1
|
Golubev G, Sokolov S, Rokhmanka T, Makaev S, Borisov I, Khashirova S, Volkov A. High Efficiency Membranes Based on PTMSP and Hyper-Crosslinked Polystyrene for Toxic Volatile Compounds Removal from Wastewater. Polymers (Basel) 2022; 14:polym14142944. [PMID: 35890720 PMCID: PMC9321245 DOI: 10.3390/polym14142944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/30/2022] [Accepted: 07/16/2022] [Indexed: 02/01/2023] Open
Abstract
For the first time, membranes based on poly(1-trimethylsilyl-1-propyne) (PTMSP) with 5–50 wt% loading of hyper-crosslinked polystyrene sorbent particles (HCPS) were obtained; the membranes were investigated for the problem of effective removal of volatile organic compounds from aqueous solutions using vacuum pervaporation. The industrial HCPS sorbent Purolite Macronet™ MN200 was chosen due to its high sorption capacity for organic solvents. It has been found that the membranes are asymmetric when HCPS content is higher than 30 wt%; scanning electron microscopy of the cross-sections the membranes demonstrate that they have a clearly defined thin layer, consisting mainly of PTMSP, and a thick porous layer, consisting mainly of HCPS. The transport and separation characteristics of PTMSP membranes with different HCPS loading were studied during the pervaporation separation of binary and multicomponent mixtures of water with benzene, toluene and xylene. It was shown that the addition of HCPS up to 30 wt% not only increases the permeate fluxes by 4–7 times, but at the same time leads to 1.5–2 fold increase in the separation factor. It was possible to obtain separation factors exceeding 1000 for all studied mixtures at high permeate fluxes (0.5–1 kg/m2∙h) in pervaporation separation of binary solutions.
Collapse
Affiliation(s)
- Georgy Golubev
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky prospekt, 119991 Moscow, Russia; (S.S.); (T.R.); (S.M.); (I.B.); (A.V.)
- Correspondence: ; Tel.: +7-495-647-59-27 (ext. 2-02)
| | - Stepan Sokolov
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky prospekt, 119991 Moscow, Russia; (S.S.); (T.R.); (S.M.); (I.B.); (A.V.)
| | - Tatyana Rokhmanka
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky prospekt, 119991 Moscow, Russia; (S.S.); (T.R.); (S.M.); (I.B.); (A.V.)
| | - Sergey Makaev
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky prospekt, 119991 Moscow, Russia; (S.S.); (T.R.); (S.M.); (I.B.); (A.V.)
| | - Ilya Borisov
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky prospekt, 119991 Moscow, Russia; (S.S.); (T.R.); (S.M.); (I.B.); (A.V.)
| | - Svetlana Khashirova
- Department of Organic Chemistry and Macromolecular Compounds, Kabardino-Balkar State University named after H.M. Berbekov, 173 Chernyshevsky St., 360004 Nalchik, Kabardino-Balkarian Republic, Russia;
| | - Alexey Volkov
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky prospekt, 119991 Moscow, Russia; (S.S.); (T.R.); (S.M.); (I.B.); (A.V.)
| |
Collapse
|
2
|
Ahmadi M, Ansaloni L, Hillestad M, Deng L. Solvent Regeneration by Thermopervaporation in Subsea Natural Gas Dehydration: An Experimental and Simulation Study. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mahdi Ahmadi
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim N-7491, Norway
| | - Luca Ansaloni
- Department of Sustainable Energy Technology, SINTEF Industry, Oslo 0373, Norway
| | - Magne Hillestad
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim N-7491, Norway
| | - Liyuan Deng
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim N-7491, Norway
| |
Collapse
|
3
|
Dong Y, Dai X, Zhao L, Gao L, Xie Z, Zhang J. Review of Transport Phenomena and Popular Modelling Approaches in Membrane Distillation. MEMBRANES 2021; 11:membranes11020122. [PMID: 33567617 PMCID: PMC7915881 DOI: 10.3390/membranes11020122] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 11/16/2022]
Abstract
In this paper, the transport phenomena in four common membrane distillation (MD) configurations and three popular modelling approaches are introduced. The mechanism of heat transfer on the feed side of all configurations are the same but are distinctive from each other from the membrane interface to the bulk permeate in each configuration. Based on the features of MD configurations, the mechanisms of mass and heat transfers for four configurations are reviewed together from the bulk feed to the membrane interface on the permeate but reviewed separately from the interface to the bulk permeate. Since the temperature polarisation coefficient cannot be used to quantify the driving force polarisation in Sweeping Gas MD and Vacuum MD, the rate of driving force polarisation is proposed in this paper. The three popular modelling approaches introduced are modelling by conventional methods, computational fluid dynamics (CFD) and response surface methodology (RSM), which are based on classic transport mechanism, computer science and mathematical statistics, respectively. The default assumptions, area for applications, advantages and disadvantages of those modelling approaches are summarised. Assessment and comparison were also conducted based on the review. Since there are only a couple of full-scale plants operating worldwide, the modelling of operational cost of MD was only briefly reviewed. Gaps and future studies were also proposed based on the current research trends, such as the emergence of new membranes, which possess the characteristics of selectivity, anti-wetting, multilayer and incorporation of inorganic particles.
