1
|
Nguyen DV, Wu D. Recent advances in innovative osmotic membranes for resource enrichment and energy production in wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172153. [PMID: 38580129 DOI: 10.1016/j.scitotenv.2024.172153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/26/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
Wastewater is a valuable resource that we can no longer afford to overlook. By recovering the nutrients and metals it contains and generating renewable energy, we can not only meet the rising demands for natural resources but also create a more sustainable and resilient future. Forward osmosis (FO) membranes are one of the most intriguing resource recovery process technologies because of their high organic retention, economical energy usage, and straightforward operation. However, the widespread adoption of FO membranes on a full-scale basis is hindered by several issues with previous membrane products. These include limited selectivity to different types of ions, insufficient water flux, and high susceptibility to membrane fouling during extended periods of operation. Hence, it is essential to either invent new FO membranes or modify the existing ones. The objective of this work is to provide a comprehensive and organized review of up-to-date advancements in the development of innovative osmotic membrane (IOM) materials for resource recovery (RR) and energy production (EP). The paper covers several aspects, including the limitations of current osmotic membrane technologies, a review of new membranes specifically designed for effective RR/EP, their applications in various industrial fields, integrated IOM systems, recent improvements in IOM fabrication processes using artificial intelligence, and a discussion of the challenges and prospects of the potential research. In general, recently developed IOMs have proven to be highly efficient in recovering organics (>99 %), nutrients (>86 %), and precious metals (>90 %). These new membranes have also demonstrated an ability to effectively harvest osmotic energy (with power output ranging from 6 to 38 W/m2) by applied pressure in the range of 8 to 30 bar. These findings suggest that IOMs is promised for efficient resource recovery and renewable energy production.
Collapse
Affiliation(s)
- Duc Viet Nguyen
- Center for Green Chemistry and Environmental Biotechnology (GREAT), Ghent University Global Campus, 119-5 Songdomunhwa-ro, Yeonsu-gu, Incheon 21985, Republic of Korea; Department of Green Chemistry and Technology, Ghent University, Centre for Advanced Process Technology for Urban Resource recovery (CAPTURE), Ghent, Belgium
| | - Di Wu
- Center for Green Chemistry and Environmental Biotechnology (GREAT), Ghent University Global Campus, 119-5 Songdomunhwa-ro, Yeonsu-gu, Incheon 21985, Republic of Korea; Department of Green Chemistry and Technology, Ghent University, Centre for Advanced Process Technology for Urban Resource recovery (CAPTURE), Ghent, Belgium.
| |
Collapse
|
2
|
Liew ZS, Ho YC, Lau WJ, Nordin NAHM, Lai SO, Ma J. Altering substrate properties of thin film nanocomposite membrane by Al 2O 3 nanoparticles for engineered osmosis process. ENVIRONMENTAL TECHNOLOGY 2024; 45:1052-1065. [PMID: 36250395 DOI: 10.1080/09593330.2022.2137435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
The scarcity of energy and water resources is a major challenge for humanity in the twenty-first century. Engineered osmosis (EO) technologies are extensively researched as a means of producing sustainable water and energy. This study focuses on the modification of substrate properties of thin film nanocomposite (TFN) membrane using aluminium oxide (Al2O3) nanoparticles and further evaluates the performance of resultant membranes for EO process. Different Al2O3 loading ranging from zero to 0.10 wt% was incorporated into the substrate and the results showed that the hydrophilicity of substrate was increased with contact angle reduced from 74.81° to 66.17° upon the Al2O3 incorporation. Furthermore, the addition of Al2O3 resulted in the formation of larger porous structure on the bottom part of substrate which reduced water transport resistance. Using the substrate modified by 0.02 wt% Al2O3, we could produce the TFN membrane that exhibited the highest water permeability (1.32 L/m2.h.bar, DI water as a feed solution at 15 bar), decent salt rejection (96.89%), low structural parameter (532.44 μm) and relatively good pressure withstandability (>25 bar).
