1
|
Shahgodari S, Llorens J, Labanda J. Viability of Total Ammoniacal Nitrogen Recovery Using a Polymeric Thin-Film Composite Forward Osmosis Membrane: Determination of Ammonia Permeability Coefficient. Polymers (Basel) 2024; 16:1834. [PMID: 39000689 PMCID: PMC11244275 DOI: 10.3390/polym16131834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 07/17/2024] Open
Abstract
Total ammoniacal nitrogen (TAN) occurs in various wastewaters and its recovery is vital for environmental reasons. Forward osmosis (FO), an energy-efficient technology, extracts water from a feed solution (FS) and into a draw solution (DS). Asymmetric FO membranes consist of an active layer and a support layer, leading to internal concentration polarization (ICP). In this study, we assessed TAN recovery using a polymeric thin-film composite FO membrane by determining the permeability coefficients of NH4+ and NH3. Calculations employed the solution-diffusion model, Nernst-Planck equation, and film theory, applying the acid-base equilibrium for bulk concentration corrections. Initially, model parameters were estimated using sodium salt solutions as the DS and deionized water as the FS. The NH4+ permeability coefficient was 0.45 µm/s for NH4Cl and 0.013 µm/s for (NH4)2SO4 at pH < 7. Meanwhile, the NH3 permeability coefficient was 6.18 µm/s at pH > 9 for both ammonium salts. Polymeric FO membranes can simultaneously recover ammonia and water, achieving 15% and 35% recovery at pH 11.5, respectively.
Collapse
Affiliation(s)
- Shirin Shahgodari
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Joan Llorens
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Jordi Labanda
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| |
Collapse
|
2
|
Farahbakhsh J, Golgoli M, Khiadani M, Najafi M, Suwaileh W, Razmjou A, Zargar M. Recent advances in surface tailoring of thin film forward osmosis membranes: A review. CHEMOSPHERE 2024; 346:140493. [PMID: 37890801 DOI: 10.1016/j.chemosphere.2023.140493] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 10/03/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023]
Abstract
The recent advancements in fabricating forward osmosis (FO) membranes have shown promising results in desalination and water treatment. Different methods have been applied to improve FO performance, such as using mixed or new draw solutions, enhancing the recovery of draw solutions, membrane modification, and developing FO-hybrid systems. However, reliable methods to address the current issues, including reverse salt flux, fouling, and antibacterial activities, are still in progress. In recent decades, surface modification has been applied to different membrane processes, including FO membranes. Introducing nanochannels, bioparticles, new monomers, and hydrophilic-based materials to the surface layer of FO membranes has significantly impacted their performance and efficiency and resulted in better control over fouling and concentration polarization (CP) in these membranes. This review critically investigates the recent developments in FO membrane processes and fabrication techniques for FO surface-layer modification. In addition, this study focuses on the latest materials and structures used for the surface modification of FO membranes. Finally, the current challenges, gaps, and suggestions for future studies in this field have been discussed in detail.
Collapse
Affiliation(s)
- Javad Farahbakhsh
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Mitra Golgoli
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Mehdi Khiadani
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Mohadeseh Najafi
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Wafa Suwaileh
- Chemical Engineering Program, Texas A&M University at Qatar, Education City, Doha, Qatar
| | - Amir Razmjou
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia; School of Civil and Environmental Engineering, University of Technology Sydney (UTS), City Campus, Broadway, NSW, 2007, Australia; Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, Perth, WA, 6027, Australia
| | - Masoumeh Zargar
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia; Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, Perth, WA, 6027, Australia.
| |
Collapse
|
3
|
Wang X, Zhao Y, Wen X. Effect of Polyethylene Glycol Additive on the Structure and Performance of Fabric-Reinforced Thin Film Composite. Molecules 2023; 28:molecules28052318. [PMID: 36903568 PMCID: PMC10005719 DOI: 10.3390/molecules28052318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Fabric-reinforced thin film composite (TFC) membranes exhibit outstanding mechanical durability over free-standing membranes for commercial applications. In this study, polyethylene glycol (PEG) was incorporated to modify the polysulfone (PSU) supported fabric-reinforced TFC membrane for forward osmosis (FO). The effects of PEG content and molecular weight on the structure, material property and FO performance of the membrane were investigated comprehensively, and the corresponding mechanisms were revealed. The membrane prepared by using 400 g/mol PEG exhibited better FO performances than those of membranes with 1000 and 2000 g/mol PEG, and 20 wt.% was demonstrated to be the optimal PEG content in the casting solution. The permselectivity of the membrane was further improved by reducing the PSU concentration. The optimal TFC-FO membrane had a water flux (Jw) of 25.0 LMH using deionized (DI) water feed and 1 M NaCl draw solution, and the specific reverse salt flux (Js/Jw) was as low as 0.12 g/L. The degree of internal concentration polarization (ICP) was significantly mitigated. The membrane behaved superior to the commercially available fabric-reinforced membranes. This work provides a simple and low-cost approach in the development TFC-FO membrane and shows great potential in the large-scale production for practical applications.
