1
|
Qiu J, Song L, Gao F, Shen F, Meng F, Hou Y, Lu J, Zhan X, Zhang Q. Grafting Buffer Layer Strategy onto the Nanofiltration Membrane to Enhance Antifouling Properties toward Highly Efficient Desalination. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:27073-27082. [PMID: 39668556 DOI: 10.1021/acs.langmuir.4c04004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Water treatment and seawater desalination are two areas in which nanofiltration (NF) membranes have gained significant attention. The permeability and contamination resistance of NF membranes are crucial for their application in ion separation. Herein, a zwitterion monomeric N-sulfobutylpiperazine (PIPBS) was designed and synthesized through an in situ ring-opening reaction between 1,4-butylsulfonic acid lactone and piperazine. A new hydrophilic structure is formed when PIPBS is chemically grafted with piperazine-trimesoyl chloride (PIP-TMC) onto the surface of the NF membrane, increasing the water flux and improving antifouling properties. NF performance was systematically investigated with respect to both the PIPBS concentration and reaction time. In addition to higher salt retention for NaSO4 (97.3%) and MgSO4 (94.1%), the optimized PTPM also displayed better ion selectivity for Na2SO4/NaCl. Sulfonic acid groups make membranes more hydrophilic, reducing contamination, deposition, and membrane pore plugging by direct contact with contaminants. In comparison to untreated NF membranes, due to the hydration of PIPBS on the membrane surface, the water flux increased by 2.3 times with a 13.6% grafting ratio for PTPM-1. Furthermore, PTPM had superior protein fouling resistance and an excellent ability to recover flux after contamination experiments and could withstand continuous filtration operations for 60 h with a stable flux of 10.98 L m-2 h-1 bar-1. The as-prepared NF membrane's excellent water flux, selective rejection of salts, and outstanding fouling resistance make it ideal for efficient desalination, and it also provides novel insights into the design of antifouling membranes.
Collapse
Affiliation(s)
- Jie Qiu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lina Song
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- College of Chemical and Materials Engineering, Zhejiang Agricultural and Forestry University, Lin'an 311300, China
| | - Feng Gao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Fangming Shen
- Zhejiang Youngdream Li-ion Co., Ltd., Quzhou 324000, China
| | - Fandong Meng
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yang Hou
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Donghai Laboratory of Zhejiang University, Zhoushan 316000, China
| | - Jianguo Lu
- Donghai Laboratory of Zhejiang University, Zhoushan 316000, China
| | - Xiaoli Zhan
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Donghai Laboratory of Zhejiang University, Zhoushan 316000, China
| | - Qinghua Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Donghai Laboratory of Zhejiang University, Zhoushan 316000, China
| |
Collapse
|
2
|
Zhang R, Yang J, Tian J, Zhu J, Van der Bruggen B. Synergistic interfacial polymerization between hydramine/diamine and trimesoyl chloride: A novel reaction for NF membrane preparation. WATER RESEARCH 2024; 257:121745. [PMID: 38733965 DOI: 10.1016/j.watres.2024.121745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/10/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Polyester-amide (PEA) thin film composite (TFC) NF membranes have rapidly evolved towards a competitive performance, benefiting from their remarkable antifouling capability and superior chlorine resistance. In this report, a new concept of synergistic interfacial polymerization is explored, which promptly triggers the reaction between hydramines and trimesoyl chloride (TMC) in the presence of a trace amount of diamines. This rapid-start mode enables the formation of defect-free PEA films without the requirement of catalysis. A comprehensive characterization of physicochemical properties using high-resolution mass spectrometer (HRMS) reveals that the recombination and formation of a "hydramine-diamine" coupling unit plays a decisive role in activating the synergistic interfacial polymerization reaction with TMC molecules. Taking the pair of serinol and piperazine (PIP) as an example, the PEA-NF membrane fabricated with 0.1 w/v% serinol mixed with 0.04 w/v% PIP as water-soluble monomer and 0.1 w/v% TMC as oil phase monomer was found to have a pure water permeability (PWP) of 18.5 L·m-2·h-1·bar-1 and a MgSO4 rejection of 95.5 %, which surpasses almost all the reported PEA NF membranes. Findings of the current research provide more possibilities for the low-cost and rapid synthesis of high-performance PEA membranes aiming for water purification.
