1
|
Condello A, Piacentini E, Giorno L. Insights into the preparation of zein nanoparticles by continuous membrane nanoprecipitation. Int J Biol Macromol 2024; 265:130935. [PMID: 38493815 DOI: 10.1016/j.ijbiomac.2024.130935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/27/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Nanoparticles (NPs) preparation is limited to an exclusive use in batch processes and small-scale formulations. The use of membranes as high-performance micromixers is expected to open new scenarios to overcome limitations of conventional nanoprecipitation system such as stirred tank (ST) nanoprecipitation. The ability of the porous membrane to add uniformly one phase to another and govern their mixing at the membrane interface seems to be an important parameter for obtaining uniform NPs. Inorganic membranes (pore size of 1 μm) were used to carry out membrane nanoprecipitation (MN) to form Zein nanoparticles (ZNPs) at pores level by non-solvent induced phase separation. A systematic study of the preparation of ZNPs in the ST and MN systems was carried out to establish the Ouzo diagram. The influence of zein concentration and solvent to non-solvent ratio on the size and size distribution of ZNPs was also investigated. A wider stable Ouzo zone was obtained with MN than with the ST process. ZNPs size increased from 100 nm up to 700 nm, while maintaining low polydispersity index (PDI < 0.2). The results demonstrate the suitability of MN for the continuous production of ZNPs and open the possibility of scaling up the nanoprecipitation process.
Collapse
Affiliation(s)
- A Condello
- National Research Council of Italy, Institute on Membrane Technology (CNR-ITM), Via P. Bucci 17/C, 87036 Rende, CS, Italy; Physics Department, University of Calabria, Ponte P. Bucci 33B, 87036 Rende, CS, Italy.
| | - E Piacentini
- National Research Council of Italy, Institute on Membrane Technology (CNR-ITM), Via P. Bucci 17/C, 87036 Rende, CS, Italy.
| | - L Giorno
- National Research Council of Italy, Institute on Membrane Technology (CNR-ITM), Via P. Bucci 17/C, 87036 Rende, CS, Italy.
| |
Collapse
|
2
|
Zhang X, Koirala R, Pramanik B, Fan L, Date A, Jegatheesan V. Challenges and advancements in membrane distillation crystallization for industrial applications. ENVIRONMENTAL RESEARCH 2023; 234:116577. [PMID: 37429399 DOI: 10.1016/j.envres.2023.116577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
Membrane distillation crystallization (MDC) is an emerging hybrid thermal membrane technology that synergizes membrane distillation (MD) and crystallization, which can achieve both freshwater and minerals recovery from high concentrated solutions. Due to the outstanding hydrophobic nature of the membranes, MDC has been widely used in numerous fields such as seawater desalination, valuable minerals recovery, industrial wastewater treatment and pharmaceutical applications, where the separation of dissolved solids is required. Despite the fact that MDC has shown great promise in producing both high-purity crystals and freshwater, most studies on MDC remain limited to laboratory scale, and industrializing MDC processes is currently impractical. This paper summarizes the current state of MDC research, focusing on the mechanisms of MDC, the controls for membrane distillation (MD), and the controls for crystallization. Additionally, this paper categorizes the obstacles hindering the industrialization of MDC into various aspects, including energy consumption, membrane wetting, flux reduction, crystal yield and purity, and crystallizer design. Furthermore, this study also indicates the direction for future development of the industrialization of MDC.