Collapse
Affiliation(s)
- Yan Dong
- Department of Oil Engineering, Shengli College China University of Petroleum, Dongying 257061, China; (Y.D.); (X.D.)
| | - Xiaodong Dai
- Department of Oil Engineering, Shengli College China University of Petroleum, Dongying 257061, China; (Y.D.); (X.D.)
| | - Lianyu Zhao
- YunFu (Foshan) R&D Center of Hydrogen Energy Standardization, Yunfu 527326, China;
| | - Li Gao
- South East Water Corporation, P.O. Box 2268, Seaford, VIC 3198, Australia;
| | - Zongli Xie
- CSIRO Manufacturing, Private Bag 10, Clayton South MDC, VIC 3169, Australia;
| | - Jianhua Zhang
- Institute for Sustainable Industries & Liveable Cities, Victoria University, Melbourne, VIC 8001, Australia
- Correspondence:
| |
Collapse
|
4
|
Golubev GS, Borisov IL, Volkov VV, Volkov AV. High-Performance Reinforced PTMSP Membranes for Thermopervaporation Removal of Alcohols from Aqueous Media. MEMBRANES AND MEMBRANE TECHNOLOGIES 2020. [DOI: 10.1134/s2517751620010047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
5
|
Golubev GS, Borisov IL, Volkov AV, Volkov VV. Poly(trimethylsilylpropyne) Membranes for Removal of Alcohol Fermentation Products by Thermopervaporation with a Porous Condenser. MEMBRANES AND MEMBRANE TECHNOLOGIES 2019. [DOI: 10.1134/s2517751619050032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
6
|
Thermopervaporation for regeneration of triethylene glycol (TEG):Experimental and model development. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117205] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Novel Polyheteroarylene Membranes for Separation of Methanol‒Hexane Mixture by Pervaporation. Sci Rep 2018; 8:17849. [PMID: 30552355 PMCID: PMC6294803 DOI: 10.1038/s41598-018-36118-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/13/2018] [Indexed: 11/28/2022] Open
Abstract
Polymer membranes with improved transport properties are required for effective separation of organic mixtures (such as methanol‒hexane system) by combination of pervaporation and azeotropic distillation. The present work is devoted to comparative study of two types of membranes based on poly(amidoimide acid) with 2,2′-biquinoline-6,6′ units in the backbone; the objects were prepared (i) from the initial polymer and (ii) from the polymer-metal complex (with Cu(I)). Thermo-mechanical and mass spectrometric investigations demonstrated good operational properties of the samples. Density measurements and SEM analysis revealed that the structure formed in polymer-metal complex is more compact as compared to that of the pure polymer membrane. Mass transfer processes of methanol and hexane through both kinds of membranes were studied by sorption, desorption and pervaporation tests. The values of equilibrium sorption degree, the Flory–Huggins parameter, and diffusion coefficient were determined for the obtained membranes. The pervaporation data allowed calculating permeability and selectivity of membranes in addition to the flux and the separation factor. The membrane based on polymer-Cu(I) complex allowed separating the methanol‒hexane azeotropic mixture with a separation factor of 980 and pervaporation separation index equal to 66.6; therefore, this process is significantly more effective than separation procedures involving other known membranes.