Collapse
Affiliation(s)
- Ruijun Zhang
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Jie Yang
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Jiayu Tian
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| | - Junyong Zhu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Heverlee B-3001, Belgium
| |
Collapse
|
3
|
Mallya DS, Abdikheibari S, Dumée LF, Muthukumaran S, Lei W, Baskaran K. Removal of natural organic matter from surface water sources by nanofiltration and surface engineering membranes for fouling mitigation - A review. CHEMOSPHERE 2023; 321:138070. [PMID: 36775036 DOI: 10.1016/j.chemosphere.2023.138070] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/25/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Given that surface water is the primary supply of drinking water worldwide, the presence of natural organic matter (NOM) in surface water presents difficulties for water treatment facilities. During the disinfection phase of the drinking water treatment process, NOM aids in the creation of toxic disinfection by-products (DBPs). This problem can be effectively solved using the nanofiltration (NF) membrane method, however NOM can significantly foul NF membranes, degrading separation performance and membrane integrity, necessitating the development of fouling-resistant membranes. This review offers a thorough analysis of the removal of NOM by NF along with insights into the operation, mechanisms, fouling, and its controlling variables. In light of engineering materials with distinctive features, the potential of surface-engineered NF membranes is here critically assessed for the impact on the membrane surface, separation, and antifouling qualities. Case studies on surface-engineered NF membranes are critically evaluated, and properties-to-performance connections are established, as well as challenges, trends, and predictions for the field's future. The effect of alteration on surface properties, interactions with solutes and foulants, and applications in water treatment are all examined in detail. Engineered NF membranes containing zwitterionic polymers have the greatest potential to improve membrane permeance, selectivity, stability, and antifouling performance. To support commercial applications, however, difficulties related to material production, modification techniques, and long-term stability must be solved promptly. Fouling resistant NF membrane development would be critical not only for the water treatment industry, but also for a wide range of developing applications in gas and liquid separations.
Collapse
Affiliation(s)
| | | | - Ludovic F Dumée
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates; Research and Innovation Center on CO2 and Hydrogen, Khalifa University, Abu Dhabi, United Arab Emirates; Center for Membrane and Advanced Water Technology, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Shobha Muthukumaran
- Institute for Sustainable Industries & Liveable Cities, College of Engineering and Science, Victoria University, Melbourne, VIC, 8001, Australia
| | - Weiwei Lei
- Institute of Frontier Materials, Deakin University, Waurn Ponds, Geelong, Victoria. 3220, Australia
| | - Kanagaratnam Baskaran
- School of Engineering, Deakin University, Waurn Ponds, Geelong, Victoria, 3216, Australia
| |
Collapse
|
4
|
Zhang H, Li Y, Miao J, Zhu X, Yang J, Zhang Q, Yang Y, Zhao J, Hu Y, Zhao Y, Chen L. N-Oxide Zwitterion Functionalized Positively Charged Polyamide Composite Membranes for Nanofiltration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:16094-16103. [PMID: 36512334 DOI: 10.1021/acs.langmuir.2c02750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
N-Oxide zwitterionic polyethyleneimine (ZPEI), a new kind of aqueous phase monomer synthesized by commercially branched polyethyleneimine (PEI) via oxidation reaction, was prepared for fabrication of thin-film composite (TFC) polyamide membranes via interfacial polymerization. The main factors, including the monomer concentration and immersion time of the aqueous phase and organic phase, were investigated. Compared with PEI-TFC membranes, the obtained optimal defect-free ZPEI-TFC membranes exhibited a lower roughness (3.3 ± 0.3 nm), a better surface hydrophilicity, and a smaller pore size (238 Da of MWCO). The positively charged ZPEI-TFC membranes (isoelectric point at pH 8.05) showed higher rejections toward both divalent cationic (MgCl2, 93.0%) and anionic (Na2SO4, 96.1%) salts with a water permeation flux of up to 81.0 L·m-2·h-1 at 6 bar, which surpassed currently reported membranes. More importantly, mainly owing to N-oxide zwitterion with strong hydration capability, ZPEI-TFC membranes displayed a high flux recovery ratio (97.0%) toward a model protein contaminant (bovine serum albumin), indicating good anti-fouling properties. Therefore, the novel N-oxide zwitterion functionalized positively charged nanofiltration membranes provide an alternative for water desalination and sewage reclamation.
Collapse
Affiliation(s)
- Hui Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin300387, China
| | - Yi Li
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin300387, China
| | - Junping Miao
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin300387, China
| | - Xinran Zhu
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin300387, China
| | - Jing Yang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin300387, China
| | - Qinglei Zhang
- Beijing Origin Water Membrane Technology Company Limited, Beijing101400, China
| | - Yanfu Yang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin300387, China
| | - Junqiang Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin300387, China
| | - Yunxia Hu
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin300387, China
| | - Yiping Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin300387, China
| | - Li Chen
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin300387, China
| |
Collapse
|
5
|
Zhang N, Cheng K, Zhang J, Li N, Yang X, Wang Z. A dual-biomimetic strategy to construct zwitterionic anti-fouling membrane with superior emulsion separation performance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
6
|
Majid H, Heidarzadeh N, Vatanpour V, Dehqan A. Surface modification of commercial reverse osmosis membranes using both hydrophilic polymer and graphene oxide to improve desalination efficiency. CHEMOSPHERE 2022; 302:134931. [PMID: 35568212 DOI: 10.1016/j.chemosphere.2022.134931] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/21/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Various methods have been applied to modify the surface of reverse osmosis (RO) membranes to modify the membrane performance to enhance the flux, rejection, and resistance to various factors of fouling. Hence, the main objective of the current study is to modify the surface of commercial RO membranes using the synergistic effect of the hydrophilic polymer and graphene oxide (GO). GO nanosheets were firstly synthesized by the modified hummer method, then characterized by FTIR, XRD, and SEM analyses. Then, the polyacrylic acid (PAA) was grafted on the membrane surface for membrane fabrication. Furthermore, effective factors of grafting such as monomer concentration, time, and temperature of polymerization were optimized. After that, different amounts of GO nanosheets were loaded in PAA optimized layer. Then, the effect of GO loading on the RO membrane structure and performance was investigated. The outcomes of membrane characterization demonstrated that modified RO membranes had a smoother surface, more negative surface charge, a little better hydrophilicity, and more thickness. Moreover, the results of PAA and GO optimization were shown that grafting 1.5 mM of PAA and loading 0.1 wt% of GO nanosheets give the best membrane performance. This membrane (GO 0.1@1.5M PAA/RO) between all modified membranes has the most water flux (37.1 L/m2h), the highest NaCl rejection (98%), and the best antifouling efficiency. Ultimately, it was concluded that the grafting of GO@PAA on the surface of a commercial RO membrane is an efficient approach for the enhancement of desalination and antifouling performance of this kind of membrane.