Collapse
Affiliation(s)
- Xin Zhang
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia; Water: Effective Technologies and Tools (WETT) Research Centre, RMIT University, Melbourne, VIC, 3000, Australia
| | - Ravi Koirala
- Mechanical and Automotive Engineering, School of Engineering, RMIT University, Bundoora, VIC, 3083, Australia
| | - Biplob Pramanik
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia; Water: Effective Technologies and Tools (WETT) Research Centre, RMIT University, Melbourne, VIC, 3000, Australia
| | - Linhua Fan
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia; Water: Effective Technologies and Tools (WETT) Research Centre, RMIT University, Melbourne, VIC, 3000, Australia
| | - Abhijit Date
- Water: Effective Technologies and Tools (WETT) Research Centre, RMIT University, Melbourne, VIC, 3000, Australia; Mechanical and Automotive Engineering, School of Engineering, RMIT University, Bundoora, VIC, 3083, Australia
| | - Veeriah Jegatheesan
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia; Water: Effective Technologies and Tools (WETT) Research Centre, RMIT University, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
3
|
Balis E, Kaps TB, Hiibel SR. Understanding and exploiting crystal formation during sodium chloride crystallization on 3D-printed mesh materials. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
4
|
Chergaoui S, Debecker DP, Leyssens T, Luis P. Key Parameters Impacting the Crystal Formation in Antisolvent Membrane-Assisted Crystallization. MEMBRANES 2023; 13:140. [PMID: 36837643 PMCID: PMC9964214 DOI: 10.3390/membranes13020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Antisolvent crystallization is commonly used in the formation of heat-sensitive compounds as it is the case for most active pharmaceutical ingredients. Membranes have the ability to control the antisolvent mass transfer to the reaction medium, providing excellent mixing that inhibits the formation of local supersaturations responsible for the undesired properties of the resulting crystals. Still, optimization of the operating conditions is required. This work investigates the impact of solution velocity, the effect of antisolvent composition, the temperature and gravity, using glycine-water-ethanol as a model crystallization system, and polypropylene flat sheet membranes. Results proved that in any condition, membranes were consistent in providing a narrow crystal size distribution (CSD) with coefficient of variation (CV) in the range of 0.5-0.6 as opposed to 0.7 obtained by batch and drop-by-drop crystallization. The prism-like shape of glycine crystals was maintained as well, but slightly altered when operating at a temperature of 35 °C with the appearance of smoother crystal edges. Finally, the mean crystal size was within 23 to 40 µm and did not necessarily follow a clear correlation with the solution velocities or antisolvent composition, but increased with the application of higher temperature or gravity resistance. Besides, the monoclinic form of α-glycine was perfectly maintained in all conditions. The results at each condition correlated directly with the antisolvent transmembrane flux that ranged between 0.0002 and 0.001 kg/m2. s. In conclusion, membrane antisolvent crystallization is a robust solution offering consistent crystal properties under optimal operating conditions.
Collapse
Affiliation(s)
- Sara Chergaoui
- Institute of Mechanics, Materials and Civil Engineering—Materials & Process Engineering (iMMC-IMAP), Université Catholique de Louvain (UCLouvain), Place Sainte Barbe 2, 1348 Louvain-la-Neuve, Belgium
- Research & Innovation Centre for Process Engineering (ReCIPE), Université Catholique de Louvain (UCLouvain), Place Sainte Barbe, 2 bte L5.02.02-B, 1348 Louvain-la-Neuve, Belgium
| | - Damien P. Debecker
- Institute of Condensed Matter and Nanosciences (IMCN), Université Catholique de Louvain (UCLouvain), Place Louis Pasteur, 1 bte L4.01.06, 1348 Louvain-la-Neuve, Belgium
| | - Tom Leyssens
- Institute of Condensed Matter and Nanosciences (IMCN), Université Catholique de Louvain (UCLouvain), Place Louis Pasteur, 1 bte L4.01.06, 1348 Louvain-la-Neuve, Belgium
| | - Patricia Luis
- Institute of Mechanics, Materials and Civil Engineering—Materials & Process Engineering (iMMC-IMAP), Université Catholique de Louvain (UCLouvain), Place Sainte Barbe 2, 1348 Louvain-la-Neuve, Belgium
- Research & Innovation Centre for Process Engineering (ReCIPE), Université Catholique de Louvain (UCLouvain), Place Sainte Barbe, 2 bte L5.02.02-B, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
5
|
Enhanced permeability and stability of PVDF hollow fiber membrane in DCMD via heat-stretching treatment. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
6
|
Szwast M, Polak D, Arciszewska W, Zielińska I. Novel PVDF-PEG-CaCO 3 Membranes to Achieve the Objectives of the Water Circular Economy by Removing Pharmaceuticals from the Aquatic Environment. MEMBRANES 2022; 13:44. [PMID: 36676851 PMCID: PMC9863228 DOI: 10.3390/membranes13010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
In the aquatic environment, substances of pharmacological origin are common contaminants. The difficulty of removing them from water is a problem for the implementation of a circular economy policy. When recycling water, an effort should be made to remove, or at least, minimize the presence of these substances in the water. Porous membranes with a new functionality consisting in their adsorption capacity towards pharmaceutical substances have been developed. A Polyvinylidene Fluoride (PVDF) membrane with Calcium Carbonate (CaCO3) nanoparticles as an adsorbent was prepared. By implementing an integrated filtration-adsorption process using sulphadiazine, as a representative of pharmacological substances, 57 mg/m2 of adsorption capacity has been obtained, which is an improvement in adsorption properties of more than 50 times that of a commercial membrane. At the same time the membrane permeability is 0.29 m3/(h·m2·bar), which means that the membrane's permeability was improved by 75%.