Collapse
Affiliation(s)
- Zhen-Shen Liew
- Civil and Environmental Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
- Centre for Urban Resource Sustainability, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - Yeek-Chia Ho
- Civil and Environmental Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
- Centre for Urban Resource Sustainability, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - Woei Jye Lau
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Nik Abdul Hadi Md Nordin
- Centre for Urban Resource Sustainability, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
- Chemical Engineering Department, Universiti Teknologi PETRONAS (UTP), Seri Iskandar, Malaysia
| | - Soon-Onn Lai
- Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Kajang, Malaysia
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, People's Republic of China
| |
Collapse
|
3
|
Rastgar M, Moradi K, Burroughs C, Hemmati A, Hoek E, Sadrzadeh M. Harvesting Blue Energy Based on Salinity and Temperature Gradient: Challenges, Solutions, and Opportunities. Chem Rev 2023; 123:10156-10205. [PMID: 37523591 DOI: 10.1021/acs.chemrev.3c00168] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Greenhouse gas emissions associated with power generation from fossil fuel combustion account for 25% of global emissions and, thus, contribute greatly to climate change. Renewable energy sources, like wind and solar, have reached a mature stage, with costs aligning with those of fossil fuel-derived power but suffer from the challenge of intermittency due to the variability of wind and sunlight. This study aims to explore the viability of salinity gradient power, or "blue energy", as a clean, renewable source of uninterrupted, base-load power generation. Harnessing the salinity gradient energy from river estuaries worldwide could meet a substantial portion of the global electricity demand (approximately 7%). Pressure retarded osmosis (PRO) and reverse electrodialysis (RED) are more prominent technologies for blue energy harvesting, whereas thermo-osmotic energy conversion (TOEC) is emerging with new promise. This review scrutinizes the obstacles encountered in developing osmotic power generation using membrane-based methods and presents potential solutions to overcome challenges in practical applications. While certain strategies have shown promise in addressing some of these obstacles, further research is still required to enhance the energy efficiency and feasibility of membrane-based processes, enabling their large-scale implementation in osmotic energy harvesting.
Collapse
Affiliation(s)
- Masoud Rastgar
- Department of Mechanical Engineering, Advanced Water Research Lab (AWRL), University of Alberta, 10-367 Donadeo Innovation Center for Engineering, Edmonton, Alberta T6G 1H9, Canada
| | - Kazem Moradi
- Department of Mechanical Engineering, Advanced Water Research Lab (AWRL), University of Alberta, 10-367 Donadeo Innovation Center for Engineering, Edmonton, Alberta T6G 1H9, Canada
- Department of Mechanical Engineering, Computational Fluid Engineering Laboratory, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Cassie Burroughs
- Department of Chemical & Materials Engineering, University of Alberta, 12-263 Donadeo Innovation Centre for Engineering, Edmonton, Alberta T6G 1H9, Canada
| | - Arman Hemmati
- Department of Mechanical Engineering, Computational Fluid Engineering Laboratory, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Eric Hoek
- Department of Civil & Environmental Engineering, University of California Los Angeles (UCLA), Los Angeles, California 90095-1593, United States
- Energy Storage & Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Mohtada Sadrzadeh
- Department of Mechanical Engineering, Advanced Water Research Lab (AWRL), University of Alberta, 10-367 Donadeo Innovation Center for Engineering, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
4
|
Wu N, Brahmi Y, Colin A. Fluidics for energy harvesting: from nano to milli scales. LAB ON A CHIP 2023; 23:1034-1065. [PMID: 36625144 DOI: 10.1039/d2lc00946c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A large amount of untapped energy sources surrounds us. In this review, we summarize recent works of water-based energy harvesting systems with operation scales ranging from miniature systems to large scale attempts. We focus particularly on the triboelectric energy, which is produced when a liquid and a solid come into contact, and on the osmotic energy, which is released when salt water and fresh water are mixed. For both techniques we display the state of the art understanding (including electrical charge separation, electro-osmotic currents and induced currents) and the developed devices. A critical discussion of present works confirms the significant progress of these water-based energy harvesting systems in all scales. However, further efforts in efficiency and performance amelioration are expected for these technologies to accelerate the industrialization and commercialization procedure.