Collapse
Affiliation(s)
- Xiao Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Correspondence: (X.W.); (Y.Z.)
| | - Yuntao Zhao
- School of Water Resources and Environment, Hebei GEO University, Shijiazhuang 050031, China
- Hebei Key Laboratory of Sustained Utilization and Development of Water Resources, Shijiazhuang 050031, China
- Correspondence: (X.W.); (Y.Z.)
| | - Xueyou Wen
- School of Water Resources and Environment, Hebei GEO University, Shijiazhuang 050031, China
| |
Collapse
|
4
|
Kim MK, Chang JW, Park K, Yang DR. Comprehensive assessment of the effects of operating conditions on membrane intrinsic parameters of forward osmosis (FO) based on principal component analysis (PCA). J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
5
|
Enhancing the applicability of forward osmosis membrane process utilizing food additives as draw solutes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
6
|
An improved perm-selectivity prediction of forward osmosis membrane by incorporating the effect of the surface charge on the solute partitioning. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Wei J, She Q, Liu X. Insights into the Influence of Membrane Permeability and Structure on Osmotically-Driven Membrane Processes. MEMBRANES 2021; 11:membranes11020153. [PMID: 33671725 PMCID: PMC7926744 DOI: 10.3390/membranes11020153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/02/2021] [Accepted: 02/11/2021] [Indexed: 11/30/2022]
Abstract
The success of osmotically-driven membrane (OM) technology relies critically on high-performance membranes. Yet trade-off of membrane properties, often further complicated by the strongly non-linear dependence of OM performance on them, imposes important constraint on membrane performance. This work systematically characterized four typical commercial osmotic membranes in terms of intrinsic separation parameters, structure and surface properties. The osmotic separation performance and membrane scaling behavior of these membranes were evaluated to elucidate the interrelationship of these properties. Experimental results revealed that membranes with smaller structural parameter (S) and higher water/solute selectivity underwent lower internal concentration polarization (ICP) and exhibited higher forward osmosis (FO) efficiency (i.e., higher ratio of experimental water flux over theoretical water flux). Under the condition with low ICP, membrane water permeability (A) had dominant effect on water flux. In this case, the investigated thin film composite membrane (TFC, A = 2.56 L/(m2 h bar), S = 1.14 mm) achieved a water flux up to 82% higher than that of the asymmetric cellulose triacetate membrane (CTA-W(P), A = 1.06 L/(m2 h bar), S = 0.73 mm). In contrast, water flux became less dependent on the A value but was affected more by membrane structure under the condition with severe ICP, and the membrane exhibited lower FO efficiency. The ratio of water flux (Jv TFC/Jv CTA-W(P)) decreased to 0.55 when 0.5 M NaCl feed solution and 2 M NaCl draw solution were used. A framework was proposed to evaluate the governing factors under different conditions and to provide insights into the membrane optimization for targeted OM applications.