Collapse
|
7
|
Shao G, He Z, Xiao W, He G, Ruan X, Jiang X. On-line monitoring and analysis of membrane-assisted internal seeding for cooling crystallization of ammonium persulfate. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Abstract
A new crystallization process for sodium bicarbonate (NaHCO3) was studied, proposing the use of osmotic membrane distillation crystallization. Crystallization takes place due to the saturation of the feed solution after water evaporation on the feed side, permeating through the membrane pores to the osmotic side. The process operational parameters, i.e., feed and osmotic velocities, feed concentration, and temperature were studied to determine the optimal operating conditions. Regarding the feed and osmotic velocities, values of 0.038 and 0.0101 m/s, respectively, showed the highest transmembrane flux, i.e., 4.4 × 10−8 m3/m2·s. Moreover, study of the temperature variation illustrated that higher temperatures have a positive effect on the size and purity of the obtained crystals. The purity of the crystals obtained varied from 96.4 to 100% In addition, the flux changed from 2 × 10−8 to 7 × 10−8 m3/m2·s with an increase in temperature from 15 to 40 °C. However, due to heat exchange between the feed and the osmotic solutions, the energy loss in osmotic membrane distillation crystallization is higher at higher temperatures.
Collapse
|
9
|
|
10
|
Jiang X, Niu Y, Du S, He G. Membrane crystallization: Engineering the crystallization via microscale interfacial technology. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2021.12.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Moltedo JJ, Schwarz A, Gonzalez-Vogel A. Evaluation of percrystallization coupled with electrodialysis for zero liquid discharge in the pulping industry. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 303:114104. [PMID: 34823907 DOI: 10.1016/j.jenvman.2021.114104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/01/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
We evaluated percrystallization at laboratory scale to determine its suitability as core technology for achieving Zero Liquid Discharge (ZLD) in a Kraft effluent desalination process. Compared with conventional evaporation/crystallization techniques, percrystallization allows to operate at room temperature and with barely pressurized fluids, using relatively unexpensive membranes and vacuum to allow evaporation of aqueous brine solutions. For further comprehension of the technology before experimentation, a computational fluid dynamics model was developed, showing how temperature affects the performance of percrystallization in terms of transmembrane flux. Additionally, we performed experiments with single and double salt solutions (NaCl and NaCl/Na2SO4) and concentrated industrial effluent from a Kraft pulp mill (brine from the effluent desalination with electrodialysis). Percrystallization of the concentrated industrial effluent was successfully achieved at laboratory scale, showing no signs of fouling on the membrane surface. However, high energy consumptions (above 3000 kWh/ton of evaporated water) were measured. Theoretical power consumptions of an optimized industrial percrystallization system were therefore computed. Percrystallization showed a more efficient performance compared with similar membrane systems, such as vacuum membrane distillation, but higher energy consumptions than conventional ZLD technologies (mechanical vapor compression), having an estimated energy consumption of around 110-150 kWh/ton of removed water, depending on the feed fluid temperature. Nevertheless, percrystallization could be suitable for ZLD applications where low-cost heating (e.g., solar) is available, since the vacuum energy demand is only 32-140 kWh/ton. Alternatively, it could be applied to low scale processes where the temperature of the solution must remain low (e.g., less than 40 °C).