Collapse
Affiliation(s)
- Nan Wu
- ESPCI Paris, PSL Research University, MIE-CBI, CNRS UMR 8231, 10, Rue Vauquelin, F-75231 Paris Cedex 05, France.
| | - Youcef Brahmi
- ESPCI Paris, PSL Research University, MIE-CBI, CNRS UMR 8231, 10, Rue Vauquelin, F-75231 Paris Cedex 05, France.
| | - Annie Colin
- ESPCI Paris, PSL Research University, MIE-CBI, CNRS UMR 8231, 10, Rue Vauquelin, F-75231 Paris Cedex 05, France.
| |
Collapse
|
5
|
Goh LM, Thong Z, Li WP, Ooi ST, Esa F, Ng KS, Dhalla A, Gudipati C. Development and Industrial-Scale Fabrication of Next-Generation Low-Energy Membranes for Desalination. MEMBRANES 2022; 12:membranes12050540. [PMID: 35629865 PMCID: PMC9144695 DOI: 10.3390/membranes12050540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023]
Abstract
Spiral-wound modules have been the most common configuration of packing flat-sheet membranes since the early development of polyamide (PA) membranes for water treatment applications. Conventional spiral-wound modules (SWMs) for desalination applications typically consist of several leaf sets, with each leaf set comprising feed spacers, membranes, and a permeate carrier (PC) wrapped around a permeate-collecting tube. The membrane area that can be packed into a given module diameter is limited by the overall leaf set thickness, restricting module productivity for a given membrane permeability. We describe here a novel industrial-scale method for successfully coating the polysulfone (PSf) ultrafiltration (UF) support layer directly onto a permeate carrier, instead of conventional non-woven fabric, as a precursor to the polyamide TFC coating, resulting in twofold benefits: (a) drastically simplifying the membrane fabrication process by eliminating the use of non-woven fabric and (b) increasing the throughput of each membrane module by facilitating the packing of a larger membrane area in a standard module housing. By combining the permeate carrier and membrane into a single sheet, the need for the non-woven support layer was eliminated, leading to a significantly reduced leaf set thickness, enabling a much larger membrane area to be packed in a given volume, leading to lower energy consumption per cubic meter of produced water. Molecular-weight cutoff (MWCO) values in the range of 36–96 kDa were found to be dependent on PC thickness and material. Nevertheless, the reinforced membranes were successfully fabricated with a ~9% reduction in membrane leaf thickness compared to a conventional membrane. Preliminary trials of coating a thin-film composite PA layer resulted in defect-free reverse osmosis (RO) membranes with a salt rejection of 94% and a flux of 40 L m−2 h−1 when tested against a 2000 mg/L NaCl feed solution at an operating pressure of 15 bar. Results from the testing of the 1812 and 2514 elements validated the novel concept and paved the way for further improvements towards full-scale RO membranes with the potential to be the next low-energy workhorse of the water industry.