Collapse
Affiliation(s)
- Haddadi Majid
- Faculty of Engineering, Civil Engineering Department, Kharazmi University, Tehran, Iran
| | - Nima Heidarzadeh
- Faculty of Engineering, Civil Engineering Department, Kharazmi University, Tehran, Iran.
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, P.O. Box 15719-14911, Tehran, Iran; Research Institute of Green Chemistry, Kharazmi University, Tehran, Iran; Department of Environmental Engineering, Istanbul Technical University, 34469, Istanbul, Turkey.
| | - Ahmad Dehqan
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, P.O. Box 15719-14911, Tehran, Iran
| |
Collapse
|
7
|
Nano-filtration performance and temperature dependency of thin film composite polyamide membranes embedded with thermal responsive zwitterionic nanocapsules. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Zhang X, Tian J, Xu R, Cheng X, Zhu X, Loh CY, Fu K, Zhang R, Wu D, Ren H, Xie M. In Situ Chemical Modification with Zwitterionic Copolymers of Nanofiltration Membranes: Cure for the Trade-Off between Filtration and Antifouling Performance. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28842-28853. [PMID: 35709360 PMCID: PMC9247986 DOI: 10.1021/acsami.2c05311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Breaking the trade-off between filtration performance and antifouling property is critical to enabling a thin-film nanocomposite (TFC) nanofiltration (NF) membrane for a wide range of feed streams. We proposed a novel design route for TFC NF membranes by grafting well-defined zwitterionic copolymers of [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA) and 2-aminoethyl methacrylate hydrochloride (AEMA) on the polyamide surfaces via an in situ surface chemical modification process. The successful grafting of a zwitterionic copolymer imparted the modified NF membranes with better surface hydrophilicity, a larger actual surface area (i.e., nodular structures), and a thinner polyamide layer. As a result, the water permeability of the modified membrane (i.e., TFC-10) was triple that of the pristine TFC membrane while maintaining high Na2SO4 rejection. We further demonstrated that the TFC-10 membrane possessed exceptional antifouling properties in both static adsorption tests and three cycles of dynamic protein and humic acid fouling tests. To recap, this work provides valuable insights and strategies for the fabrication of TFC NF membranes with simultaneously enhanced filtration performance and antifouling property.
Collapse
Affiliation(s)
- Xinyu Zhang
- School
of Civil and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Jiayu Tian
- School
of Civil Engineering and Transportation, Hebei University of Technology, Tianjin 300401, PR China
| | - Ruiyang Xu
- International
Education School, Shandong Polytechnic College
(SDPC), Jining 272100, PR China
| | - Xiaoxiang Cheng
- School
of Civil and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Xuewu Zhu
- School
of Civil and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Ching Yoong Loh
- Department
of Chemical Engineering, University of Bath, Bath BA27AY, U.K.
| | - Kaifang Fu
- School
of Civil and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Ruidong Zhang
- School
of Civil and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Daoji Wu
- School
of Civil and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
- .
Phone: +44(0)1225 383246
| | - Huixue Ren
- School
of Civil and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Ming Xie
- Department
of Chemical Engineering, University of Bath, Bath BA27AY, U.K.
| |
Collapse
|
9
|
Fabrication of high performance nanofiltration membrane by construction of Noria based nanoparticles interlayer. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Chen L, Ren X, Li Y, Hu D, Feng X, Li W. Enhancing interface compatibility of UiO-66-NH2 and polyamide by incorporating dopamine into thin film nanocomposite membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120565] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Zhao Y, Li N, Shi J, Xia Y, Zhu B, Shao R, Min C, Xu Z, Deng H. Extra-thin composite nanofiltration membranes tuned by γ-cyclodextrins containing amphipathic cavities for efficient separation of magnesium/lithium ions. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120419] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
Wang Y, Yang H, Yang Y, Zhu L, Zeng Z, Liu S, Li Y, Liang Z. Poly(vinylidene fluoride) membranes with underwater superoleophobicity for highly efficient separation of oil-in-water emulsions in resisting fouling. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120298] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Wu B, Wang N, Lei JH, Shen Y, An QF. Intensification of mass transfer for zwitterionic amine monomers in interfacial polymerization to fabricate monovalent salt/antibiotics separation membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Sharabati JAD, Erkoc-Ilter S, Guclu S, Koseoglu-Imer D, Unal S, Menceloglu Y, Ozturk I, Koyuncu I. Zwitterionic polysiloxane-polyamide hybrid active layer for high performance and chlorine resistant TFC desalination membranes. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Wang J, Li SL, Guan Y, Zhu C, Gong G, Hu Y. Novel RO membranes fabricated by grafting sulfonamide group: Improving water permeability, fouling resistance and chlorine resistant performance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119919] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
16
|
Zhou B, Huang F, Gao C, Xue L. The role of ring opening reaction chemistry of sultones/lactones in the direct zwitterionization of polyamide nano-filtration membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Cheng Q, Jia X, Cheng P, Zhou P, Hu W, Cheng C, Hu H, Xia M, Liu K, Wang D. Improvement of the filtration and antifouling performance of a nanofibrous sterile membrane by a one-step grafting zwitterionic compound. NEW J CHEM 2022. [DOI: 10.1039/d2nj01800d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A zwitterionic NFM was employed as a sterile membrane for an absolute interception of 107 cfu cm−2Brevundimonas diminuta.