Collapse
Affiliation(s)
- Jing Wei
- School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China;
- Institute of Environmental Health and Ecological Security, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
- Singapore Membrane Technology Centre, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore;
| | - Qianhong She
- Singapore Membrane Technology Centre, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore;
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Correspondence:
| | - Xin Liu
- Singapore Membrane Technology Centre, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore;
| |
Collapse
|
8
|
Batko KM, Ślęzak A. Evaluation of the Global S-Entropy Production in Membrane Transport of Aqueous Solutions of Hydrochloric Acid and Ammonia. ENTROPY (BASEL, SWITZERLAND) 2020; 22:E1021. [PMID: 33286790 PMCID: PMC7597114 DOI: 10.3390/e22091021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 11/29/2022]
Abstract
The results of experimental studies of volume osmotic fluxes (Jvkr) and fluxes of dissolved substances (Jkr) in a system containing a synthetic Nephrophan® membrane (Orwo VEB Filmfabrik, Wolfen, Germany) set in a horizontal plane are presented. The membrane separated water and aqueous HCl or ammonia solutions or aqueous ammonia and HCl solutions. It was found that for the homogeneity conditions of the solutions Jvk and Jk depend only on the concentration and composition of the solutions. For concentration polarization conditions (where concentration boundary layers are created on both sides), Jvkr and Jkr depend on both the concentration and composition of the solutions and the configuration of the membrane system. The obtained results of the Jvk and Jk flux studies were used to assess the global production of entropy for the conditions of homogeneity of solutions (ΦSk), while Jvkr and Jkr-to assess the global production of entropy for concentration polarization conditions (ΦSkr). In addition, the diffusion-convective effects and the convection effect in the global source of entropy were calculated. The concentration polarization coefficient ζir was related to modified concentration Rayleigh number, e.g., the parameter controlling the transition from non-convective (diffusive) to convective state. This number acts as a switch between two states of the concentration field: convective (with a higher entropy source value) and non-convective (with a lower entropy source value). The operation of this switch indicates the regulatory role of earthly gravity in relation to membrane transport.
Collapse
Affiliation(s)
- Kornelia M. Batko
- Department of Business Informatics, University of Economics, 40287 Katowice, Poland
| | - Andrzej Ślęzak
- Department of Health Science, Jan Dlugosz University, 13/15 Armia Krajowa Al., 42200 Częstochowa, Poland;
| |
Collapse
|
9
|
Mat Nawi NI, Bilad MR, Anath G, Nordin NAH, Kurnia JC, Wibisono Y, Arahman N. The Water Flux Dynamic in a Hybrid Forward Osmosis-Membrane Distillation for Produced Water Treatment. MEMBRANES 2020; 10:E225. [PMID: 32916834 PMCID: PMC7558008 DOI: 10.3390/membranes10090225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/31/2022]
Abstract
Standalone membrane distillation (MD) and forward osmosis (FO) have been considered as promising technologies for produced water treatment. However, standalone MD is still vulnerable to membrane-wetting and scaling problems, while the standalone FO is energy-intensive, since it requires the recovery of the draw solution (DS). Thus, the idea of coupling FO and MD is proposed as a promising combination in which the MD facilitate DS recovery for FO-and FO acts as pretreatment to enhance fouling and wetting-resistance of the MD. This study was therefore conducted to investigate the effect of DS temperature on the dynamic of water flux of a hybrid FO-MD. First, the effect of the DS temperature on the standalone FO and MD was evaluated. Later, the flux dynamics of both units were evaluated when the FO and DS recovery (via MD) was run simultaneously. Results show that an increase in the temperature difference (from 20 to 60 °C) resulted in an increase of the FO and MD fluxes from 11.17 ± 3.85 to 30.17 ± 5.51 L m-2 h-1, and from 0.5 ± 0.75 to 16.08 L m-2 h-1, respectively. For the hybrid FO-MD, either MD or FO could act as the limiting process that dictates the equilibrium flux. Both the concentration and the temperature of DS affected the flux dynamic. When the FO flux was higher than MD flux, DS was diluted, and its temperature decreased; both then lowered the FO flux until reaching an equilibrium (equal FO and MD flux). When FO flux was lower than MD flux, the DS was concentrated which increased the FO flux until reaching the equilibrium. The overall results suggest the importance of temperature and concentration of solutes in the DS in affecting the water flux dynamic hybrid process.
Collapse
Affiliation(s)
- Normi Izati Mat Nawi
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak 32610, Malaysia; (N.I.M.N.); (G.A.); (N.A.H.N.)
| | - Muhammad Roil Bilad
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak 32610, Malaysia; (N.I.M.N.); (G.A.); (N.A.H.N.)
| | - Ganeswaran Anath
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak 32610, Malaysia; (N.I.M.N.); (G.A.); (N.A.H.N.)
| | - Nik Abdul Hadi Nordin
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak 32610, Malaysia; (N.I.M.N.); (G.A.); (N.A.H.N.)
