1
|
Alterary SS, Alshahrani AA, Barakat FM, El-Tohamy MF. Selective-layer polysulfone membranes based on unfunctionalized and functionalized MoS 2/polyamide nanocomposite for water desalination. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64827-64841. [PMID: 39551904 DOI: 10.1007/s11356-024-35451-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 10/24/2024] [Indexed: 11/19/2024]
Abstract
Recently, reverse osmosis (RO) has become the most widely used process in membrane technology. It has aroused great interest in water desalination through membranes. According to recent studies, the surface properties of support layers in thin film membranes are crucial for improving reverse osmosis performance. Surface polymerization was used to produce the membranes in this work, with the polyamide acting as a selective layer on the polysulfone support film. Three membranes were produced with different proportions of molybdenum sulfide (MoS2) nanopowder. The effectiveness of the membranes was improved by increasing water permeability while maintaining excellent salt retention. All membranes produced were tested using various characterization methods including scanning electron microscope, Brunauer-Emmett plate, and zeta potential. The water permeability of the polyamide membrane with PA-MoS2 (0.015% w/v) was 29.79 L/m2 h bar, more than the PA-MoS2 membranes (0.005% w/v, 19.36 L/m2 h) and PA-MoS2 (0.01% w/v, 3.63 L/m2 h bar). Under the same conditions, salt rejection of more than 96.0% for NaCl and 97.0% for MgSO4 was also observed. According to the SEM, the 0.015% PA-MoS2 membrane exhibited lower surface roughness, greater hydrophobicity, and a higher water contact angle. Due to the hydrophobic nature of MoS2, these properties resulted in the lowest salt rejection.
Collapse
Affiliation(s)
- Seham S Alterary
- Department of Chemistry, College of Science, King Saud University, P.O. Box 11495, Riyadh, Saudi Arabia.
| | - Ahmed A Alshahrani
- Nuclear Technologies Institute, King Abdul Aziz City for Science and Technology, 11442, Riyadh, Saudi Arabia
| | - Fatma M Barakat
- Physics & Astronomy Department, Faculty of Science, King Saud University, Riyadh, Saudi Arabia
| | - Maha F El-Tohamy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 11495, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Venkatesh SS, Vellaichamy P, Thirumalachari S, Ramalingam V, Doraiswamy Raju M. Experimental investigation and comparison of PBI/MWCNT and PSF/MWCNT membranes for recovering water from RO reject of brackish water by FO. Heliyon 2024; 10:e28455. [PMID: 38586360 PMCID: PMC10998056 DOI: 10.1016/j.heliyon.2024.e28455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/09/2024] Open
Abstract
The performances of polybenzimidazole (PBI) and polysulfone (PSF) membranes for recovering water from reverse osmosis (RO) reject of brackish water through forward osmosis (FO) were assessed and compared. Non-functionalised multi-walled carbon nanotubes (MWCNT) were added to the membrane casting solutions, with concentrations ranging from 0 to 3 wt%. The experiment was conducted for eight samples using RO reject of brackish water as the feed solution (FS) and 2 M analytical grade MgCl2 as the draw solution (DS). The hydrophilicity, water permeability, salt rejection rate (Rs), water flux (WF) and porosity of the membranes improved with increasing MWCNT content up to 2 wt%. Also, the structural parameter, salt permeability and reverse solute flux decreased. PBI/MWCNT2 wt% exhibited the best performance among the membranes tested compared with porosity of 70 ± 4 %, structural parameter of 0.36 ± 0.2 μm, and Rs of 93.5 %. In contrast with the pristine PBI membrane, an average water flux enhancement of 15 % and 49 % was observed for the FS and DS sides, respectively, for PBI/MWCNT2 wt%. It is evident from the results that including MWCNT improves the performance of both membranes, with better relative performance for PBI membranes than PSF membranes.