Collapse
Affiliation(s)
- Juan J Moltedo
- Bioforest S. A., Camino Coronel Km 15, Coronel, 4190000, Chile; Department of Civil Engineering, Universidad de Concepción, P.O. Box 160-C, Concepción, 4030000, Chile.
| | - Alex Schwarz
- Department of Civil Engineering, Universidad de Concepción, P.O. Box 160-C, Concepción, 4030000, Chile
| | | |
Collapse
|
12
|
Fu W, Motuzas J, Wang D, Yacou C, Julbe A, Vaughan J, Diniz da Costa JC. Salt storage and induced crystallisation in porous asymmetric inorganic membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
A review on membrane distillation in process engineering: design and exergy equations, materials and wetting problems. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2105-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Wan Osman WNA, Mat Nawi NI, Samsuri S, Bilad MR, Wibisono Y, Hernández Yáñez E, Md Saad J. A Review on Recent Progress in Membrane Distillation Crystallization. CHEMBIOENG REVIEWS 2021. [DOI: 10.1002/cben.202100034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wan Nur Aisyah Wan Osman
- Universiti Teknologi PETRONAS Department of Chemical Engineering 32610 Bandar Seri Iskandar Malaysia
- Universiti Teknologi PETRONAS HICoE Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building Department of Chemical Engineering 32610 Bandar Seri Iskandar Malaysia
| | - Normi Izati Mat Nawi
- Universiti Teknologi PETRONAS Department of Chemical Engineering 32610 Bandar Seri Iskandar Malaysia
| | - Shafirah Samsuri
- Universiti Teknologi PETRONAS Department of Chemical Engineering 32610 Bandar Seri Iskandar Malaysia
- Universiti Teknologi PETRONAS HICoE Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building Department of Chemical Engineering 32610 Bandar Seri Iskandar Malaysia
| | - Muhammad Roil Bilad
- Universiti Brunei Darussalam Faculty of Integrated Technologies BE1410 Gadong Brunei
| | - Yusuf Wibisono
- Brawijaya University Department of Bioprocess Engineering 65141 Malang Indonesia
| | - Eduard Hernández Yáñez
- Universitat Politècnica de Catalunya (UPC) Barcelona TECH, Department of Agrifood Engineering and Biotechnology 08860 Castelldefels Spain
| | - Juniza Md Saad
- Universiti Putra Malaysia Department of Science and Technology 97008 Bintulu Malaysia
| |
Collapse
|
15
|
Qu M, You S, Wang L. Insights into nucleation and growth kinetics in seeded vacuum membrane distillation crystallization. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Naidu G, Tijing L, Johir M, Shon H, Vigneswaran S. Hybrid membrane distillation: Resource, nutrient and energy recovery. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117832] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
17
|
Lou XY, Xu Z, Bai AP, Resina-Gallego M, Ji ZG. Separation and Recycling of Concentrated Heavy Metal Wastewater by Tube Membrane Distillation Integrated with Crystallization. MEMBRANES 2020; 10:E19. [PMID: 31968616 PMCID: PMC7022982 DOI: 10.3390/membranes10010019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 01/16/2023]
Abstract
Tube membrane distillation (MD) integrated with a crystallization method is used in this study for the concurrent productions of pure water and salt crystals from concentrated single and mixed system solutions. The effects of concentrated Zn2+ and Ni2+ on performance in terms of membrane flux, permeate conductivity, crystal recovery rates, and crystal grades are investigated. Preferred crystallization and co-crystallization determinations were performed for mixed solutions. The results revealed that membrane fluxes remained at 2.61 kg·m-2·h-1 and showed a sharp decline until the saturation increased to 1.38. Water yield conductivity was below 10 μs·cm-1. High concentrated zinc and nickel did not have a particular effect on the rejection of the membrane process. For the mixed solutions, membrane flux showed a sharp decrease due to the high saturation, while the conductivity of permeate remained below 10 μs·cm-1 during the whole process. Co-crystallization has been proven to be a better method due to the existence of the SO42- common-ion effect. Membrane fouling studies have suggested that the membrane has excellent resistance to fouling from highly concentrated solutions. The MD integrated with crystallization proves to be a promising technology for treating highly concentrated heavy metal solutions.
Collapse
Affiliation(s)
- Xiang-Yang Lou
- National Engineering Lab. of Biohydrometallurgy, GRINM Technology Group Co., Ltd., Beijing 101407, China; (X.-Y.L.); (Z.X.)
- GTS Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, 08290 Bellaterra, Spain;
- General Research Institute for Nonferrous Metals, Beijing 100088, China
| | - Zheng Xu
- National Engineering Lab. of Biohydrometallurgy, GRINM Technology Group Co., Ltd., Beijing 101407, China; (X.-Y.L.); (Z.X.)