Collapse
Affiliation(s)
- Qin Cheng
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Xiaodan Jia
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Pan Cheng
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Pengcheng Zhou
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Wei Hu
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Cuicui Cheng
- Technical Information Center, Shandong Taipeng Group Co., Ltd, TaiAn 271600, China
| | - Hui Hu
- Humanwell Healthcare Group Co., Ltd, Wuhan 430000, China
| | - Ming Xia
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Ke Liu
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Dong Wang
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
18
|
Wang K, Wang X, Januszewski B, Liu Y, Li D, Fu R, Elimelech M, Huang X. Tailored design of nanofiltration membranes for water treatment based on synthesis-property-performance relationships. Chem Soc Rev 2021; 51:672-719. [PMID: 34932047 DOI: 10.1039/d0cs01599g] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tailored design of high-performance nanofiltration (NF) membranes is desirable because the requirements for membrane performance, particularly ion/salt rejection and selectivity, differ among the various applications of NF technology ranging from drinking water production to resource mining. However, this customization greatly relies on a comprehensive understanding of the influence of membrane fabrication methods and conditions on membrane properties and the relationships between the membrane structural and physicochemical properties and membrane performance. Since the inception of NF, much progress has been made in forming the foundation of tailored design of NF membranes and the underlying governing principles. This progress includes theories regarding NF mass transfer and solute rejection, further exploitation of the classical interfacial polymerization technique, and development of novel materials and membrane fabrication methods. In this critical review, we first summarize the progress made in controllable design of NF membrane properties in recent years from the perspective of optimizing interfacial polymerization techniques and adopting new manufacturing processes and materials. We then discuss the property-performance relationships based on solvent/solute mass transfer theories and mathematical models, and draw conclusions on membrane structural and physicochemical parameter regulation by modifying the fabrication process to improve membrane separation performance. Next, existing and potential applications of these NF membranes in water treatment processes are systematically discussed according to the different separation requirements. Finally, we point out the prospects and challenges of tailored design of NF membranes for water treatment applications. This review bridges the long-existing gaps between the pressing demand for suitable NF membranes from the industrial community and the surge of publications by the scientific community in recent years.
Collapse
Affiliation(s)
- Kunpeng Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China.
| | - Xiaomao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China.
| | - Brielle Januszewski
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
| | - Yanling Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China. .,State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Danyang Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China.
| | - Ruoyu Fu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China.
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China.
| |
Collapse
|
19
|
Bao X, Long W, Liu H, She Q. Boron and salt ion transport in electrically assisted reverse osmosis. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Huang Z, Yin S, Zhang J, Zhang N. Recent advances in membrane hydrophilic modification with plant polyphenol‐inspired coatings for enhanced oily emulsion separation. J Appl Polym Sci 2021. [DOI: 10.1002/app.50587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Zhaohe Huang
- State Key Laboratory of Safety and Control for Chemicals SINOPEC Research Institute of Safety Engineering Qingdao China
| | - Shumeng Yin
- State Key Laboratory of Safety and Control for Chemicals SINOPEC Research Institute of Safety Engineering Qingdao China
| | - Jianzhong Zhang
- State Key Laboratory of Safety and Control for Chemicals SINOPEC Research Institute of Safety Engineering Qingdao China
| | - Na Zhang
- School of Chemical Engineering and Technology Tianjin University Tianjin China
| |
Collapse
|
21
|
S E, G A, A F I, P S G, Y LT. Review on characteristics of biomaterial and nanomaterials based polymeric nanocomposite membranes for seawater treatment application. ENVIRONMENTAL RESEARCH 2021; 197:111177. [PMID: 33864792 DOI: 10.1016/j.envres.2021.111177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/17/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Membrane technology, especially nanofiltration (NF) has great attention to provide an imperative solution for water issues. The membrane is considered to be the heart in the separation plant. Understanding the membrane characteristics could allow predicting and optimizing the membrane performance namely flux, rejection and reduced fouling. The membrane development using biomaterials and nanomaterials provides a remarkable opportunity in the water application. This review focuses on the membrane characteristics of biomaterials and nanomaterials based nanofiltration. In this review, recent researches based on biomaterials and nanomaterials loaded membrane for salt rejection have been analyzed. Membrane fouling depends on the membrane characteristics and this review defined fouling as a ubiquitous bottleneck challenge that hampers the NF blooming applications. Fouling mitigation strategies via membrane modification using biomaterial (chitosan, curcumin and vanillin) and various other nanomaterials are critically reviewed. This review also highlights the membrane cleaning and focuses on concentrates disposal methods with zero liquid discharge system for resource recovery. Finally, the conclusion and future prospects of membrane technology are discussed. From this current review, it is apparent that the biomaterial and various other nanomaterials acquire exclusive properties that facilitate membrane advancement with improved capability for water treatment. Regardless of membrane material developments, still exist considerable difficulties in membrane commercialization. Thus, additional studies related to this field are needed to produce membranes with better performance for large‒scale applications.