Collapse
Affiliation(s)
| | - Pandiyarajan Vellaichamy
- Department of Chemical Engineering, AC Tech, Anna University, Chennai, 600 025, Tamil Nadu, India
| | - Sundararajan Thirumalachari
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, 600 036, Tamil Nadu, India
| | - Velraj Ramalingam
- Institute for Energy Studies, Anna University, Chennai, 600 025, Tamil Nadu, India
| | - Mohan Doraiswamy Raju
- Department of Chemical Engineering, AC Tech, Anna University, Chennai, 600 025, Tamil Nadu, India
| |
Collapse
|
3
|
A. Aziz SNS, Abu Seman MN, Saufi SM, Mohammad AW, Khayet M. Effect of Methacrylic Acid Monomer on UV-Grafted Polyethersulfone Forward Osmosis Membrane. MEMBRANES 2023; 13:232. [PMID: 36837735 PMCID: PMC9967052 DOI: 10.3390/membranes13020232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
UV irradiation is one of the procedures that has been considered for membrane surface graft polymerization. It is commonly utilized for enhancing the wettability of polyethersulfone (PES) membranes. In this research study, the monomer methacrylic acid (MAA) was used for the UV grafting process of a commercial NF2 PES membrane for the preparation of a forward osmosis (FO) membrane. Three different monomer concentrations and three different UV irradiation times were considered. The intrinsic characteristics of both the surface-modified and pristine membranes were determined via a non-pressurized test method. Compared to the NF2 PES, the surface of the modified membranes was rendered more hydrophilic, as the measured water contact angle was reduced considerably from 65° to 32-58°. The membrane surface modification was also confirmed by the data collected from other techniques, such as atomic force microscopy (AFM), field emission-scanning electron microscope (FESEM) and Fourier-transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR). Additionally, the modified membranes exhibited a greater water permeate flux (Jw) compared to the NF2 PES membrane. In this study, the water permeability (A), solute permeability (B) and structural parameter (S) were determined via a two-stage FO non-pressurized test method, changing the membrane orientation. Compared to the FO pressurized test, smaller S values were obtained with significantly high A and B values for the two non-pressurized tests. The adopted method in the current study is more adequate for determining the intrinsic characteristics of FO membranes.
Collapse
Affiliation(s)
- S. N. S. A. Aziz
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Persiaran Tun Khalil Yaakob, Kuantan, Gambang 26300, Pahang, Malaysia
| | - M. N. Abu Seman
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Persiaran Tun Khalil Yaakob, Kuantan, Gambang 26300, Pahang, Malaysia
- Earth Resources and Sustainability (ERAS) Centre, Universiti Malaysia Pahang, Lebuhraya Persiaran Tun Khalil Yaakob, Kuantan, Gambang 26300, Pahang, Malaysia
| | - S. M. Saufi
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Persiaran Tun Khalil Yaakob, Kuantan, Gambang 26300, Pahang, Malaysia
| | - A. W. Mohammad
- Chemical and Water Desalination Program, College of Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
- Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - M. Khayet
- Department of Structure of Matter, Thermal Physics and Electronics, Faculty of Physics, University Complutense of Madrid, Av. Complutense s/n, 28040 Madrid, Spain
- Madrid Institute for Advanced Studies of Water (IMDEA Water Institute), Calle Punto Net No 4, Alcalá de Henares, 28805 Madrid, Spain
| |
Collapse
|
4
|
Development of high-performance CuBTC MOF-based forward osmosis (FO) membranes and their cleaning strategies. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
5
|
Effects of carbon nanotubes on structure, performance and properties of polymer nanocomposite membranes for water/wastewater treatment applications: a comprehensive review. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04635-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Preparation and Characterization of Modified Polysulfone with Crosslinked Chitosan-Glutaraldehyde MWCNT Nanofiltration Membranes, and Evaluation of Their Capability for Salt Rejection. Polymers (Basel) 2022; 14:polym14245463. [PMID: 36559828 PMCID: PMC9785133 DOI: 10.3390/polym14245463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Nanofiltration membranes were successfully created using multi-walled carbon nanotubes (MWCNTs) and MWCNTs modified with amine (MWCNT-NH2) and carboxylic groups (MWCNT-COOH). Chitosan (CHIT) and chitosan−glutaraldehyde (CHIT-G) were utilized as dispersants. Sonication, SEM, and contact angle were used to characterize the as-prepared membranes. The results revealed that the type of multi-walled carbon nanotubes (MWCNT, MWCNT-COOH and MWCNT-NH2) used as the top layer had a significant impact on membrane characteristics. The lowest contact angle was 38.6 ± 8.5 for the chitosan-G/MWCNT-COOH membrane. The surface morphology of membranes changed when carbon with carboxylic or amine groups was introduced. In addition, water permeability was greater for CHIT-G/MWCNT-COOH and CHIT-G/MWCNT-NH2 membranes. The CHIT-G/MWCNT-COOH membrane had the highest water permeability (5.64 ± 0.27 L m−2 h−1 bar−1). The findings also revealed that for all membranes, the rejection of inorganic salts was in the order R(NaCl) > R(MgSO4).