Collapse
|
6
|
Idris SNA, Jullok N, Lau WJ, Ma’Radzi AH, Ong HL, Ramli MM, Dong CD. Modification of Thin Film Composite Pressure Retarded Osmosis Membrane by Polyethylene Glycol with Different Molecular Weights. MEMBRANES 2022; 12:282. [PMID: 35323758 PMCID: PMC8954429 DOI: 10.3390/membranes12030282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/09/2022] [Accepted: 02/16/2022] [Indexed: 11/17/2022]
Abstract
An investigation of the effect of the molecular weight of polyethylene glycol (PEG) on thin-film composite (TFC) flat sheet polysulfone membrane performance was conducted systematically, for application in forward osmosis (FO) and pressure retarded osmosis (PRO). The TFC flat sheet PSf-modified membranes were prepared via a non-solvent phase-separation technique by introducing PEGs of different molecular weights into the dope solution. The TFC flat sheet PSf-PEG membranes were characterized by SEM, FTIR and AFM. The PSf membrane modified with PEG 600 was found to have the optimum composition. Under FO mode, this modified membrane had a water permeability of 12.30 Lm-2h-1 and a power density of 2.22 Wm-2, under a pressure of 8 bar in PRO mode, using 1 M NaCl and deionized water as the draw and feed solutions, respectively. The high water permeability and good mechanical stability of the modified TFC flat sheet PSF-PEG membrane in this study suggests that this membrane has great potential in future osmotically powered generation systems.
Collapse
Affiliation(s)
- Siti Nur Amirah Idris
- Faculty of Chemical Engineering and Technology, Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi 3, Kawasan Perindustrian Jejawi, Arau 02600, Perlis, Malaysia; (S.N.A.I.); (A.H.M.); (H.L.O.)
- Centre of Excellence for Biomass Utilization & Taiwan-Malaysia Innovation Centre for Clean Water and Sustainable Energy (WISE Center), Universiti Malaysia Perlis, Lot 17, Kompleks Pusat Pengajian Jejawi 2, Jejawi, Arau 02600, Perlis, Malaysia
| | - Nora Jullok
- Faculty of Chemical Engineering and Technology, Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi 3, Kawasan Perindustrian Jejawi, Arau 02600, Perlis, Malaysia; (S.N.A.I.); (A.H.M.); (H.L.O.)
- Centre of Excellence for Biomass Utilization & Taiwan-Malaysia Innovation Centre for Clean Water and Sustainable Energy (WISE Center), Universiti Malaysia Perlis, Lot 17, Kompleks Pusat Pengajian Jejawi 2, Jejawi, Arau 02600, Perlis, Malaysia
| | - Woei Jye Lau
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia—UTM, Skudai 81310, Johor, Malaysia;
| | - Akmal Hadi Ma’Radzi
- Faculty of Chemical Engineering and Technology, Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi 3, Kawasan Perindustrian Jejawi, Arau 02600, Perlis, Malaysia; (S.N.A.I.); (A.H.M.); (H.L.O.)
- Centre of Excellence for Biomass Utilization & Taiwan-Malaysia Innovation Centre for Clean Water and Sustainable Energy (WISE Center), Universiti Malaysia Perlis, Lot 17, Kompleks Pusat Pengajian Jejawi 2, Jejawi, Arau 02600, Perlis, Malaysia
| | - Hui Lin Ong
- Faculty of Chemical Engineering and Technology, Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi 3, Kawasan Perindustrian Jejawi, Arau 02600, Perlis, Malaysia; (S.N.A.I.); (A.H.M.); (H.L.O.)