Collapse
Affiliation(s)
- Elakkiya S
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India
| | - Arthanareeswaran G
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India.
| | - Ismail A F
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| | - Goh P S
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Lukka Thuyavan Y
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| |
Collapse
|
22
|
Rapid and robust modification of PVDF ultrafiltration membranes with enhanced permselectivity, antifouling and antibacterial performance. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118316] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
23
|
Zhang Z, Luo Y, Peng H, Chen Y, Liao RZ, Zhao Q. Deep spatial representation learning of polyamide nanofiltration membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Deng L, Li S, Qin Y, Zhang L, Chen H, Chang Z, Hu Y. Fabrication of antifouling thin-film composite nanofiltration membrane via surface grafting of polyethyleneimine followed by zwitterionic modification. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118564] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
25
|
Constructing dense and hydrophilic forward osmosis membrane by cross-linking reaction of graphene quantum dots with monomers for enhanced selectivity and stability. J Colloid Interface Sci 2021; 589:486-499. [PMID: 33486284 DOI: 10.1016/j.jcis.2021.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/31/2020] [Accepted: 01/02/2021] [Indexed: 11/22/2022]
Abstract
This paper reports a novel thin-film nanocomposite (TFN) membrane with a dense, flat, and hydrophilic polyamide (PA) layer. The atypical PA structure was obtained by the cross-linking reaction of graphene oxide quantum dots containing amino groups (NH2-GOQDs) with triacyl chloride and polyamide oligomers. And the resulting TFN membrane showed a flat (small-scale ridge structure) and smooth surface. Meanwhile, the introduction of oxygen-containing and amino functional groups increased surface hydrophilicity. The reaction of amino groups on the NH2-GOQDs with acid chloride groups and the carboxyl groups (in the linear part of the polyamide) enhanced the degree of cross-linking of the PA layer, forming a compact surface. Owning to the dense surface structure, excellent hydrophilicity, and small water transmission distance, the optimized TFN membrane exhibited an enhanced water flux of 26.57 L⋅m-2⋅h-1 with a low reverse salt flux of 6.0 g⋅m-2⋅h-1. Furthermore, nano-indentation/scratch results showed the interface adhesion between substrate and PA layer was improved due to the physical anchoring of NH2-GOQDs in the substrate. And in the long-term FO test, the TFN membrane showed stable selectivity. This work proves that the targeted structural design of the PA layer at the nanoscale will have a positive impact on desalination field.
Collapse
|
26
|
Nadizadeh Z, Mahdavi H. Grafting of zwitterion polymer on polyamide nanofiltration membranes via surface-initiated RAFT polymerization with improved antifouling properties as a new strategy. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117605] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Chen T, Wu F, Chen Z, Huo J, Zhao Y, Zhang L, Zhou J. Computer simulation of zwitterionic polymer brush grafted silica nanoparticles to modify polyvinylidene fluoride membrane. J Colloid Interface Sci 2020; 587:173-182. [PMID: 33360890 DOI: 10.1016/j.jcis.2020.11.122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/22/2020] [Accepted: 11/30/2020] [Indexed: 01/22/2023]
Abstract
Dissipative particle dynamics (DPD) simulations was adopted to investigate the modification of polyvinylidene fluoride (PVDF) membrane by adding zwitterionic polymer brush poly(sulfobetaine methacrylate)- tetraethyl orthosilicate (PSBMA-TEOS) grafted silicon nanoparticles (SNPs) to the casting solution. The effects of polymer concentration and grafting architecture (PSBMA length and SNPs grafting ratio) on membrane morphology are discussed. When the polymer concentration reaches 40%, part of the SNPs is embedded in the membrane; the optimal polymer concentration is around 25-30%. In the SNPs system with the grafting ratio of 1, some SNPs are eluted into solution during phase separation. Compared with different grafting architectures, M8-5, M10-5 and M12-5 system (Mx-y, where x represents the length of the zwitterionic polymer brush and y represents the grafting ratio of the silica nanoparticles) exhibited stable membrane morphologies. This work can provide guidance for the design and modification of organic-inorganic composite membrane and help understand the distribution of modified materials on the membrane surface.