Collapse
|
7
|
Impact of Graphene Oxide on Properties and Structure of Thin-Film Composite Forward Osmosis Membranes. Polymers (Basel) 2022; 14:polym14183874. [PMID: 36146018 PMCID: PMC9506024 DOI: 10.3390/polym14183874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 11/28/2022] Open
Abstract
Forward osmosis (FO) membranes have the advantages of low energy consumption, high water recovery rate, and low membrane pollution trend, and they have been widely studied in many fields. However, the internal concentration polarization (ICP) caused by the accumulation of solutes in the porous support layer will reduce permeation efficiency, which is currently unavoidable. In this paper, we doped Graphene oxide (GO) nanoparticles (50~150 nm) to a polyamide (PA) active layer and/or polysulfone (PSF) support layer, investigating the influence of GO on the morphology and properties of thin-film composite forward osmosis (TFC-FO) membranes. The results show that under the optimal doping amount, doping GO to the PA active layer and PSF support layer, respectively, is conducive to the formation of dense and uniform nano-scale water channels perpendicular to the membrane surface possessing a high salt rejection rate and low reverse solute flux without sacrificing high water flux. Moreover, the water channels formed by doping GO to the active layer possess preferable properties, which significantly improves the salt rejection and water permeability of the membrane, with a salt rejection rate higher than 99% and a water flux of 54.85 L·m−2·h−1 while the pure PSF-PA membrane water flux is 12.94 L·m−2·h−1. GO-doping modification is promising for improving the performance and structure of TFC-FO membranes.
Collapse
|
8
|
Multifunctional Membranes-A Versatile Approach for Emerging Pollutants Removal. MEMBRANES 2022; 12:membranes12010067. [PMID: 35054593 PMCID: PMC8778428 DOI: 10.3390/membranes12010067] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023]
Abstract
This paper presents a comprehensive literature review surveying the most important polymer materials used for electrospinning processes and applied as membranes for the removal of emerging pollutants. Two types of processes integrate these membrane types: separation processes, where electrospun polymers act as a support for thin film composites (TFC), and adsorption as single or coupled processes (photo-catalysis, advanced oxidation, electrochemical), where a functionalization step is essential for the electrospun polymer to improve its properties. Emerging pollutants (EPs) released in the environment can be efficiently removed from water systems using electrospun membranes. The relevant results regarding removal efficiency, adsorption capacity, and the size and porosity of the membranes and fibers used for different EPs are described in detail.
Collapse
|
9
|
|
10
|
Highly-efficient PVDF adsorptive membrane filtration based on chitosan@CNTs-COOH simultaneous removal of anionic and cationic dyes. Carbohydr Polym 2021; 274:118664. [PMID: 34702483 DOI: 10.1016/j.carbpol.2021.118664] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/21/2021] [Accepted: 09/08/2021] [Indexed: 11/22/2022]
Abstract
An adsorptive membrane filtration based on polyvinylidene fluoride (PVDF) with chitosan (CS) and carboxylated carbon nanotubes (CNTs-COOH) is prepared by method of phase conversion, and the PVDF-CS@CNTs-COOH membranes can effectively separate anionic and cationic dye wastewater. Compared to pure PVDF membranes, PVDF-CS@CNTs-COOH increases pure water flux from 36.39 (L·m-2·h-1) to 85.25 (L·m-2·h-1), an increase of nearly 230%. The membrane exhibits excellent rejection performance in the filtration of six types of dye wastewater. The modified membranes also performed well in terms of rejection of mixed anionic and cationic dyes and also have a high performance in recycling, with a flux of over 94% for both anionic and cationic dyes. In addition, the adsorption curve fitting results showed that the adsorption process was more consistent with the pseudo-second-order adsorption kinetic model and Langmuir mode.
