1
|
Liang S, Fu K, Li X, Wang Z. Unveiling the spatiotemporal dynamics of membrane fouling: A focused review on dynamic fouling characterization techniques and future perspectives. Adv Colloid Interface Sci 2024; 328:103179. [PMID: 38754212 DOI: 10.1016/j.cis.2024.103179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/12/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024]
Abstract
Membrane technology has emerged as a crucial method for obtaining clean water from unconventional sources in the face of water scarcity. It finds wide applications in wastewater treatment, advanced treatment, and desalination of seawater and brackish water. However, membrane fouling poses a huge challenge that limits the development of membrane-based water treatment technologies. Characterizing the dynamics of membrane fouling is crucial for understanding its development, mechanisms, and effective mitigation. Instrumental techniques that enable in situ or real-time characterization of the dynamics of membrane fouling provide insights into the temporal and spatial evolution of fouling, which play a crucial role in understanding the fouling mechanism and the formulation of membrane control strategies. This review consolidates existing knowledge about the principal advanced instrumental analysis technologies employed to characterize the dynamics of membrane fouling, in terms of membrane structure, morphology, and intermolecular forces. Working principles, applications, and limitations of each technique are discussed, enabling researchers to select appropriate methods for their specific studies. Furthermore, prospects for the future development of dynamic characterization techniques for membrane fouling are discussed, underscoring the need for continued research and innovation in this field to overcome the challenges posed by membrane fouling.
Collapse
Affiliation(s)
- Shuling Liang
- School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Kunkun Fu
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
| | - Xuesong Li
- School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China.
| | - Zhiwei Wang
- School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| |
Collapse
|
2
|
Mani AM, Kumar A, Chaudhury S. Decoding transport selectivity of ions in polymer membranes by In-situ impedance spectroscopy. SEP SCI TECHNOL 2023:1-11. [DOI: 10.1080/01496395.2023.2219377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/23/2023] [Indexed: 07/19/2023]
Affiliation(s)
- Agnes Maria Mani
- Chemical Sciences Department, Homi Bhabha National Institute, Mumbai, India
- Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Ashwani Kumar
- Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Sanhita Chaudhury
- Chemical Sciences Department, Homi Bhabha National Institute, Mumbai, India
- Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| |
Collapse
|
3
|
Zhao Y, Zhu S, Fan X, Zhang X, Ren H, Huang H. Precise portrayal of microscopic processes of wastewater biofilm formation: Taking SiO 2 as the model carrier. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157776. [PMID: 35926593 DOI: 10.1016/j.scitotenv.2022.157776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Precise characterization of the microscopic processes of wastewater biofilm formation is essential for regulating biofilm behavior. Nevertheless, it remains a great challenge. This study investigated biofilm formation on SiO2 carriers under gradually increasing shear force combining the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory in a Couette-Taylor reactor, and precisely revealed the micro-interface interaction and species colonization during biofilm formation. The results indicated that bacterial reversible adhesion distance on SiO2 carrier surface was 3.06 ± 0.48 nm. Meanwhile, the secondary minimum of total XDLVO interaction energy could be used as a novel indicator to distinguish biofilm formation stages. The revealed biofilm formation stages were also confirmed by the electrochemical analysis. Additionally, the pioneer species that colonized at first were Comamonadaceae, Azospira, Flavobacterium and Azonexus, while keystone species such as Hydrogenophaga, AKYH767, Aquimonas and Ignavibacterium determined the stability of microbial community. In conclusion, this study provided a methodological example to study wastewater biofilm micro-interface behavior through the integration of an experimental platform as well as multiple monitoring and analysis methods, which opened up new perspectives for biofilm research and provided useful guidance for the regulation of biofilm-related treatment processes and new technology development.