- Centre of Excellence for Biomass Utilization & Taiwan-Malaysia Innovation Centre for Clean Water and Sustainable Energy (WISE Center), Universiti Malaysia Perlis, Lot 17, Kompleks Pusat Pengajian Jejawi 2, Jejawi, Arau 02600, Perlis, Malaysia
| | - Muhammad Mahyidin Ramli
- Faculty of Electronic Engineering Technology, Universiti Malaysia Perlis, Changlun—Kuala Perlis Highway, Arau 02600, Perlis, Malaysia;
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, 142, Hai-Chuan Road, Nan-Tzu District, Kaohsiung 81157, Taiwan;
| |
Collapse
|
7
|
Peters CD, Ng DYF, Hankins NP, She Q. A novel method for the accurate characterization of transport and structural parameters of deformable membranes utilized in pressure- and osmotically driven membrane processes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Sheikhi M, Mirshekar L, Kamarehie B, Ghaderpoori M, Ramavandi B, Amini F, Fadaie N, Sahebi S. Thin‐Film Composite Forward‐Osmosis Membranes Reinforced on Woven Mesh and Nonwoven Backing Fabric Supports. Chem Eng Technol 2021. [DOI: 10.1002/ceat.202000026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mohammad Sheikhi
- Iran University of Science and Technology (IUST) Research and Technology Center of Membrane Processes (RTCMP) School of Chemical, Petroleum and Gas Engineering Narmak Tehran Iran
| | - Leila Mirshekar
- Lorestan University of Medical Science Department of Environmental Health Engineering Faculty of Health and Nutrition Khorramabad Iran
| | - Bahram Kamarehie
- Lorestan University of Medical Science Department of Environmental Health Engineering Faculty of Health and Nutrition Khorramabad Iran
| | - Mansour Ghaderpoori
- Lorestan University of Medical Science Department of Environmental Health Engineering Faculty of Health and Nutrition Khorramabad Iran
| | - Bahman Ramavandi
- Bushehr University of Medical Sciences Department of Environmental Health Engineering Faculty of Health and Nutrition Bushehr Iran
| | - Fahim Amini
- Tehran University of Medical Sciences Department of Environmental Health Engineering School of Public Health Tehran Iran
| | - Nasim Fadaie
- Iran University of Science and Technology (IUST) Research and Technology Center of Membrane Processes (RTCMP) School of Chemical, Petroleum and Gas Engineering Narmak Tehran Iran
| | - Soleyman Sahebi
- Ton Duc Thang University Environmental Engineering and Management Research Group Ho Chi Minh City Vietnam
- Ton Duc Thang University Faculty of Environment and Labour Safety Ho Chi Minh City Vietnam
| |
Collapse
|
9
|
Ultra-strong polymeric hollow fiber membranes for saline dewatering and desalination. Nat Commun 2021; 12:2338. [PMID: 33879779 PMCID: PMC8058345 DOI: 10.1038/s41467-021-22684-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/23/2021] [Indexed: 12/16/2022] Open
Abstract
Osmotically assisted reverse osmosis (OARO) has become an emerging membrane technology to tackle the limitations of a reverse osmosis (RO) process for water desalination. A strong membrane that can withstand a high hydraulic pressure is crucial for the OARO process. Here, we develop ultra-strong polymeric thin film composite (TFC) hollow fiber membranes with exceptionally high hydraulic burst pressures of up to 110 bar, while maintaining high pure water permeance of around 3 litre/(m2 h bar) and a NaCl rejection of about 98%. The ultra-strong TFC hollow fiber membranes are achieved mainly by tuning the concentration of the host polymer in spinning dopes and engineering the fiber dimension and morphology. The optimal TFC membranes display promising water permeance under the OR and OARO operation modes. This work may shed new light on the fabrication of ultra-strong TFC hollow fiber membranes for water treatments and desalination. Osmotically assisted reverse osmosis can overcome limitations of the reverse osmosis process but a strong membrane which can withstand a high hydraulic pressure is crucial. Here, the authors develop strong polymer thin film composite hollow fiber membranes with exceptionally high hydraulic burst pressures of up to 110 bar, while maintaining high water permeance and salt rejection.
Collapse
|
10
|
Shi Y, Zhang M, Zhang H, Yang F, Tang CY, Dong Y. Recent development of pressure retarded osmosis membranes for water and energy sustainability: A critical review. WATER RESEARCH 2021; 189:116666. [PMID: 33302146 DOI: 10.1016/j.watres.2020.116666] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/21/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
With the goal of zero-liquid discharge and green energy harvest, extraction of abundant green energy from saline water via pressure retarded osmosis (PRO) technology is a promising but challenging issue for water treatment technologies to achieve water and energy sustainability. Development of high performance PRO membranes has received increased concerns yet still under controversy in practical applications. In this review, a comprehensive and up-to-date discussion of some key historical developments is first introduced covering the major advances of PRO engineering applications and novel membranes especially made in recent years. Then the critical performance indicators of PRO membranes including water flux and power density are briefly discussed. Subsequently, sufficient discussion on four performance limiting factors in PRO membrane and process is presented including concentration polarization, reverse solute diffusion, membrane fouling and mechanical stability. To fully address these issues, an updated insight is provided into recent major progresses on advanced fabrication and modification techniques of novel PRO membranes featuring enhanced performance with different configurations and materials, which are also reviewed in detail based on the viewpoint of design rationales. Afterwards, antifouling strategies and engineering applications are critically introduced. Finally, conclusions and future perspective of PRO membrane for practical operation are briefly discussed.