Collapse
|
11
|
Wang Z, Liang S, Kang Y, Zhao W, Xia Y, Yang J, Wang H, Zhang X. Manipulating interfacial polymerization for polymeric nanofilms of composite separation membranes. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101450] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Jain H, Garg MC. Fabrication of polymeric nanocomposite forward osmosis membranes for water desalination—A review. ENVIRONMENTAL TECHNOLOGY & INNOVATION 2021; 23:101561. [DOI: 10.1016/j.eti.2021.101561] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
|
13
|
Solid-phase extraction cartridges with multi-walled carbon nanotubes and effect of the oxygen functionalities on the recovery efficiency of organic micropollutants. Sci Rep 2020; 10:22304. [PMID: 33339850 PMCID: PMC7749141 DOI: 10.1038/s41598-020-79244-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/07/2020] [Indexed: 11/26/2022] Open
Abstract
Pristine and functionalized multi-walled carbon nanotubes (MWCNTs) were investigated as adsorbent materials inside solid-phase extraction (SPE) cartridges for extraction and preconcentration of 8 EU-relevant organic micropollutants (with different pKa and polarity) before chromatographic analysis of surface water. The recoveries obtained were > 60% for 5/8 target pollutants (acetamiprid, atrazine, carbamazepine, diclofenac, and isoproturon) using a low amount of this reusable adsorbent (50 mg) and an eco-friendly solvent (ethanol) for both conditioning and elution steps. The introduction of oxygenated surface groups in the carbon nanotubes by using a controlled HNO3 hydrothermal oxidation method, considerably improved the recoveries obtained for PFOS (perfluorooctanesulfonic acid) and methiocarb, which was ascribed to the hydrogen bond adsorption mechanism, but decreased those observed for the pesticide acetamiprid and for two pharmaceuticals (carbamazepine and diclofenac), suggesting π–π dispersive interactions. Moreover, a good correlation was found between the recovery obtained for methiocarb and the amount of oxygenated surface groups on functionalized MWCNTs, which was mainly attributed to the increase of phenols and carbonyl and quinone groups. Thus, the HNO3 hydrothermal oxidation method can be used to finely tune the surface chemistry (and texture) of MWCNTs according to the specific micropollutants to be extracted and quantified in real water samples.
Collapse
|
14
|
Wang W, Guo Y, Liu M, Song X, Duan J. Porous nano-hydroxyapatites doped into substrate for thin film composite forward osmosis membrane to show high performance. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-020-0554-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Ma J, Xiao T, Long N, Yang X. The role of polyvinyl butyral additive in forming desirable pore structure for thin film composite forward osmosis membrane. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Polysulfone Composite Membranes with Carbonaceous Structure. Synthesis and Applications. COATINGS 2020. [DOI: 10.3390/coatings10070609] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The present review deals with the latest progress in the field of polysulfone composite membranes with carbon nanotubes, carbon fiber and graphene from both perspectives-synthesis and applications. These two fillers, extensively used in the last few years due to their remarkable properties, induce a high value character to the composite materials. On the other hand, polysulfone is one the most used polymers for preparing polymeric membranes due to its high versatility in a wide range of solvents and also to the properties of this remarkable polymer. All types of synthesis method were presented and also a large number of applications from industrial to biomedical were presented and discussed.