Collapse
Affiliation(s)
- Ying Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Shanshan Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Xuan Fan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Xuxiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hui Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| |
Collapse
|
4
|
Lester Y, Hazut A, Spanier A. Formation of Organic Fouling during Membrane Desalination: The Effect of Divalent Cations and the Use of an Online Visual Monitoring Method. MEMBRANES 2022; 12:1177. [PMID: 36557084 PMCID: PMC9783477 DOI: 10.3390/membranes12121177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
Reverse osmosis (RO) is the most popular technology for brackish, seawater and wastewater desalination. An important drawback of RO is membrane fouling, which reduces filtration effectiveness and increase the cost of produced water. This study addresses two important topics of membrane fouling: (i) the impact of different divalent ions on the formation of organic fouling and (ii) online monitoring and prediction of fouling formation. In the absence of divalent ions, dissolved organic matter had little effect on fouling formation, even at 3.5 mgC/L, in the upper range of groundwater concentration. Calcium, strontium and iron enhanced (organic) fouling formation, whereas barium had negligible effect. However, while iron affected fouling throughout the entire tested range (0-0.5 mg/L), calcium and strontium enhanced organic fouling only at high concentrations: more than 140 mg/L and 10 mg/L for calcium and strontium, respectively. An online system was developed for monitoring the formation of organic fouling, consisting of (i) an ex-situ RO cell with a transparent cover, (ii) a video camera continually monitoring the surface of the membrane and (iii) an algorithm which automatically identified changes in the color of the membrane caused by fouling, using a specially designed membrane spacer with colored reference dots. Changes in the color of the membrane surface were normalized to the reference colors, to eliminate all non-fouling related interference. The system was used to record and analyze changes in membrane color during numerous filtration tests. The data was successfully correlated to changes in specific flux (and subsequently to fouling formation rate) and can be applied to monitor and predict the formation of membrane fouling during desalination.
Collapse
Affiliation(s)
- Yaal Lester
- Environmental Technologies, Department of Materials Engineering, Azrieli College of Engineering, Jerusalem 9103501, Israel
| | - Amit Hazut
- Environmental Technologies, Department of Materials Engineering, Azrieli College of Engineering, Jerusalem 9103501, Israel
| | - Assaf Spanier
- Department of Software Engineering, Azrieli College of Engineering, Jerusalem 9103501, Israel
| |
Collapse
|
5
|
Zhang N, Lee HJ, Wu Y, Ganzoury MA, de Lannoy CF. Integrating biofouling sensing with fouling mitigation in a two-electrode electrically conductive membrane filtration system. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Stolov M, Keisar O, Cohen Y, Freger V. Elucidating the Effect of Aliphatic Molecular Plugs on Ion-Rejecting Properties of Polyamide Membranes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13335-13343. [PMID: 35263078 DOI: 10.1021/acsami.1c24977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polyamide RO membranes are widely used for seawater desalination owing to their high salt rejection and water permeability; however, improved selectivity-permeability trade-off is still desired. "Molecular plugs," small molecules immobilized within the polyamide structure, offer an attractive approach; however, their overall effect on polyamide physicochemical properties poses many questions. Here, we analyze the effect of decylamine, a promising plug, and a few charged and uncharged mimics on polyamide films using several in situ techniques. Electrochemical impedance spectroscopy (EIS) reveals a complex pH-dependent response, whereby, upon exposure to amine solution, conductivity first rapidly drops; however, under alkaline conditions, when amine is uncharged, the trend subsequently slowly reverses, and conductivity increases. This slow reversal was observed for noncharged alcohols of similar size as well, but not for larger surfactant molecules. The reversal was assigned to the uptake of plug molecules within polyamide, as opposed to the fast initial drop assigned to surface adsorption. EIS and quartz-crystal microbalance (QCM) results showed that exposure to decylamine under alkaline conditions ultimately led to an irreversible decrease in conductivity, that is, stronger ion rejection, remaining after re-exposure of polyamide to amine-free buffer. This suggests that plug uptake within polyamide resulted in polymer stress, indeed observed in surface stress measurements, and subsequent relaxation. The results indicate that the moderate size of decylamine and conditions minimizing its charge were optimal for irreversible change; however, charge interactions helped maximize its binding within polymer and induce the desired sustained change in selectivity. The results have many potential implications for improving current membrane desalination technology and increasing inherent membrane selectivity toward hard-to-remove species.