Collapse
Affiliation(s)
- Tinglu Chen
- Guangdong Provincial Key Laboratory for Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Fenghe Wu
- Guangdong Provincial Key Laboratory for Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zheng Chen
- Guangdong Provincial Key Laboratory for Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jinhao Huo
- Guangdong Provincial Key Laboratory for Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yue Zhao
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Lizhi Zhang
- Guangdong Provincial Key Laboratory for Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jian Zhou
- Guangdong Provincial Key Laboratory for Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
28
|
An X, Zhang K, Wang Z, Ly QV, Hu Y, Liu C. Improving the water permeability and antifouling property of the nanofiltration membrane grafted with hyperbranched polyglycerol. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118417] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Mi YF, Wang N, Qi Q, Yu B, Peng XD, Cao ZH. A loose polyamide nanofiltration membrane prepared by polyether amine interfacial polymerization for dye desalination. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117079] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Liu M, He Q, Zhang K, Guo Z, Lü Z, Yu S, Gao C. Carbodiimide-assisted zwitterionic modification of poly(piperazine amide) thin-film composite membrane for enhanced separation and anti-depositing performances to cationic/anionic dye aqueous solutions. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122582. [PMID: 32334289 DOI: 10.1016/j.jhazmat.2020.122582] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
In this work, a novel method of carbodiimide-assisted zwitterionic modification was proposed and implemented to incorporate zwitterionic moieties onto poly(piperazine amide) membrane for improved water permeability and anti-depositing property, which are crucial for highly efficient nanofiltration of dye-contained effluents. Carboxyl groups of polyamide layer were firstly transferred into N-acylurea using excess l-ethyl-3-(3-(dimethylamino)propyl)-carbodiimide. Zwitterions were then incorporated through ring-opening reaction between tertiary amine groups of N-acylurea and 1, 4-butanesultone. Carbodiimide-assisted zwitterionic modification was verified by ATR-IR and XPS analyses and was found to not affect membrane pore size but significantly enhance membrane's permeation and anti-dye-deposition performances. Compared with those of virgin membrane, water permeabilities of the desired zwitterionic membrane to pure water, Congo red aqueous solution and Victoria blue B aqueous solution were higher by 42.9, 62.3 and 95.2 %, respectively, hydraulic resistances from irreversible deposition of Congo red and Victoria blue B molecules were dramatically lowered by 68.4 and 91.8 %, respectively. Furthermore, the perm-selectivity performance of the desired zwitterionic membrane in terms of molecular weight cut-off and pure water permeability was better than most of the reported zwitterionic membranes, and the separation and anti-depositing performances to both anionic and cationic dye aqueous solutions were better than commercial membrane NF270.
Collapse
Affiliation(s)
- Meihong Liu
- School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Qingyuan He
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Kaifei Zhang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Zhongwei Guo
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Zhenhua Lü
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Sanchuan Yu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
| | - Congjie Gao
- The Development Center of Water Treatment Technology, SOA, Hangzhou 310012, People's Republic of China
| |
Collapse
|
31
|
Tan L, Gong L, Wang S, Zhu Y, Zhang F, Zhang Y, Jin J. Superhydrophilic Sub-1-nm Porous Membrane with Electroneutral Surface for Nonselective Transport of Small Organic Molecules. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38778-38787. [PMID: 32846469 DOI: 10.1021/acsami.0c10272] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The study of traditional Chinese medicines (TCMs) is receiving increasing attention worldwide because of their contribution to human health. Developing an effective and sustainable method for screening TCMs is highly desired to accelerate the modernization of TCMs. In this work, we report a neutrally charged membrane made of a positively charged polyelectrolyte electrostatically assembled on a negatively charged superhydrophilic nanoporous membrane. The composite membrane possesses stable electroneutrality in a wide pH range and can precisely and nonselectively separate various charged molecules in TCMs with a transmittance higher than 90% for molecules with molecular weight (Mw) < 400 and a high rejection of 90% for molecules with Mw > 800. In addition, the membrane exhibits a superior antifouling performance, and the recovery ratio observed during a continuous cycling test of a simulated TCM solution was more than 93%. The combination of superhydrophilicity and electroneutrality in a nanoporous membrane provides a new route for designing nanofiltration membranes for highly efficient molecule separation and is promising for screening TCMs.