| | - Jundika Candra Kurnia
- Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia;
| | - Yusuf Wibisono
- Bioprocess Engineering, Brawijaya University, Malang 65141, Indonesia;
| | - Nasrul Arahman
- Department of Chemical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
| |
Collapse
|
10
|
Batko KM, Ślęzak A, Bajdur WM. The Role of Gravity in the Evolution of the Concentration Field in the Electrochemical Membrane Cell. ENTROPY (BASEL, SWITZERLAND) 2020; 22:E680. [PMID: 33286451 PMCID: PMC7517220 DOI: 10.3390/e22060680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 11/16/2022]
Abstract
The subject of the study was the osmotic volume transport of aqueous CuSO4 and/or ethanol solutions through a selective cellulose acetate membrane (Nephrophan). The effect of concentration of solution components, concentration polarization of solutions and configuration of the membrane system on the value of the volume osmotic flux ( J v i r ) in a single-membrane system in which the polymer membrane located in the horizontal plane was examined. The investigations were carried out under mechanical stirring conditions of the solutions and after it was turned off. Based on the obtained measurement results J v i r , the effects of concentration polarization, convection polarization, asymmetry and amplification of the volume osmotic flux and the thickness of the concentration boundary layers were calculated. Osmotic entropy production was also calculated for solution homogeneity and concentration polarization conditions. Using the thickness of the concentration boundary layers, critical values of the Rayleigh concentration number ( R C r ), i.e., the switch, were estimated between two states: convective (with higher J v i r ) and non-convective (with lower J v i r ). The operation of this switch indicates the regulatory role of earthly gravity in relation to membrane transport.
Collapse
Affiliation(s)
- Kornelia M. Batko
- Department of Business Informatics, University of Economics, 40287 Katowice, Poland
| | - Andrzej Ślęzak
- Department of Innovation and Safety Management Systems, Technical University of Czestochowa, 42200 Czestochowa, Poland;
| | - Wioletta M. Bajdur
- Department of Innovation and Safety Management Systems, Technical University of Czestochowa, 42200 Czestochowa, Poland;
| |
Collapse
|
11
|
Post-Treatment of Nanofiltration Polyamide Membrane through Alkali-Catalyzed Hydrolysis to Treat Dyes in Model Wastewater. WATER 2019. [DOI: 10.3390/w11081645] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This research focused on the influence of post-treatment using alkali-catalyzed hydrolysis with a full-aromatic nanofiltration (NF) polyamide membrane and its application to the efficient removal of selected dyes. The post-treated membranes were characterized through Fourier transform infrared spectroscopy, goniometry, and zeta-potential analysis to analyze the treatment-induced changes in the intrinsic properties of the membrane. Furthermore, the changes in permeability induced by the post-treatment were evaluated via the measurement of water flux, NaCl rejection, and molecular weight cutoff (MWCO) under different pH conditions and post-treatment times. Major changes induced by the post-treatment in terms of physicochemical properties were the enhancement of permeability, hydrophilicity, and negative charge due to the hydrolysis of the membrane’s amide bonds. Four different dyes were selected as representative organic pollutants considering the MWCO of the post-treated membranes. Compared with the pristine NF membrane, membranes post-treated at pH 13.5 showed better water flux with similar rejection of the target dyes. On the basis of these results, the proposed post-treatment method for NF membranes can be applied to the removal of organic pollutants of various size.
Collapse
|
12
|
Li M, Wang X, Porter CJ, Cheng W, Zhang X, Wang L, Elimelech M. Concentration and Recovery of Dyes from Textile Wastewater Using a Self-Standing, Support-Free Forward Osmosis Membrane. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3078-3086. [PMID: 30801184 DOI: 10.1021/acs.est.9b00446] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Forward osmosis (FO) can potentially treat textile wastewaters with less fouling than pressure-driven membrane processes such as reverse osmosis and nanofiltration. However, conventional FO membranes with asymmetric architecture experience severe flux decline caused by internal concentration polarization and fouling as dye molecules accumulate on the membrane surface. In this study, we present a new strategy for concentrating dye by using a self-standing, support-free FO membrane with a symmetric structure. The membrane was fabricated by a facile solution-casting approach based on a poly(triazole- co-oxadiazole- co-hydrazine) (PTAODH) skeleton. Due to its dense architecture, ultrasmooth surface, and high negative surface charge, the PTAODH membrane exhibits excellent FO performance with minimal fouling, low reverse salt flux, and negligible dye passage to the draw solution side. Cleaning with a 40% alcohol solution, after achieving a concentration factor of ∼10, resulted in high flux recovery ratio (98.7%) for the PTAODH membrane, whereas significant damage to the active layers of two commercial FO membranes was observed. Moreover, due to the existence of cytotoxic oxadiazole and triazole moieties in the polymer structure, our PTAODH membrane exhibited an outstanding antibacterial property with two model bacteria. Our results demonstrate the promising application of the symmetric PTAODH membrane for the concentration of textile wastewaters and its superior antifouling performance compared to state-of-the-art commercial FO membranes.