Collapse
|
17
|
Advanced nanofiltration membrane fabricated on the porous organic cage tailored support for water purification application. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.115845] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Qin D, Liu Z, Bai H, Song X, Li Z, Sun DD. Fine-tuning selective layer architecture of hydrogel membrane towards high separation performances for engineered osmosis. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117370] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Zhang X, Xiong S, Liu CX, Shen L, Ding C, Guan CY, Wang Y. Confining migration of amine monomer during interfacial polymerization for constructing thin-film composite forward osmosis membrane with low fouling propensity. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.06.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Lu P, Li W, Yang S, Wei Y, Zhang Z, Li Y. Layered double hydroxides (LDHs) as novel macropore-templates: The importance of porous structures for forward osmosis desalination. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.05.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Lu P, Li W, Yang S, Liu Y, Wang Q, Li Y. Layered double hydroxide-modified thin–film composite membranes with remarkably enhanced chlorine resistance and anti-fouling capacity. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.03.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
Recent advances in nanomaterial-modified polyamide thin-film composite membranes for forward osmosis processes. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.064] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
23
|
Simulation and characterization of novel reverse osmosis membrane prepared by blending polypyrrole coated multiwalled carbon nanotubes for brackish water desalination and antifouling properties using artificial neural networks. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.03.050] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Shan M, Kang H, Xu Z, Li N, Jing M, Hu Y, Teng K, Qian X, Shi J, Liu L. Decreased cross-linking in interfacial polymerization and heteromorphic support between nanoparticles: Towards high-water and low-solute flux of hybrid forward osmosis membrane. J Colloid Interface Sci 2019; 548:170-183. [DOI: 10.1016/j.jcis.2019.04.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 01/16/2023]
|
25
|
Zhang X, Xie M, Yang Z, Wu HC, Fang C, Bai L, Fang LF, Yoshioka T, Matsuyama H. Antifouling Double-Skinned Forward Osmosis Membranes by Constructing Zwitterionic Brush-Decorated MWCNT Ultrathin Films. ACS APPLIED MATERIALS & INTERFACES 2019; 11:19462-19471. [PMID: 31071260 DOI: 10.1021/acsami.9b03259] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Pressure retarded osmosis (PRO) process is hindered by severe fouling occurring within the porous support of the forward osmosis (FO) membranes. We designed a novel double-skinned FO membrane containing a polyamide salt-rejecting layer and a zwitterionic brush-decorated, multiwalled carbon nanotube (MWCNT/PSBMA) foulant-resisting layer on the back side. Our results demonstrated that the coating of the MWCNT/PSBMA layer on the porous polyketone (PK) support imparted enhanced hydrophilicity and smaller membrane pore size, thereby providing excellent resistance toward both protein adhesion and bacterial adsorption. We also further evaluated this resultant double-skinned membrane (i.e., TFC-MWCNT/PSBMA) in dynamic PRO fouling experiments using protein and alginate as model organic foulants. Compared to the pristine TFC-PK and hydrophobic TFC-MWCNT membranes, the TFC-MWCNT/PSBMA membrane exhibited not only the lowest water flux decline but also the highest water flux recovery after simple physical flushing. These results shed light on fabrication of antifouling PRO membranes for water purification purposes.