Collapse
Affiliation(s)
- Lu Tan
- College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Li Gong
- College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Siyan Wang
- College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Yuzhang Zhu
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Feng Zhang
- College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Yatao Zhang
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, China
| | - Jian Jin
- College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
32
|
Shan X, Li SL, Fu W, Hu Y, Gong G, Hu Y. Preparation of high performance TFC RO membranes by surface grafting of small-molecule zwitterions. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118209] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Gohain MB, Pawar RR, Karki S, Hazarika A, Hazarika S, Ingole PG. Development of thin film nanocomposite membrane incorporated with mesoporous synthetic hectorite and MSH@UiO-66-NH2 nanoparticles for efficient targeted feeds separation, and antibacterial performance. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118212] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
34
|
Synergistic effect of polyvinyl alcohol sub-layer and graphene oxide condiment from active layer on desalination behavior of forward osmosis membrane. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Toward enhancing the separation and antifouling performance of thin-film composite nanofiltration membranes: A novel carbonate-based preoccupation strategy. J Colloid Interface Sci 2020; 571:155-165. [DOI: 10.1016/j.jcis.2020.03.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 01/26/2023]
|
36
|
Lü Z, Guo Z, Zhang K, Yu S, Liu M, Gao C. Separation and anti-dye-deposition properties of polyamide thin-film composite membrane modified via surface tertiary amination followed by zwitterionic functionalization. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
37
|
Fouling resistance of 3-[[3-(trimethoxysilane)-propyl] amino] propane-1-sulfonic acid zwitterion modified poly (vinylidene fluoride) membranes. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116589] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
Guan J, Fan L, Liu YN, Shi B, Yuan J, Zhang R, You X, He M, Su Y, Jiang Z. Incorporating arginine-FeIII complex into polyamide membranes for enhanced water permeance and antifouling performance. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117980] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Shintani T, Akamatsu K, Hamada S, Nakagawa K, Matsuyama H, Yoshioka T. Preparation of monoamine-incorporated polyamide nanofiltration membranes by interfacial polymerization for efficient separation of divalent anions from divalent cations. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116530] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
40
|
Zhang C, Yin C, Wang Y, Zhou J, Wang Y. Simultaneous zwitterionization and selective swelling-induced pore generation of block copolymers for antifouling ultrafiltration membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117833] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
41
|
Tang SH, Venault A, Hsieh C, Dizon GV, Lo CT, Chang Y. A bio-inert and thermostable zwitterionic copolymer for the surface modification of PVDF membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117655] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
42
|
Chiao YH, Patra T, Belle Marie Yap Ang M, Chen ST, Almodovar J, Qian X, Wickramasinghe SR, Hung WS, Huang SH, Chang Y, Lai JY. Zwitterion Co-Polymer PEI-SBMA Nanofiltration Membrane Modified by Fast Second Interfacial Polymerization. Polymers (Basel) 2020; 12:polym12020269. [PMID: 32012761 PMCID: PMC7077497 DOI: 10.3390/polym12020269] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 01/19/2020] [Accepted: 01/23/2020] [Indexed: 12/11/2022] Open
Abstract
Nanofiltration membranes have evolved as a promising solution to tackle the clean water scarcity and wastewater treatment processes with their low energy requirement and environment friendly operating conditions. Thin film composite nanofiltration membranes with high permeability, and excellent antifouling and antibacterial properties are important component for wastewater treatment and clean drinking water production units. In the scope of this study, thin film composite nanofiltration membranes were fabricated using polyacrylonitrile (PAN) support and fast second interfacial polymerization modification methods by grafting polyethylene amine and zwitterionic sulfobutane methacrylate moieties. Chemical and physical alteration in structure of the membranes were characterized using methods like ATR-FTIR spectroscopy, XPS analysis, FESEM and AFM imaging. The effects of second interfacial polymerization to incorporate polyamide layer and ‘ion pair’ characteristics, in terms of water contact angle and surface charge analysis was investigated in correlation with nanofiltration performance. Furthermore, the membrane characteristics in terms of antifouling properties were evaluated using model protein foulants like bovine serum albumin and lysozyme. Antibacterial properties of the modified membranes were investigated using E. coli as model biofoulant. Overall, the effect of second interfacial polymerization without affecting the selectivity layer of nanofiltration membrane for their potential large-scale application was investigated in detail.
Collapse
Affiliation(s)
- Yu-Hsuan Chiao
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (Y.-H.C.); (J.-Y.L.)
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (S.-T.C.); (J.A.)
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan University, Chung Li 32023, Taiwan; (M.B.M.Y.A.); (S.-H.H.); (Y.C.)
| | - Tanmoy Patra
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (T.P.); (X.Q.)
| | - Micah Belle Marie Yap Ang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan University, Chung Li 32023, Taiwan; (M.B.M.Y.A.); (S.-H.H.); (Y.C.)
| | - Shu-Ting Chen
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (S.-T.C.); (J.A.)
| | - Jorge Almodovar
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (S.-T.C.); (J.A.)
| | - Xianghong Qian
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (T.P.); (X.Q.)
| | - S. Ranil Wickramasinghe
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (S.-T.C.); (J.A.)
- Correspondence: (S.R.W.); (W.-S.H.)
| | - Wei-Song Hung
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (Y.-H.C.); (J.-Y.L.)
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan University, Chung Li 32023, Taiwan; (M.B.M.Y.A.); (S.-H.H.); (Y.C.)
- Correspondence: (S.R.W.); (W.-S.H.)
| | - Shu-Hsien Huang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan University, Chung Li 32023, Taiwan; (M.B.M.Y.A.); (S.-H.H.); (Y.C.)
- Department of Chemical and Materials Engineering, National Ilan University, Yi-Lan 26047, Taiwan
| | - Yung Chang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan University, Chung Li 32023, Taiwan; (M.B.M.Y.A.); (S.-H.H.); (Y.C.)
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (Y.-H.C.); (J.-Y.L.)
| |
Collapse
|
43
|
Thin Film Composite Forward Osmosis Membrane with Single-Walled Carbon Nanotubes Interlayer for Alleviating Internal Concentration Polarization. Polymers (Basel) 2020; 12:polym12020260. [PMID: 31979382 PMCID: PMC7077303 DOI: 10.3390/polym12020260] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 12/03/2022] Open
Abstract
This study reported a series of thin film composite (TFC) membranes with single-walled nanotubes (SWCNTs) interlayers for the forward osmosis (FO) application. Pure SWCNTs with ultrahigh length-to-diameter ratio and without any functional group were applied to form an interconnect network interlayer via strong π-π interactions. Compared to the TFC membrane without SWCNTs interlayer, our TFC membrane with optimal SWCNTs interlayer exhibited more than three times the water permeability (A) of 3.3 L m−2h−1bar−1 in RO mode with 500 mg L−1 NaCl as feed solution and nearly three-fold higher FO water flux of 62.8 L m−2 h−1 in FO mode with the deionized water as feed solution and 1 M NaCl as draw solution. Meanwhile, the TFC membrane with SWCNTs interlayer exhibited significantly reduced membrane structure parameters (S) to immensely mitigate the effect of internal concentration polarization (ICP) in support layer with micro-sized pores in favor of higher water flux. It showed that the pure SWCNTs interlayer could be an effective strategy to apply in FO membranes.