- GRINM Resources and Environmental Tech. Co., Ltd., Beijing 101407, China
| | - An-Ping Bai
- Beijing Vocational College of Labor and Social Security, Beijing 102200, China;
| | - Montserrat Resina-Gallego
- GTS Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, 08290 Bellaterra, Spain;
| | - Zhong-Guang Ji
- National Engineering Lab. of Biohydrometallurgy, GRINM Technology Group Co., Ltd., Beijing 101407, China; (X.-Y.L.); (Z.X.)
- GRINM Resources and Environmental Tech. Co., Ltd., Beijing 101407, China
| |
Collapse
|
18
|
Jiang Z, Chu L, Wu X, Wang Z, Jiang X, Ju X, Ruan X, He G. Membrane-based separation technologies: from polymeric materials to novel process: an outlook from China. REV CHEM ENG 2019. [DOI: 10.1515/revce-2017-0066] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Abstract
During the past two decades, research on membrane and membrane-based separation process has developed rapidly in water treatment, gas separation, biomedicine, biotechnology, chemical manufacturing and separation process integration. In China, remarkable progresses on membrane preparation, process development and industrial application have been made with the burgeoning of the domestic economy. This review highlights the recent development of advanced membranes in China, such as smart membranes for molecular-recognizable separation, ion exchange membrane for chemical productions, antifouling membrane for liquid separation, high-performance gas separation membranes and the high-efficiency hybrid membrane separation process design, etc. Additionally, the applications of advanced membranes, relevant devices and process design strategy in chemical engineering related fields are discussed in detail. Finally, perspectives on the future research directions, key challenges and issues in membrane separation are concluded.
Collapse
|
19
|
Das P, Dutta S, Singh K, Maity S. Energy saving integrated membrane crystallization: A sustainable technology solution. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.115722] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Michaud M, Mangin D, Charcosset C, Chabanon E. Dense Membrane Crystallization in Gas–Liquid Systems: Key Parameters Influencing Fouling. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maïté Michaud
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France
| | - Denis Mangin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France
| | - Catherine Charcosset
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France
| | - Elodie Chabanon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France
| |
Collapse
|
21
|
Affiliation(s)
- Po-Chen Su
- Department of Chemical Engineering, National Taiwan University, Taipei, 106-07, Taiwan
| | - Jeffrey D. Ward
- Department of Chemical Engineering, National Taiwan University, Taipei, 106-07, Taiwan
| |
Collapse
|
22
|
Theisen J, Penisson C, Rey J, Zemb T, Duhamet J, Gabriel JCP. Effects of porous media on extraction kinetics: Is the membrane really a limiting factor? J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.05.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
Choi Y, Naidu G, Lee S, Vigneswaran S. Effect of inorganic and organic compounds on the performance of fractional-submerged membrane distillation-crystallizer. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.03.089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Zhang H, Liu C, Chen L, Dai B. Control of ice crystal growth and its effect on porous structure of chitosan cryogels. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.02.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Reduction of Fouling and Scaling by Calcium Ions on an UF Membrane Surface for an Enhanced Water Pre-Treatment. WATER 2019. [DOI: 10.3390/w11050984] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The control of fouling and scaling on heat and mass transfer surfaces is of major importance in processes as superficial water treatments, since it also improves the efficiency of the whole process from an energy saving point of view. The aim of the paper is to present the experimental results obtained in the inhibition of the fouling and scaling by calcium ions on an ultrafiltration membrane surface, by using citric acid as an additive. The last is an environmentally friendly additive−a so-called “green additive”, which may represent a reliable alternative to phosphorous and nitrogen based compounds typically used as inhibitors, since it has the characteristics of being non-toxic, non-bio accumulating, and biodegradable. The experimental plant is made of a tangential flow system on a lab scale equipped with a flat sheet ultrafiltration polymeric membrane, whose cut-off is 650 nm. In the first series of experiments, the effect of water hardness and its fouling effect due to calcium ions on membrane permeability has been measured in the range of potable waters. Then, the scaling effect of high calcium concentration in solution (supersaturated conditions) has been quantified by measuring the increase in weight of the membrane, with and without the addition of citric acid as an additive; moreover, the retarding effect of citric acid has been evaluated through the measurement of the induction times for the nucleation of calcium sulfate dihydrate (used as model scalant for fouling). Experiments have been carried out at two different supersaturation ratios (S = 2.25–2.60), at room temperature, in the absence of any additive, and with a citric acid concentration varying in the range 0.01 to 0.50 g/L. Experimental results have shown that the addition of citric acid in solution delays the induction times for gypsum crystals nucleation; moreover, it mitigates the phenomenon of membrane fouling and reduces the pressure drops by allowing an acceptable permeate flow for a longer duration.