Collapse
Affiliation(s)
- Meng Li
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering , Nanjing University of Science & Technology , Nanjing 210094 , P. R. China
| | - Xi Wang
- School of Chemical Engineering , Nanjing University of Science & Technology , Nanjing 210094 , P. R. China
| | - Cassandra J Porter
- Department of Chemical and Environmental Engineering , Yale University , New Haven , Connecticut 06520-8286 , United States
| | - Wei Cheng
- Department of Chemical and Environmental Engineering , Yale University , New Haven , Connecticut 06520-8286 , United States
| | - Xuan Zhang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering , Nanjing University of Science & Technology , Nanjing 210094 , P. R. China
- Department of Chemical and Environmental Engineering , Yale University , New Haven , Connecticut 06520-8286 , United States
| | - Lianjun Wang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering , Nanjing University of Science & Technology , Nanjing 210094 , P. R. China
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering , Yale University , New Haven , Connecticut 06520-8286 , United States
| |
Collapse
|
13
|
Nguyen TT, Kook S, Lee C, Field RW, Kim IS. Critical flux-based membrane fouling control of forward osmosis: Behavior, sustainability, and reversibility. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.10.062] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
14
|
Tian E, Wang X, Wang X, Ren Y, Zhao Y, An X. Preparation and Characterization of Thin-Film Nanocomposite Membrane with High Flux and Antibacterial Performance for Forward Osmosis. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b04476] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Enling Tian
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, No. 266 Fangzheng Avenue, Shuitu Hi-tech Industrial Park, Beibei District, Chongqing 400714, China
| | - Xingzu Wang
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, No. 266 Fangzheng Avenue, Shuitu Hi-tech Industrial Park, Beibei District, Chongqing 400714, China
| | - Xiao Wang
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, No. 266 Fangzheng Avenue, Shuitu Hi-tech Industrial Park, Beibei District, Chongqing 400714, China
| | - Yiwei Ren
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, No. 266 Fangzheng Avenue, Shuitu Hi-tech Industrial Park, Beibei District, Chongqing 400714, China
| | - Yuntao Zhao
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, No. 266 Fangzheng Avenue, Shuitu Hi-tech Industrial Park, Beibei District, Chongqing 400714, China
| | - Xiaochan An
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| |
Collapse
|
15
|
Ahmad NA, Goh PS, Abdul Karim Z, Ismail AF. Thin Film Composite Membrane for Oily Waste Water Treatment: Recent Advances and Challenges. MEMBRANES 2018; 8:E86. [PMID: 30248932 PMCID: PMC6315848 DOI: 10.3390/membranes8040086] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/14/2018] [Accepted: 09/20/2018] [Indexed: 12/18/2022]
Abstract
Oily wastewater discharge from various industry processes and activities have caused dramatic impacts on the human and environment. Treatment of oily wastewater using membrane technology has gained worldwide attention due to its efficiency in removing the amount and concentration of oil and grease as well as other specific pollutants in order to be reused or to fulfill stringent discharge standard. The application of thin film composite (TFC) membrane in reverse osmosis (RO) and forward osmosis (FO) for oily wastewater treatment is an emerging and exciting alternative in this field. This review presents the recent and distinctive development of TFC membranes to address the issues related to oily wastewater treatment. The recent advances in terms of TFC membrane design and separation performance evaluation are reviewed. This article aims to provide useful information and strategies, in both scientific knowledge advancement and practical implementation point of view, for the application TFC membrane for oily wastewater treatment.
Collapse
Affiliation(s)
- Nor Akalili Ahmad
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malayisa, Johor 81310, Malaysia.
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malayisa, Johor 81310, Malaysia.
| | - Zulhairun Abdul Karim
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malayisa, Johor 81310, Malaysia.