Collapse
|
44
|
Liu X, Feng P, Zhang L, Chen Y. Mussel‐inspired method to decorate commercial nanofiltration membrane for heavy metal ions removal. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4803] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xiang Liu
- College of Civil Aviation Safety EngineeringCivil Aviation Flight University of China Guanghan Sichuan 618307 China
| | - Pengyu Feng
- College of Civil Aviation Safety EngineeringCivil Aviation Flight University of China Guanghan Sichuan 618307 China
| | - Lei Zhang
- College of Civil Aviation Safety EngineeringCivil Aviation Flight University of China Guanghan Sichuan 618307 China
| | - Yonggang Chen
- College of Civil Aviation Safety EngineeringCivil Aviation Flight University of China Guanghan Sichuan 618307 China
| |
Collapse
|
45
|
Xu L, Shan B, Gao C, Xu J. Multifunctional thin-film nanocomposite membranes comprising covalent organic nanosheets with high crystallinity for efficient reverse osmosis desalination. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117398] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Fabrication of composite polyamide/Kevlar aramid nanofiber nanofiltration membranes with high permselectivity in water desalination. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117396] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Li SL, Shan X, Zhao Y, Hu Y. Fabrication of a Novel Nanofiltration Membrane with Enhanced Performance via Interfacial Polymerization through the Incorporation of a New Zwitterionic Diamine Monomer. ACS APPLIED MATERIALS & INTERFACES 2019; 11:42846-42855. [PMID: 31633329 DOI: 10.1021/acsami.9b15811] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
It is known that the polyamide (PA) barrier layer's inherent microstructure and surface physicochemical properties of thin film composite nanofiltration membrane are crucial for its separation performance. Herein, we designed and synthesized a new zwitterionic aromatic diamine monomer 3-(4-(2-((4-aminophenyl)amino)ethyl)morpholino-4-ium)propane-1-sulfonate (PPD-MEPS) through a three steps reaction, and this hydrophilic molecule was incorporated into the active layer to tailor the poly(piperazine-amide)-based nanofiltration membranes with significantly improved water permeability and antifouling properties. As a p-phenylenediamine (PPD) derivative, PPD-MEPS possesses two active amine units, which can react with trimesoyl chloride in the organic phase during the interfacial polymerization reaction process. Thus, the super-hydrophilic zwitterions were not only on the membrane surface but also across the whole PA layer to facilitate water molecule transportation. The successful augmentation of zwitterions into the PA layer was well illustrated by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) results and X-ray photoelectron spectroscopy analysis. With increasing loading content of PPD-MEPS in PIP aqueous solution, the as-fabricated nanofiltration membranes (NFMs) exhibited higher hydrophilicity, increased active layer thickness, and molecular weight cut off. When the zwitterionic monomer reached 60% to PIP for NFM-4, the water permeability went up to 9.82 L m-2 h-1 bar-1, increasing by 45%; meanwhile, the Na2SO4/NaCl selectivity increased from 2.54 to 4.03. In addition, the fouling experiments illustrated that the fouling resistance of the zwitterion-modified NFMs to bovine serum albumin was significantly improved.
Collapse
Affiliation(s)
- Shao-Lu Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, National Center for International Research on Membrane Science and Technology , Tianjin Polytechnic University , Tianjin 300387 , P. R. China
| | - Xinyao Shan
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, National Center for International Research on Membrane Science and Technology , Tianjin Polytechnic University , Tianjin 300387 , P. R. China
| | - Yuanfei Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, National Center for International Research on Membrane Science and Technology , Tianjin Polytechnic University , Tianjin 300387 , P. R. China
| | - Yunxia Hu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, National Center for International Research on Membrane Science and Technology , Tianjin Polytechnic University , Tianjin 300387 , P. R. China
| |
Collapse
|
48
|
Yang Z, Guo H, Tang CY. The upper bound of thin-film composite (TFC) polyamide membranes for desalination. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117297] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
49
|
Negatively-charged nanofiltration membrane and its hexavalent chromium removal performance. J Colloid Interface Sci 2019; 553:475-483. [DOI: 10.1016/j.jcis.2019.06.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/06/2019] [Accepted: 06/16/2019] [Indexed: 11/24/2022]
|
50
|
Ang MBMY, Trilles CA, De Guzman MR, Pereira JM, Aquino RR, Huang SH, Hu CC, Lee KR, Lai JY. Improved performance of thin-film nanocomposite nanofiltration membranes as induced by embedded polydopamine-coated silica nanoparticles. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.05.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|