Collapse
|
26
|
Jiang M, Braatz RD. Designs of continuous-flow pharmaceutical crystallizers: developments and practice. CrystEngComm 2019. [DOI: 10.1039/c8ce00042e] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This review of recent research advances in continuous-flow crystallization includes a five-step general design procedure, generally applicable process intensification strategies, and practical insights.
Collapse
Affiliation(s)
- Mo Jiang
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
- Department of Chemical and Life Science Engineering
| | - Richard D. Braatz
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| |
Collapse
|
27
|
Fine control of NaCl crystal size and particle size in percrystallisation by tuning the morphology of carbonised sucrose membranes. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
28
|
Jiang X, Lu D, Xiao W, Li G, Zhao R, Li X, He G, Ruan X. Interface-based crystal particle autoselection via membrane crystallization: From scaling to process control. AIChE J 2018. [DOI: 10.1002/aic.16459] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Xiaobin Jiang
- State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, School of Chemical Engineering; Dalian University of Technology; Dalian, 116024 Liaoning China
| | - Dapeng Lu
- State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, School of Chemical Engineering; Dalian University of Technology; Dalian, 116024 Liaoning China
| | - Wu Xiao
- State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, School of Chemical Engineering; Dalian University of Technology; Dalian, 116024 Liaoning China
| | - Guannan Li
- State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, School of Chemical Engineering; Dalian University of Technology; Dalian, 116024 Liaoning China
| | - Rui Zhao
- State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, School of Chemical Engineering; Dalian University of Technology; Dalian, 116024 Liaoning China
| | - Xiangcun Li
- State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, School of Chemical Engineering; Dalian University of Technology; Dalian, 116024 Liaoning China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, School of Chemical Engineering; Dalian University of Technology; Dalian, 116024 Liaoning China
- School of Petroleum and Chemical Engineering; Dalian University of Technology at Panjin; Panjin, 124221 Liaoning China
| | - Xuehua Ruan
- School of Petroleum and Chemical Engineering; Dalian University of Technology at Panjin; Panjin, 124221 Liaoning China
| |
Collapse
|
29
|
Integration of membrane distillation (MD) and solid hollow fiber cooling crystallization (SHFCC) systems for simultaneous production of water and salt crystals. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
30
|
Wang X, Xiao C, Liu H, Huang Q, Fu H. Fabrication and properties of PVDF and PVDF-HFP microfiltration membranes. J Appl Polym Sci 2018. [DOI: 10.1002/app.46711] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xinya Wang
- State Key Laboratory of Separation Membranes and Membrane Processes; Tianjin Polytechnic University; No. 399, Binshui Road, Xiqing District Tianjin 300387 People's Republic of China
- School of Material Science and Engineering; Tianjin Polytechnic University; No. 399, Binshui Road, Xiqing District Tianjin 300387 People's Republic of China
| | - Changfa Xiao
- State Key Laboratory of Separation Membranes and Membrane Processes; Tianjin Polytechnic University; No. 399, Binshui Road, Xiqing District Tianjin 300387 People's Republic of China
- School of Material Science and Engineering; Tianjin Polytechnic University; No. 399, Binshui Road, Xiqing District Tianjin 300387 People's Republic of China
| | - Hailiang Liu
- State Key Laboratory of Separation Membranes and Membrane Processes; Tianjin Polytechnic University; No. 399, Binshui Road, Xiqing District Tianjin 300387 People's Republic of China
- School of Material Science and Engineering; Tianjin Polytechnic University; No. 399, Binshui Road, Xiqing District Tianjin 300387 People's Republic of China
| | - Qinglin Huang
- State Key Laboratory of Separation Membranes and Membrane Processes; Tianjin Polytechnic University; No. 399, Binshui Road, Xiqing District Tianjin 300387 People's Republic of China
- School of Material Science and Engineering; Tianjin Polytechnic University; No. 399, Binshui Road, Xiqing District Tianjin 300387 People's Republic of China
| | - Hao Fu
- State Key Laboratory of Separation Membranes and Membrane Processes; Tianjin Polytechnic University; No. 399, Binshui Road, Xiqing District Tianjin 300387 People's Republic of China