Collapse
Affiliation(s)
- Mikhail Stolov
- Wolfson Department of Chemical Engineering, Technion - IIT, Haifa 32000, Israel
| | - Or Keisar
- Nancy and Stephen Grand Technion Energy Program, Technion - IIT, Haifa 32000, Israel
- Nuclear Research Centre-Negev, P.O.B. 9001, Be'er Sheva 84190, Israel
| | - Yair Cohen
- Nuclear Research Centre-Negev, P.O.B. 9001, Be'er Sheva 84190, Israel
| | - Viatcheslav Freger
- Wolfson Department of Chemical Engineering, Technion - IIT, Haifa 32000, Israel
- Nancy and Stephen Grand Technion Energy Program, Technion - IIT, Haifa 32000, Israel
- Grand Water Research Institute, Technion - IIT, Haifa 32000, Israel
| |
Collapse
|
7
|
Tanudjaja HJ, Ng AQQ, Chew JW. Mechanistic insights into the membrane fouling mechanism during ultrafiltration of high-concentration proteins via in-situ electrical impedance spectroscopy (EIS). J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
El-badawy T, Othman MHD, Matsuura T, Bilad MR, Adam MR, Tai ZS, Ravi J, Ismail A, Rahman MA, Jaafar J, Usman J, Kurniawan TA. Progress in treatment of oilfield produced water using membrane distillation and potentials for beneficial re-use. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Lim YJ, Goh K, Kurihara M, Wang R. Seawater desalination by reverse osmosis: Current development and future challenges in membrane fabrication – A review. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119292] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
10
|
Layer-by-layer assembly based low pressure biocatalytic nanofiltration membranes for micropollutants removal. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118514] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Tian J, Trinh TA, Kalyan MN, Ho JS, Chew JW. In-situ monitoring of oil emulsion fouling in ultrafiltration via electrical impedance spectroscopy (EIS): Influence of surfactant. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118527] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Ghita M, Neckebroek M, Juchem J, Copot D, Muresan CI, Ionescu CM. Bioimpedance Sensor and Methodology for Acute Pain Monitoring. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6765. [PMID: 33256120 PMCID: PMC7729453 DOI: 10.3390/s20236765] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022]
Abstract
The paper aims to revive the interest in bioimpedance analysis for pain studies in communicating and non-communicating (anesthetized) individuals for monitoring purpose. The plea for exploitation of full potential offered by the complex (bio)impedance measurement is emphasized through theoretical and experimental analysis. A non-invasive, low-cost reliable sensor to measure skin impedance is designed with off-the-shelf components. This is a second generation prototype for pain detection, quantification, and modeling, with the objective to be used in fully anesthetized patients undergoing surgery. The 2D and 3D time-frequency, multi-frequency evaluation of impedance data is based on broadly available signal processing tools. Furthermore, fractional-order impedance models are implied to provide an indication of change in tissue dynamics correlated with absence/presence of nociceptor stimulation. The unique features of the proposed sensor enhancements are described and illustrated here based on mechanical and thermal tests and further reinforced with previous studies from our first generation prototype.
Collapse
Affiliation(s)
- Mihaela Ghita
- Research Group of Dynamical Systems and Control, Ghent University, Tech Lane Science Park 125, 9052 Ghent, Belgium; (J.J.); (D.C.); (C.M.I.)
- EEDT—Core Lab on Decision and Control, Flanders Make Consortium, Tech Lane Science Park 131, 9052 Ghent, Belgium
| | - Martine Neckebroek
- Department of Anesthesia, Ghent University Hospital, C. Heymanslaan 10, 9000 Gent, Belgium;
| | - Jasper Juchem
- Research Group of Dynamical Systems and Control, Ghent University, Tech Lane Science Park 125, 9052 Ghent, Belgium; (J.J.); (D.C.); (C.M.I.)
- EEDT—Core Lab on Decision and Control, Flanders Make Consortium, Tech Lane Science Park 131, 9052 Ghent, Belgium
| | - Dana Copot
- Research Group of Dynamical Systems and Control, Ghent University, Tech Lane Science Park 125, 9052 Ghent, Belgium; (J.J.); (D.C.); (C.M.I.)
