for Integrative Science and Engineering, National University of Singapore , Singapore 117456
- Department of Chemical and Biomolecular Engineering, National University of Singapore , Singapore 117585
| | - Zhengzhong Zhou
- School of Chemistry & Chemical Engineering, Jiangsu University , 301 Xuefu Road, Zhenjiang, Jiangsu Province, P. R. China 212013
| | - Tai-Shung Chung
- NUS Graduate School for Integrative Science and Engineering, National University of Singapore , Singapore 117456
- Department of Chemical and Biomolecular Engineering, National University of Singapore , Singapore 117585
| | - Martin Weber
- Advanced Materials & Systems Research, BASF SE, GM-B001, 67056 Ludwigshafen, Germany
| | - Claudia Staudt
- Advanced Materials & Systems Research, BASF SE, GM-B001, 67056 Ludwigshafen, Germany
| | - Christian Maletzko
- Performance Materials, BASF SE, G-PM/PU-F206, 67056 Ludwigshafen, Germany
| |
Collapse
|
48
|
Zhu L, Chen M, Dong Y, Tang CY, Huang A, Li L. A low-cost mullite-titania composite ceramic hollow fiber microfiltration membrane for highly efficient separation of oil-in-water emulsion. WATER RESEARCH 2016; 90:277-285. [PMID: 26748205 DOI: 10.1016/j.watres.2015.12.035] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 12/10/2015] [Accepted: 12/19/2015] [Indexed: 05/04/2023]
Abstract
Oil-in-water (O/W) emulsion is considered to be difficult to treat. In this work, a low-cost multi-layer-structured mullite-titania composite ceramic hollow fiber microfiltration membrane was fabricated and utilized to efficiently remove fine oil droplets from (O/W) emulsion. In order to reduce membrane cost, coal fly ash was effectively recycled for the first time to fabricate mullite hollow fiber with finger-like and sponge-like structures, on which a much more hydrophilic TiO2 layer was further deposited. The morphology, crystalline phase, mechanical and surface properties were characterized in details. The filtration capability of the final composite membrane was assessed by the separation of a 200 mg·L(-1) synthetic (O/W) emulsion. Even with this microfiltration membrane, a TOC removal efficiency of 97% was achieved. Dilute NaOH solution backwashing was used to effectively accomplish membrane regeneration (∼96% flux recovery efficiency). This study is expected to guide an effective way to recycle waste coal fly ash not only to solve its environmental problems but also to produce a high-valued mullite hollow fiber membrane for highly efficient separation application of O/W emulsion with potential simultaneous functions of pure water production and oil resource recovery.
Collapse
Affiliation(s)
- Li Zhu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, PR China; Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, PR China
| | - Mingliang Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, PR China; Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, PR China
| | - Yingchao Dong
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, PR China; Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, PR China.
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong
| | - Aisheng Huang
- Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, PR China
| | - Lingling Li
- School of Chemistry and Chemical Engineering, South China University of Technology, PR China
| |
Collapse
|
49
|
Mondal S. Polymeric membranes for produced water treatment: an overview of fouling behavior and its control. REV CHEM ENG 2016. [DOI: 10.1515/revce-2015-0027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
AbstractProduced water (PW) from the oil/gas field is an important waste stream. Due to its highly pollutant nature and large volume of generation, the management of PW is a significant challenge for the petrochemical industry. The treatment of PW can improve the economic viability of oil and gas exploration, and the treated water can provide a new source of water in the water-scarce region for some beneficial uses. The reverse osmosis (RO) and selective nanofiltration (NF) membrane treatment of PW can reduce the salt and organic contents to acceptable levels for some beneficial uses, such as irrigation, and different industrial reuses. However, membrane fouling is a major obstacle for the membrane-based treatment of PW. In this review, the author discusses the polymeric membrane (mainly RO/NF) fouling during PW treatment. Membrane fouling mechanisms by various types of foulants, such as organic, inorganic, colloidal, and biological matters, are discussed. The review concludes with some of the measures to control fouling by membrane surface modification approaches.
Collapse
|
50
|
Arumugham T, Kaleekkal NJ, Rana D, Doraiswamy M. Separation of oil/water emulsions using nano MgO anchored hybrid ultrafiltration membranes for environmental abatement. J Appl Polym Sci 2015. [DOI: 10.1002/app.42848] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Thanigaivelan Arumugham
- Membrane Laboratory, Department of Chemical Engineering; Anna University; Chennai 600025 India
| | - Noel Jacob Kaleekkal
- Membrane Laboratory, Department of Chemical Engineering; Anna University; Chennai 600025 India
| | - Dipak Rana
- Department of Chemical and Biological Engineering; Industrial Membrane Research Institute, University of Ottawa; 161 Louis Pasteur St. Ottawa, Ontario Canada K1N 6N5
| | - Mohan Doraiswamy
- Membrane Laboratory, Department of Chemical Engineering; Anna University; Chennai 600025 India
| |
Collapse
|