- School of Textiles; Tianjin Polytechnic University; No. 399, Binshui Road, Xiqing District Tianjin 300387 People's Republic of China
| |
Collapse
|
31
|
Novel inorganic membrane for the percrystallization of mineral, food and pharmaceutical compounds. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.12.077] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Preventing Crystal Agglomeration of Pharmaceutical Crystals Using Temperature Cycling and a Novel Membrane Crystallization Procedure for Seed Crystal Generation. Pharmaceutics 2018; 10:pharmaceutics10010017. [PMID: 29364167 PMCID: PMC5874830 DOI: 10.3390/pharmaceutics10010017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/16/2018] [Accepted: 01/18/2018] [Indexed: 12/04/2022] Open
Abstract
In this work, a novel membrane crystallization system was used to crystallize micro-sized seeds of piroxicam monohydrate by reverse antisolvent addition. Membrane crystallization seeds were compared with seeds produced by conventional antisolvent addition and polymorphic transformation of a fine powdered sample of piroxicam form I in water. The membrane crystallization process allowed for a consistent production of pure monohydrate crystals with narrow size distribution and without significant agglomeration. The seeds were grown in 350 g of 20:80 w/w acetone-water mixture. Different seeding loads were tested and temperature cycling was applied in order to avoid agglomeration of the growing crystals during the process. Focused beam reflectance measurement (FBRM); and particle vision and measurement (PVM) were used to monitor crystal growth; nucleation and agglomeration during the seeded experiments. Furthermore; Raman spectroscopy was used to monitor solute concentration and estimate the overall yield of the process. Membrane crystallization was proved to be the most convenient and consistent method to produce seeds of highly agglomerating compounds; which can be grown via cooling crystallization and temperature cycling.
Collapse
|
33
|
McGaughey A, Gustafson R, Childress A. Effect of long-term operation on membrane surface characteristics and performance in membrane distillation. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.08.040] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Tsai JH, Macedonio F, Drioli E, Giorno L, Chou CY, Hu FC, Li CL, Chuang CJ, Tung KL. Membrane-based zero liquid discharge: Myth or reality? J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.06.050] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
|
36
|
Lu D, Li P, Xiao W, He G, Jiang X. Simultaneous recovery and crystallization control of saline organic wastewater by membrane distillation crystallization. AIChE J 2016. [DOI: 10.1002/aic.15581] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Dapeng Lu
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and TechnologySchool of Chemical EngineeringDalian University of TechnologyDalian Liaoning116024 China
| | - Pan Li
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and TechnologySchool of Chemical EngineeringDalian University of TechnologyDalian Liaoning116024 China
| | - Wu Xiao
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and TechnologySchool of Chemical EngineeringDalian University of TechnologyDalian Liaoning116024 China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and TechnologySchool of Chemical EngineeringDalian University of TechnologyDalian Liaoning116024 China
| | - Xiaobin Jiang
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and TechnologySchool of Chemical EngineeringDalian University of TechnologyDalian Liaoning116024 China
| |
Collapse
|
37
|
Gavriilidis A, Constantinou A, Hellgardt K, Hii KK(M, Hutchings GJ, Brett GL, Kuhn S, Marsden SP. Aerobic oxidations in flow: opportunities for the fine chemicals and pharmaceuticals industries. REACT CHEM ENG 2016. [DOI: 10.1039/c6re00155f] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This collaborative review (between teams of chemists and chemical engineers) describes the current scientific and operational hurdles that prevent the utilisation of aerobic oxidation reactions for the production of speciality chemicals and active pharmaceutical ingredients (APIs).
Collapse
Affiliation(s)
| | | | - Klaus Hellgardt
- Department of Chemistry
- Department of Chemical Engineering
- Imperial College London
- London SW7 2AZ
- UK
| | - King Kuok (Mimi) Hii
- Department of Chemistry
- Department of Chemical Engineering
- Imperial College London
- London SW7 2AZ
- UK
| | | | | | - Simon Kuhn
- Department of Chemical Engineering
- KU Leuven
- B-3001 Leuven
- Belgium
| | - Stephen P. Marsden
- School of Chemistry and Institute of Process Research and Development
- University of Leeds
- Leeds LS2 9JT
- UK
| |
Collapse
|