Collapse
Affiliation(s)
- Yongxuan Shi
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Mingming Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hanmin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Fenglin Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Yingchao Dong
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
11
|
Kwon SJ, Park K, Kim DY, Zhan M, Hong S, Lee JH. High-performance and durable pressure retarded osmosis membranes fabricated using hydrophilized polyethylene separators. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118796] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Idarraga-Mora JA, O'Neal AD, Pfeiler ME, Ladner DA, Husson SM. Effect of mechanical strain on the transport properties of thin-film composite membranes used in osmotic processes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118488] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
|
14
|
Mei Y, Li X, Yao Z, Qing W, Fane AG, Tang CY. Simulation of an energy self-sufficient electrodialysis desalination stack for salt removal efficiency and fresh water recovery. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117771] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Chen X, Boo C, Yip NY. Low-temperature heat utilization with vapor pressure-driven osmosis: Impact of membrane properties on mass and heat transfer. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
16
|
Zhalmuratova D, La TG, Yu KTT, Szojka ARA, Andrews SHJ, Adesida AB, Kim CI, Nobes DS, Freed DH, Chung HJ. Mimicking "J-Shaped" and Anisotropic Stress-Strain Behavior of Human and Porcine Aorta by Fabric-Reinforced Elastomer Composites. ACS APPLIED MATERIALS & INTERFACES 2019; 11:33323-33335. [PMID: 31464413 DOI: 10.1021/acsami.9b10524] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
An ex vivo heart perfusion device preserves the donor heart in a warm beating state during transfer between extraction and implantation surgeries. One of the current challenges includes the use of rigid and noncompliant plastic tubes, which causes injuries to the heart at the junction between the tissue and the tube. The compliant and rapidly strain-stiffening mechanical property that generates a "J-shaped" stress-strain behavior is necessary for producing the Windkessel effect, which ensures continuous flow of blood through the aorta. In this study, we mimic the J-shaped and anisotropic stress-strain behavior of human aorta in synthetic elastomers to replace the problematic noncompliant plastic tube. First, we assess the mechanical properties of human (n = 1) and porcine aorta (n = 14) to quantify the nonlinear and anisotropic behavior under uniaxial tensile stress from five different regions of the aorta. Second, fabric-reinforced elastomer composites were prepared by reinforcing silicone elastomers with embedded fabrics in a trilayer geometry. The knitted structures of the fabric provide strain-stiffening as well as anisotropic mechanical properties of the resulting composite in a deterministic manner. By optimizing the combination between different elastomers and fabrics, the resulting composites matched the J-shaped and anisotropic stress-strain behavior of natural human and porcine aorta. Finally, improved analytical constitutive models based on Gent's and Mooney-Rivlin's constitutive model (to describe the elastomer matrix) combined with Holzapfel-Gasser-Ogden's model (to represent the stiffer fabrics) were developed to describe the J-shaped behavior of the natural aortas and the fabric-reinforced composites. We anticipate that the suggested fabric-reinforced silicone elastomer composite design concept can be used to develop complex soft biomaterials, as well as in emerging engineering fields such as soft robotics and microfluidics, where the Windkessel effect can be useful in regulating the flow of fluids.