- EEDT—Core Lab on Decision and Control, Flanders Make Consortium, Tech Lane Science Park 131, 9052 Ghent, Belgium
| | - Cristina I. Muresan
- Department of Automation, Technical University of Cluj-Napoca, Memorandumului 28, 400114 Cluj-Napoca, Romania;
| | - Clara M. Ionescu
- Research Group of Dynamical Systems and Control, Ghent University, Tech Lane Science Park 125, 9052 Ghent, Belgium; (J.J.); (D.C.); (C.M.I.)
- EEDT—Core Lab on Decision and Control, Flanders Make Consortium, Tech Lane Science Park 131, 9052 Ghent, Belgium
- Department of Automation, Technical University of Cluj-Napoca, Memorandumului 28, 400114 Cluj-Napoca, Romania;
| |
Collapse
|
13
|
Lüken A, Linkhorst J, Fröhlingsdorf R, Lippert L, Rommel D, De Laporte L, Wessling M. Unravelling colloid filter cake motions in membrane cleaning procedures. Sci Rep 2020; 10:20043. [PMID: 33208808 PMCID: PMC7674421 DOI: 10.1038/s41598-020-76970-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/30/2020] [Indexed: 11/08/2022] Open
Abstract
The filtration performance of soft colloid suspensions suffers from the agglomeration of the colloids on the membrane surface as filter cakes. Backflushing of fluid through the membrane and cross-flow flushing across the membrane are widely used methods to temporally remove the filter cake and restore the flux through the membrane. However, the phenomena occurring during the recovery of the filtration performance are not yet fully described. In this study, we filtrate poly(N-isopropylacrylamide) microgels and analyze the filter cake in terms of its composition and its dynamic mobility during removal using on-line laser scanning confocal microscopy. First, we observe uniform cake build-up that displays highly ordered and amorphous regions in the cake layer. Second, backflushing removes the cake in coherent pieces and their sizes depend on the previous cake build-up. And third, cross-flow flushing along the cake induces a pattern of longitudinal ridges on the cake surface, which depends on the cross-flow velocity and accelerates cake removal. These observations give insight into soft colloid filter cake arrangement and reveal the cake's unique behaviour exposed to shear-stress.
Collapse
Affiliation(s)
- Arne Lüken
- RWTH Aachen University, AVT - Chemical Process Engineering, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - John Linkhorst
- RWTH Aachen University, AVT - Chemical Process Engineering, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Robin Fröhlingsdorf
- RWTH Aachen University, AVT - Chemical Process Engineering, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Laura Lippert
- RWTH Aachen University, AVT - Chemical Process Engineering, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Dirk Rommel
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
| | - Laura De Laporte
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
- RWTH Aachen University, ITMC - Polymeric Biomaterials, Forckenbeckstraße 50, 52074, Aachen, Germany
- RWTH Aachen University, AME - Advanced Materials for Biomedicine, Forckenbeckstraße 55, 52074, Aachen, Germany
| | - Matthias Wessling
- RWTH Aachen University, AVT - Chemical Process Engineering, Forckenbeckstraße 51, 52074, Aachen, Germany.
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany.