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malayisa, Johor 81310, Malaysia.
| |
Collapse
|
16
|
Darestani M, Locq J, Millar GJ. Powering reversible actuators using forward osmosis membranes: feasibility study and modeling. SEP SCI TECHNOL 2018. [DOI: 10.1080/01496395.2018.1498519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Mariam Darestani
- Institute for Future Environments; and School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
- Centre for Infrastructure Engineering, School of Computing, Engineering and Mathematics, Western Sydney University, Sydney, New South Wales, Australia
| | - Jerome Locq
- SeaTech Engineering School, University of Toulon CS 60584 - 83041 TOULON CEDEX 9, Toulon, France
| | - Graeme J. Millar
- Institute for Future Environments; and School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| |
Collapse
|
17
|
Blandin G, Rodriguez-Roda I, Comas J. Submerged Osmotic Processes: Design and Operation to Mitigate Mass Transfer Limitations. MEMBRANES 2018; 8:membranes8030072. [PMID: 30200413 PMCID: PMC6161285 DOI: 10.3390/membranes8030072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/15/2018] [Accepted: 08/23/2018] [Indexed: 11/16/2022]
Abstract
Submerged forward osmosis (FO) is of high interest for bioreactors, such as osmotic membrane bioreactor, microalgae photobioreactor, food or bioproduct concentration where pumping through pressurized modules is a limitation due to viscosity or breakage of fragile components. However, so far, most FO efforts have been put towards cross flow configurations. This study provides, for the first time, insights on mass transfer limitations in the operation of submerged osmotic systems and offer recommendations for optimized design and operation. It is demonstrated that operation of the submerged plate and frame FO module requires draw circulation in the vacuum mode (vacuum assisted osmosis) that is in favor of the permeation flux. However, high pressure drops and dead zones occurring in classical U-shape FO draw channel strongly disadvantage this design; straight channel design proves to be more effective. External concentration polarization (ECP) is also a crucial element in the submerged FO process since mixing of the feed solution is not as optimized as in the cross flow module unless applying intense stirring. Among the mitigation techniques tested, air scouring proves to be more efficient than feed solution circulation. However, ECP mitigation methodology has to be adapted to application specificities with regards to combined/synergetic effects with fouling mitigation.
Collapse
Affiliation(s)
- Gaetan Blandin
- Laboratory of Chemical and Environmental Engineering (LEQUIA), Institute of the Environment, University of Girona, 17003 Girona, Spain.
| | - Ignasi Rodriguez-Roda
- Laboratory of Chemical and Environmental Engineering (LEQUIA), Institute of the Environment, University of Girona, 17003 Girona, Spain.
- Catalan Institute for Water Research (ICRA), 17003 Girona, Spain.
| | - Joaquim Comas
- Laboratory of Chemical and Environmental Engineering (LEQUIA), Institute of the Environment, University of Girona, 17003 Girona, Spain.
- Catalan Institute for Water Research (ICRA), 17003 Girona, Spain.
| |
Collapse
|
18
|
Abdul Rahman AFHB, Abu Seman MNB. Polyacrylic-polyethersulfone membrane modified via UV photografting for forward osmosis application. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2018; 6:4368-4379. [DOI: 10.1016/j.jece.2018.06.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
19
|
Zhao Y, Wang X, Ren Y, Pei D. Mesh-Embedded Polysulfone/Sulfonated Polysulfone Supported Thin Film Composite Membranes for Forward Osmosis. ACS APPLIED MATERIALS & INTERFACES 2018; 10:2918-2928. [PMID: 29278486 DOI: 10.1021/acsami.7b15309] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this work, mesh-embedded polysulfone (PSU)/sulfonated polysulfone (sPSU) supported thin film composite (TFC) membranes were developed for forward osmosis (FO). The robust mesh integrated in PSU/sPSU sublayer imparts impressive mechanical durability. The blending of hydrophilic sPSU in PSU sublayer affects the hydrophilicity, porosity, pore structure, and pore size of mesh-embedded PSU/sPSU substrates, and the total thickness, cross-linking degree, and roughness of the corresponding TFC-FO membrane active layers. An appropriate incorporation of sPSU not only significantly decreases the structural parameter, S of the mesh-embedded substrate to 220 μm, which is the lowest reported value for fabric backed FO membrane, but also optimizes the permselectivity of the formed active layer. Regarding the osmosis performance, TFC membranes with sPSU modified substrates gain a higher water flux (Jw) while keeping the specific reverse salt flux (Js/Jw) low. The optimal TFC-FO membrane has a Jw of 31.76 LMH with Js/Jw of 0.19 g/L in FO mode when using deionized water feed and 1 M NaCl draw solution. This paper is practical for developing TFC-FO membrane on hydrophilic support membrane materials.