Collapse
Affiliation(s)
| | | | | | - Alexander R A Szojka
- Department of Surgery , University of Alberta , Edmonton , Alberta T6G 2E1 , Canada
| | - Stephen H J Andrews
- Department of Surgery , University of Alberta , Edmonton , Alberta T6G 2E1 , Canada
| | - Adetola B Adesida
- Department of Surgery , University of Alberta , Edmonton , Alberta T6G 2E1 , Canada
| | | | | | - Darren H Freed
- Department of Surgery , University of Alberta , Edmonton , Alberta T6G 2E1 , Canada
| | | |
Collapse
|
17
|
Pressure-retarded membrane distillation for low-grade heat recovery: The critical roles of pressure-induced membrane deformation. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.02.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
18
|
Looking Beyond Energy Efficiency: An Applied Review of Water Desalination Technologies and an Introduction to Capillary-Driven Desalination. WATER 2019. [DOI: 10.3390/w11040696] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Most notable emerging water desalination technologies and related publications, as examined by the authors, investigate opportunities to increase energy efficiency of the process. In this paper, the authors reason that improving energy efficiency is only one route to produce more cost-effective potable water with fewer emissions. In fact, the grade of energy that is used to desalinate water plays an equally important role in its economic viability and overall emission reduction. This paper provides a critical review of desalination strategies with emphasis on means of using low-grade energy rather than solely focusing on reaching the thermodynamic energy limit. Herein, it is argued that large-scale commercial desalination technologies have by-and-large reached their engineering potential. They are now mostly limited by the fundamental process design rather than process optimization, which has very limited room for improvement without foundational change to the process itself. The conventional approach toward more energy efficient water desalination is to shift from thermal technologies to reverse osmosis (RO). However, RO suffers from three fundamental issues: (1) it is very sensitive to high-salinity water, (2) it is not suitable for zero liquid discharge and is therefore environmentally challenging, and (3) it is not compatible with low-grade energy. From extensive research and review of existing commercial and lab-scale technologies, the authors propose that a fundamental shift is needed to make water desalination more affordable and economical. Future directions may include novel ideas such as taking advantage of energy localization, surficial/interfacial evaporation, and capillary action. Here, some emerging technologies are discussed along with the viability of incorporating low-grade energy and its economic consequences. Finally, a new process is discussed and characterized for water desalination driven by capillary action. The latter has great significance for using low-grade energy and its substantial potential to generate salinity/blue energy.
Collapse
|
19
|
High-performance thin-film composite polyamide membranes developed with green ultrasound-assisted interfacial polymerization. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.10.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Dual-layered nanocomposite membrane incorporating graphene oxide and halloysite nanotube for high osmotic power density and fouling resistance. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.06.055] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Sun Y, Cheng L, Shintani T, Tanaka Y, Takahashi T, Itai T, Wang S, Fang L, Matsuyama H. Development of High-Flux and Robust Reinforced Aliphatic Polyketone Thin-Film Composite Membranes for Osmotic Power Generation: Role of Reinforcing Materials. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b03392] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuchen Sun
- Center for Membrane and Film Technology, Department of Chemical Science & Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Liang Cheng
- Center for Membrane and Film Technology, Department of Chemical Science & Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Takuji Shintani
- Center for Membrane and Film Technology, Department of Chemical Science & Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Yasuhiro Tanaka
- Center for Membrane and Film Technology, Department of Chemical Science & Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Tomoki Takahashi
- Center for Membrane and Film Technology, Department of Chemical Science & Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Takuya Itai
- Center for Membrane and Film Technology, Department of Chemical Science & Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Shengyao Wang
- Center for Membrane and Film Technology, Department of Chemical Science & Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Lifeng Fang
- Center for Membrane and Film Technology, Department of Chemical Science & Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Hideto Matsuyama
- Center for Membrane and Film Technology, Department of Chemical Science & Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| |
Collapse