| |
Collapse
|
14
|
Detection of fouling on electrically conductive membranes by electrical impedance spectroscopy. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116823] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Li Y, Sim LN, Ho JS, Chong TH, Wu B, Liu Y. Integration of an anaerobic fluidized-bed membrane bioreactor (MBR) with zeolite adsorption and reverse osmosis (RO) for municipal wastewater reclamation: Comparison with an anoxic-aerobic MBR coupled with RO. CHEMOSPHERE 2020; 245:125569. [PMID: 31864040 DOI: 10.1016/j.chemosphere.2019.125569] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/14/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
This study compared the performance of an anaerobic fluidized bed membrane bioreactor (AFMBR)-zeolite adsorption-reverse osmosis (RO) system and an anoxic-aerobic MBR-RO system for municipal wastewater reclamation. Both MBR-RO systems were operated in parallel with the same operating conditions. The results showed that the MBR systems achieved excellent organic removals (>95%) and the anoxic-aerobic MBR could also remove ∼57% of soluble total nitrogen. Compared to the aerobic MBR, the AFMBR displayed better membrane performance with less energy consumption, attributed to effective membrane scouring by liquid-fluidized GAC particles. Furthermore, a zeolite column was employed to remove ammonia in the AFMBR permeate, which ensured comparable organic and nitrogen levels in the feeds to RO units in the two processes. Although less organic substances and microbial cells were accumulated on the RO membrane fed with AFMBR-zeolite column effluent, its fouling rate (∼6.5 ± 2.2 bar/day) was significantly greater than that fed with anoxic-aerobic MBR permeate (∼1.1 ± 1.5 bar/day). This may be associated with more severe inorganic colloidal fouling on the RO membrane, illustrated by an electrical impedance spectroscopy fouling monitoring system.
Collapse
Affiliation(s)
- Yifei Li
- School of Environment and Civil Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, PR China
| | - Lee Nuang Sim
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Jia Shin Ho
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Tzyy Haur Chong
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Bing Wu
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore; Faculty of Civil and Environmental Engineering, University of Iceland, Hjardarhagi 2-6, IS-107 Reykjavik, Iceland.
| | - Yu Liu
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore; Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore.
| |
Collapse
|
16
|
Low-Cost, Compact, and Rapid Bio-Impedance Spectrometer with Real-Time Bode and Nyquist Plots. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10030878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bioelectric impedance spectroscopy (BIS) has been widely used to study the electrical properties of biological tissue based on the characteristics of the complex electrical impedance dispersions. One of the problems in using the BIS method is the length of time required for the data acquisition process and possibly data analysis as well. In this research, a compact and work rapidly BIS instrumentation system has been developed at a low cost. It is designed to work in the frequency range of 100 Hz to 100 kHz, which is generally used in the fields of biophysics and medical physics. The BIS instrumentation system is built using several integrated modules. The modules are an AC current source to produce a selectable injection current; a data acquisition system to measure voltage, current, and phase difference rapidly and simultaneously; and software to calculate and display measurement results in the form of Bode and Nyquist plots in real time. The developed BIS system has been validated using a simple RC circuit as the sample being tested. The average time needed in the process of data acquisition and analysis until the formation of impedance dispersion curves in the form of Bode and Nyquist plots, for 54 sample frequencies, is less than one minute. The system is able to identify R and C values of the sample with a maximum error of 1.5%. In addition, some simple application examples are also presented in this paper.
Collapse
|
17
|
Jia H, Feng F, Wang J, Ngo HH, Guo W, Zhang H. On line monitoring local fouling behavior of membrane filtration process by in situ hydrodynamic and electrical measurements. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Tanudjaja HJ, Hejase CA, Tarabara VV, Fane AG, Chew JW. Membrane-based separation for oily wastewater: A practical perspective. WATER RESEARCH 2019; 156:347-365. [PMID: 30928529 DOI: 10.1016/j.watres.2019.03.021] [Citation(s) in RCA: 221] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/26/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
The large volumes of oily wastewater generated by various industries, such as oil and gas, food and beverage, and metal processing, need to be de-oiled prior to being discharged into the environment. Compared to conventional technologies such as dissolved air flotation (DAF), coagulation or solvent extraction, membrane filtration can treat oily wastewater of a much broader compositional range and still ensure high oil removals. In the present review, various aspects related to the practical implementation of membranes for the treatment of oily wastewater are summarized. First, sources and composition of oily wastewater, regulations that stipulate the extent of treatment needed before discharge, and the conventional technologies that enable such treatment are appraised. Second, commercially available membranes, membrane modules, operation modes and hybrids are overviewed, and their economics are discussed. Third, challenges associated with membrane filtration are examined, along with means to quantify and mitigate membrane fouling. Finally, perspectives on state-of-the-art techniques to facilitate better monitoring and control of such systems are briefly discussed.