Collapse
|
8
|
Golubev GS, Borisov IL, Volkov VV. Performance of Commercial and Laboratory Membranes for Recovering Bioethanol from Fermentation Broth by Thermopervaporation. RUSS J APPL CHEM+ 2018. [DOI: 10.1134/s1070427218080177] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Influence of feed flow rate, temperature and feed concentration on concentration polarization effects during separation of water-methyl acetate solutions with high permeable hydrophobic pervaporation PDMS membrane. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Effect of plasma surface treatment of poly(dimethylsiloxane) on the permeation of pharmaceutical compounds. J Pharm Anal 2017; 7:338-342. [PMID: 29404058 PMCID: PMC5790694 DOI: 10.1016/j.jpha.2017.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/15/2017] [Accepted: 05/15/2017] [Indexed: 12/16/2022] Open
Abstract
This paper addresses the modification of poly(dimethylsiloxane), i.e. PDMS, using plasma surface treatment and a novel application of the membrane created. A set of model compounds were analysed to determine their permeation through PDMS, both with and without plasma treatment. It was found that plasma treatment reduced permeation for the majority of compounds but had little effect on some compounds, such as caffeine, with results indicating that polarity plays an important role in permeation, as is seen in human skin. Most importantly, a direct correlation was observed between plasma-modified permeation data and literature data through calculation of membrane permeability (Kp) values suggesting plasma-modified silicone membrane (PMSM) could be considered as a suitable in vivo replacement to predict clinical skin permeation.
Collapse
|
11
|
Aromatic Copolyamides with Anthrazoline Units in the Backbone: Synthesis, Characterization, Pervaporation Application. Polymers (Basel) 2016; 8:polym8100362. [PMID: 30974642 PMCID: PMC6432349 DOI: 10.3390/polym8100362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/27/2016] [Accepted: 10/10/2016] [Indexed: 11/17/2022] Open
Abstract
Copolyamides with anthrazoline units in the backbone (coPA) were synthesized and dense nonporous films were prepared by solvent evaporation. Glass transition temperature, density, and fractional free volume were determined for the dense nonporous films composed of polyamide and two of its copolymers containing 20 and 30 mol % anthrazoline units in the backbone. Transport properties of the polymer films were estimated by sorption and pervaporation tests toward methanol, toluene, and their mixtures. An increase in anthrazoline fragments content leads to an increasing degree of methanol sorption but to a decreasing degree of toluene sorption. Pervaporation of a methanol–toluene mixture was studied over a wide range of feed concentration (10–90 wt % methanol). Maximal separation factor was observed for coPA-20 containing 20 mol % fragments with anthrazoline units; maximal total flux was observed for coPA-30 with the highest fractional free volume.
Collapse
|
12
|
Volkov A, Novitsky E, Borisov I, Vasilevsky V, Volkov V. Porous condenser for thermally driven membrane processes: Gravity-independent operation. Sep Purif Technol 2016. [DOI: 10.1016/j.seppur.2016.07.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Influence of downstream pressure on pervaporation properties of PDMS and POMS based membranes. Sep Purif Technol 2016. [DOI: 10.1016/j.seppur.2015.12.057] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Waters LJ, Bhuiyan AKMMH. Ionisation effects on the permeation of pharmaceutical compounds through silicone membrane. Colloids Surf B Biointerfaces 2016; 141:553-557. [PMID: 26896663 DOI: 10.1016/j.colsurfb.2016.01.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/26/2016] [Accepted: 01/27/2016] [Indexed: 11/17/2022]
Abstract
Silicone membrane is frequently used as an in vitro skin mimic whereby experiments incorporate a range of buffered media which may vary in pH. As a consequence of such variability in pH there is a corresponding variability in the degree of ionisation which in turn, could influence permeation through the mainly hydrophobic-rich membrane structure. This study reports the effect of pH on the permeation of five model compounds (benzoic acid, benzotriazole, ibuprofen, ketoprofen and lidocaine). For the five compounds analysed, each at three distinct percentages of ionisation, it was found that the greater extent of permeation was always for the more 'neutral', i.e. more greatly unionised, species rather than the anionic or cationic species. These findings fit with the theory that the hydrophobic membrane encourages permeation of 'lipid-like' structures, i.e. the more unionised form of compounds. However, results obtained with an Inverse Gas Chromatography Surface Energy Analyser (iGC SEA) indicate the membrane surface to be an electron dense environment. In the knowledge that unionised forms of compounds permeate (rather than the charged species) this negatively charged surface was not anticipated, i.e. the basic membrane surface did not appear to affect permeation.
Collapse
Affiliation(s)
- L J Waters
- Department of Pharmacy, School of Applied Science, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK.
| | - A K M M H Bhuiyan
- Department of Pharmacy, School of Applied Science, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| |
Collapse
|
15
|
|