|
22
|
Wan CF, Yang T, Gai W, Lee YD, Chung TS. Thin-film composite hollow fiber membrane with inorganic salt additives for high mechanical strength and high power density for pressure-retarded osmosis. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.03.050] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
23
|
A robust thin film composite membrane incorporating thermally rearranged polymer support for organic solvent nanofiltration and pressure retarded osmosis. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.01.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Idarraga-Mora JA, Ladner DA, Husson SM. Thin-film composite membranes on polyester woven mesh with variable opening size for pressure-retarded osmosis. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.12.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Module scale-up and performance evaluation of thin film composite hollow fiber membranes for pressure retarded osmosis. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.11.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
She Q, Zhang L, Wang R, Krantz WB, Fane AG. Pressure-retarded osmosis with wastewater concentrate feed: Fouling process considerations. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.08.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
Yaroshchuk A. "Breakthrough" osmosis and unusually high power densities in Pressure-Retarded Osmosis in non-ideally semi-permeable supported membranes. Sci Rep 2017; 7:45168. [PMID: 28332607 PMCID: PMC5362907 DOI: 10.1038/srep45168] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/20/2017] [Indexed: 11/09/2022] Open
Abstract
Osmosis is the movement of solvent across a membrane induced by a solute-concentration gradient. It is very important for cell biology. Recently, it has started finding technological applications in the emerging processes of Forward Osmosis and Pressure-Retarded Osmosis. They use ultrathin and dense membranes supported mechanically by much thicker porous layers. Until now, these processes have been modelled by assuming the membrane to be ideally-semipermeable. We show theoretically that allowing for even minor deviations from ideal semipermeability to solvent can give rise to a previously overlooked mode of “breakthrough” osmosis. Here the rate of osmosis is very large (compared to the conventional mode) and practically unaffected by the so-called Internal Concentration Polarization. In Pressure-Retarded Osmosis, the power densities can easily exceed the conventional mode by one order of magnitude. Much more robust support layers can be used, which is an important technical advantage (reduced membrane damage) in Pressure-Retarded Osmosis.
Collapse
Affiliation(s)
- Andriy Yaroshchuk
- ICREA, pg.L.Companys 23, 08010 Barcelona, Spain.,Department of Chemical Engineering, Polytechnic University of Catalonia, av. Diagonal 647, 08028 Barcelona, Spain
| |
Collapse
|
28
|
Liu X, Li W, Chong TH, Fane AG. Effects of spacer orientations on the cake formation during membrane fouling: Quantitative analysis based on 3D OCT imaging. WATER RESEARCH 2017; 110:1-14. [PMID: 27974248 DOI: 10.1016/j.watres.2016.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 11/30/2016] [Accepted: 12/02/2016] [Indexed: 06/06/2023]
Abstract
Spacer design plays an important role in improving the performance of membrane processes for water/wastewater treatment. This work focused on a fundamental issue of spacer design, i.e., investigating the effects of spacer orientations on the fouling behavior during a membrane process. A series of fouling experiments with different spacer orientation were carried out to in situ characterize the formation of a cake layer in a spacer unit cell via 3D optical coherence tomography (OCT) imaging. The cake layers formed at different times were digitalized for quantitatively analyzing the variation in the cake morphology as a function of time. In particular, the local deposition rates were evaluated to determine the active regions where the instantaneous changes in deposit thickness were significant. The characterization results indicate that varying the spacer orientation could substantially change the evolution of membrane fouling by particulate foulants and thereby result in a cake layer with various morphologies; the competition between growth and erosion at different locations would instantaneously respond to the micro-hydrodynamic environment that might change with time. This work confirms that the OCT-based characterization method is a powerful tool for exploring novel spacer design.
Collapse
Affiliation(s)
- Xin Liu
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore
| | - Weiyi Li
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore.
| | - Tzyy Haur Chong
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore.
| | - Anthony G Fane
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
29
|
Nguyen NC, Chen SS, Weng YT, Thi Nguyen H, Ray SS, Li CW, Yan B, Wang J. Iodide recovery from thin film transistor liquid crystal display plants by using potassium hydroxide - driven forward osmosis. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.07.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|