Collapse
Affiliation(s)
- Henry J Tanudjaja
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 37459, Singapore
| | - Charifa A Hejase
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Volodymyr V Tarabara
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Anthony G Fane
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore
| | - Jia Wei Chew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 37459, Singapore; Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore.
| |
Collapse
|
19
|
Trinh TA, Han Q, Ma Y, Chew JW. Microfiltration of oil emulsions stabilized by different surfactants. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.02.068] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
20
|
Stolov M, Freger V. Degradation of Polyamide Membranes Exposed to Chlorine: An Impedance Spectroscopy Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2618-2625. [PMID: 30707583 DOI: 10.1021/acs.est.8b04790] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Polyamide is the key material in modern membrane desalination; however, its well-known and incompletely understood drawback is its low tolerance to chlorine, the most efficient in-line disinfectant. Here we report a first investigation of the mechanism and kinetics of chlorine attack using electrochemical impedance spectroscopy (EIS) that directly probes changes in ion permeation upon chlorination at different pH values, focusing on its early stages and low chlorine concentrations (15-197 ppm). EIS results partly conform to an established two-stage mechanism that proceeds as N-chlorination followed by either C-chlorination in acidic conditions or amide bond scission in alkaline conditions. However, early time kinetics in acidic conditions shows inconsistencies with this model, explained by possible effects of direct ring chlorination and finite polymer relaxation rates. The findings indicate that (a) N-chlorination reduces membrane polarity and ion permeability, while C-chlorination has an opposite effect; (b) chlorination in acidic conditions must involve other reactions, such as direct ring chlorination, in addition to N-chlorination and Orton rearrangement; and (c) the ultimate chemical transformations (C-chlorination or amide bond scission) result in an irreversible increase in membrane polarity and loss of ion rejection. The results highlight the potential of EIS as a powerful and sensitive tool for studying chemical degradation of ion-selective materials that may assist in developing new chlorine-resistant membranes.
Collapse
|
21
|
Meng BY, Li XY. In Situ Visualization of Concentration Polarization during Membrane Ultrafiltration Using Microscopic Laser-Induced Fluorescence. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2660-2669. [PMID: 30694048 DOI: 10.1021/acs.est.8b05741] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A novel noninvasive technique-microscopic laser-induced fluorescence (micro-LIF)-has been applied to achieve in situ visualization of concentration polarization (CP) of nanoparticles during cross-flow ultrafiltration at high resolutions. The reversible, highly dynamic nature of CP and its sensitive response to the filtration conditions were investigated and validated by direct visualization of the CP layer and the well depicted concentration profile near the membrane surface. Using micro-LIF, the formation of a CP layer during filtration and its back-diffusion after the filtration ceased can be directly observed. The dynamic variation of the CP layer with the cross-flow velocity and transmembrane pressure (TMP) change has also been demonstrated. The results showed that CP reached the steady state approximately 1 min after the filtration condition change. A higher cross-flow velocity and/or a lower TMP decrease the CP concentration and thickness. Further quantitative analysis of the filtration test results using the film theory model helps to obtain the particle concentration at the membrane surface and the thickness of the CP layer (30-50 μm). Accordingly, the nature of CP dynamics was characterized and the deficiency of the traditional CP model was explored.