Collapse
Affiliation(s)
- Yuntao Zhao
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences , Chongqing 400714, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences , Chongqing 400714, China
| | - Yiwei Ren
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences , Chongqing 400714, China
| | - Desheng Pei
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences , Chongqing 400714, China
| |
Collapse
|
20
|
Li Y, Zhao Y, Tian E, Ren Y. Preparation and characterization of novel forward osmosis membrane incorporated with sulfonated carbon nanotubes. RSC Adv 2018; 8:41032-41039. [PMID: 35557882 PMCID: PMC9091615 DOI: 10.1039/c8ra08900k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 11/22/2018] [Indexed: 01/05/2023] Open
Abstract
In this study, carbon nanotubes (CNTs) were modified with sulfonated groups and incorporated into the active layer of a forward osmosis (FO) membrane to achieve a desirable thin-film nanocomposite (TFN) FO membrane. Different concentrations of sulfonated carbon nanotubes (SCNTs) were added, and their impact on the FO membrane was also investigated, including the hydrophilicity, roughness, membrane morphology and FO performance. With the addition of SCNTs, the membrane surface got smoother and denser, and the hydrophilicity also improved significantly. Regarding FO performance, SCNTs-functionalized FO membranes exhibited higher water flux (Jw) and lower reverse salt flux (Js). The optimal Jw of 29.9 ± 1.6 LMH was achieved by using 1 M NaCl solution as the draw solution (DS) and deionized (DI) water as the feed solution (FS), almost 140% higher than the control (21.3 ± 2.1 LMH) and Js decreased to about 12%. In this study, carbon nanotubes (CNTs) were modified with sulfonated groups and incorporated into the active layer of a forward osmosis (FO) membrane to achieve a desirable thin-film nanocomposite (TFN) FO membrane.![]()
Collapse
Affiliation(s)
- Yonghao Li
- Key Laboratory of Reservoir Aquatic Environment
- Chongqing Institute of Green and Intelligent Technology
- Chinese Academy of Sciences
- Chongqing
- China
| | - Yuntao Zhao
- Key Laboratory of Reservoir Aquatic Environment
- Chongqing Institute of Green and Intelligent Technology
- Chinese Academy of Sciences
- Chongqing
- China
| | - Enling Tian
- Key Laboratory of Reservoir Aquatic Environment
- Chongqing Institute of Green and Intelligent Technology
- Chinese Academy of Sciences
- Chongqing
- China
| | - Yiwei Ren
- Key Laboratory of Reservoir Aquatic Environment
- Chongqing Institute of Green and Intelligent Technology
- Chinese Academy of Sciences
- Chongqing
- China
| |
Collapse
|
21
|
She Q, Zhang L, Wang R, Krantz WB, Fane AG. Pressure-retarded osmosis with wastewater concentrate feed: Fouling process considerations. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.08.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Zuo YC, Chi XY, Xu ZL, Guo XJ. Morphological controlling of CTA forward osmosis membrane using different solvent-nonsolvent compositions in first coagulation bath. JOURNAL OF POLYMER RESEARCH 2017. [DOI: 10.1007/s10965-017-1311-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Characterization of pore size distribution (PSD) in cellulose triacetate (CTA) and polyamide (PA) thin active layers by positron annihilation lifetime spectroscopy (PALS) and fractional rejection (FR) method. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2016.12.064] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
Nguyen TPN, Jun BM, Kwon YN. The chlorination mechanism of integrally asymmetric cellulose triacetate (CTA)-based and thin film composite polyamide-based forward osmosis membrane. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2016.09.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Mazlan NM, Marchetti P, Maples H, Gu B, Karan S, Bismarck A, Livingston AG. Organic fouling behaviour of structurally and chemically different forward osmosis membranes – A study of cellulose triacetate and thin film composite membranes. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.07.065] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
She Q, Wei J, Ma N, Sim V, Fane AG, Wang R, Tang CY. Fabrication and characterization of fabric-reinforced pressure retarded osmosis membranes for osmotic power harvesting. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.01.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|