Collapse
Affiliation(s)
- Bo-Yang Meng
- Environmental Engineering Research Centre, Department of Civil Engineering , The University of Hong Kong , Pokfulam , Hong Kong, China
| | - Xiao-Yan Li
- Environmental Engineering Research Centre, Department of Civil Engineering , The University of Hong Kong , Pokfulam , Hong Kong, China
- Shenzhen Environmental Science and New Energy Laboratory, Tsinghua-Berkeley Shenzhen Institute , Tsinghua University , Shenzhen 518055 , China
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , China
| |
Collapse
|
22
|
Paltrinieri L, Poltorak L, Chu L, Puts T, van Baak W, Sudhölter EJ, de Smet LC. Hybrid polyelectrolyte-anion exchange membrane and its interaction with phosphate. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.10.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Role of ionic strength on protein fouling during ultrafiltration by synchronized UV–vis spectroscopy and electrochemical impedance spectroscopy. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.06.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Markwardt SD, Ronnie N, Camper AK. Non-destructive approaches for assessing biofouling of household reverse osmosis membranes. BIOFOULING 2018; 34:740-752. [PMID: 30270657 DOI: 10.1080/08927014.2018.1493106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 06/19/2018] [Indexed: 06/08/2023]
Abstract
This study determined economic non-destructive methods to assess biofouling in point of use reverse osmosis (RO) membrane treatment systems. Three parallel household RO membrane units were operated under controlled feed water conditions to promote biofouling, inorganic fouling and a combination of both. Operational and biological parameters were monitored throughout the systems' lifespan. Membrane autopsies assessed the degree and type of fouling. Statistical models determined statistically relevant parameters for fouling types that were validated with membrane autopsies. Permeate flow rates decreased differently with biofouling vs inorganic fouling. Large increases in permeate conductivity were noted in membranes suffering from biofouling and not in inorganically fouled membranes. The concentration of cell clumps from detached biofilm in the retentate increased in membranes experiencing biofouling and no increase was seen for inorganically fouled membranes. A combination of these methods could be used to conveniently assess the types of fouling experienced by RO systems.
Collapse
Affiliation(s)
- Stephen D Markwardt
- a Center for Biofilm Engineering , Montana State University , Bozeman , MT , USA
| | - Nirmala Ronnie
- b Safety and Environmental Assurance Centre , Unilever R&D , Bangalore , India
| | - Anne K Camper
- a Center for Biofilm Engineering , Montana State University , Bozeman , MT , USA
- c Department of Civil Engineering , Montana State University , Bozeman , MT , USA
| |
Collapse
|
25
|
Trinh TA, Li W, Han Q, Liu X, Fane AG, Chew JW. Analyzing external and internal membrane fouling by oil emulsions via 3D optical coherence tomography. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.10.043] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Fridman-Bishop N, Freger V. What makes aromatic polyamide membranes superior: New insights into ion transport and membrane structure. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.06.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
|
28
|
Alobeedallah H, Cornell B, Coster H. The Effect of Benzyl Alcohol on the Dielectric Structure of Lipid Bilayers. J Membr Biol 2016; 249:833-844. [PMID: 27803961 DOI: 10.1007/s00232-016-9934-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/22/2016] [Indexed: 11/25/2022]
Abstract
Molecularly tethered lipid bilayer membranes were constructed on a commercially available chemically modified gold substrate. This is a new and promising product that has allowed the construction of very robust lipid bilayers. Very high resolution electrical impedance spectroscopy (EIS) was used to determine the dielectric structure of the lipid bilayers and associated interfaces. The EIS data were modelled in terms of the dielectric substructure using purpose developed software. The hydrophobic region, where the lipid tails are located, was revealed by the EIS in the frequency range of (1-100) Hz and its thickness was calculated from the capacitance of this region and found to be approximately 3-4 nm. The hydrophilic region, where the polar heads are located, was revealed at higher frequencies and its thickness was estimated to be approximately 1-2 nm. The effect of the local anaesthetic benzyl alcohol (BZA) on the tethered lipid bilayers was investigated. The effect of BZA on the membrane capacitance and conductance allowed the changes in the thickness of the polar head and hydrophobic tails regions to be determined. It was found that the addition of BZA caused a significant increase in the capacitance (corresponding to a decrease in the thickness) of the hydrophobic region and an increase in the membrane electrical conductance. The EIS allowed a distinction between a hydrophobic region in the centre of the bilayer and an outer hydrophobic region. Benzyl alcohol was found to have the largest effect on the outer, hydrophobic region, although the inner hydrophobic region was also consistently affected.
Collapse
Affiliation(s)
- Hadeel Alobeedallah
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Bruce Cornell
- SDx Tethered Membranes Pty Ltd., Roseville, Sydney, NSW, 2069, Australia
| | - Hans Coster
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|