Collapse
Affiliation(s)
- Xinyu Zhang
- Center for Membrane and Film Technology, Department of Chemical Science and Engineering , Kobe University , Kobe 6578501 , Japan
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Ming Xie
- Department of Chemical Engineering , University of Bath , Bath BA27AY , U.K
| | - Zhe Yang
- Center for Membrane and Film Technology, Department of Chemical Science and Engineering , Kobe University , Kobe 6578501 , Japan
| | - Hao-Chen Wu
- Center for Membrane and Film Technology, Department of Chemical Science and Engineering , Kobe University , Kobe 6578501 , Japan
| | - Chuanjie Fang
- Center for Membrane and Film Technology, Department of Chemical Science and Engineering , Kobe University , Kobe 6578501 , Japan
| | - Langming Bai
- State Key Laboratory of Urban Water Resource and Environment , Harbin Institute of Technology , Harbin 150090 , P. R. China
| | - Li-Feng Fang
- Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , P. R. China
| | - Tomohisa Yoshioka
- Center for Membrane and Film Technology, Department of Chemical Science and Engineering , Kobe University , Kobe 6578501 , Japan
| | - Hideto Matsuyama
- Center for Membrane and Film Technology, Department of Chemical Science and Engineering , Kobe University , Kobe 6578501 , Japan
| |
Collapse
|
26
|
Modified forward osmosis membranes by two amino-functionalized ZnO nanoparticles: A comparative study. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.02.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Li Y, Yang Y, Li C, Hou LA. Comparison of performance and biofouling resistance of thin-film composite forward osmosis membranes with substrate/active layer modified by graphene oxide. RSC Adv 2019; 9:6502-6509. [PMID: 35518494 PMCID: PMC9060938 DOI: 10.1039/c8ra08838a] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/19/2019] [Indexed: 11/21/2022] Open
Abstract
In this study, the influence mechanisms of graphene oxide (GO) on the membrane substrate/active layer for improving the water flux and anti-biofouling ability of thin-film composite (TFC) membranes in forward osmosis (FO) were systematically investigated. We fabricated a pristine TFC membrane, a TFC membrane in which the substrate or polyamide active layer was modified by GO (TFN-S membrane or TFN-A membrane), and a TFC membrane in which both the substrate and active layer were functionalized by GO (TFN-S + A membrane). Our results showed that the TFN-S membrane possesses a higher water flux (∼27.2%) than the TFN-A because the substrate that contained GO could improve the porous structure and porosity, while the TFN-A membrane exhibited a lower reverse salt flux and higher salt rejection than the TFN-S membrane, indicating that the surface properties played a more important role than the substrate for the salt rejection. Regarding the biofouling experiment, the TFN-A and TFN-S + A membranes facilitated a higher antifouling performance than the TFN-S and TFC membranes after 72 h of operation because of the greater hydrophilicity, lower roughness and facilitated higher bactericidal activity on the GO-modified surface. In addition, the biovolume and biofilm thickness of the TFN-A and TFN-S + A membranes were found to follow the same trend as flux decline performance. In conclusion, the substrate modified by GO could greatly improve the water flux, whereas the GO-functionalized active layer is favorable for salt rejection and biofouling mitigation. The advantage of TFN-A in biofouling mitigation suggests that the antibacterial effect of GO has a stronger influence on biofouling control than the changes of hydrophilicity and roughness. The substrate modified by GO could greatly improve water flux, whereas the GO-functionalized active layer is favorable for biofouling mitigation.![]()
Collapse
Affiliation(s)
- Yuan Li
- State Key Laboratory of Water Environment Simulation
- School of Environment
- Beijing Normal University
- Beijing
- China
| | - Yu Yang
- State Key Laboratory of Water Environment Simulation
- School of Environment
- Beijing Normal University
- Beijing
- China
| | - Chen Li
- State Key Laboratory of Water Environment Simulation
- School of Environment
- Beijing Normal University
- Beijing
- China
| | - Li-an Hou
- State Key Laboratory of Water Environment Simulation
- School of Environment
- Beijing Normal University
- Beijing
- China
| |
Collapse
|
28
|
Sublayer assisted by hydrophilic and hydrophobic ZnO nanoparticles toward engineered osmosis process. KOREAN J CHEM ENG 2018. [DOI: 10.1007/s11814-018-0086-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
29
|
Zhang X, Shen L, Guan CY, Liu CX, Lang WZ, Wang Y. Construction of SiO2@MWNTs incorporated PVDF substrate for reducing internal concentration polarization in forward osmosis. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.07.043] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
30
|
Forward osmosis with high-performing TFC membranes for concentration of digester centrate prior to phosphorus recovery. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.01.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Plisko TV, Liubimova AS, Bildyukevich AV, Penkova AV, Dmitrenko ME, Mikhailovskii VY, Melnikova GB, Semenov KN, Doroshkevich NV, Kuzminova AI. Fabrication and characterization of polyamide-fullerenol thin film nanocomposite hollow fiber membranes with enhanced antifouling performance. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.01.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Zheng K, Zhou S, Zhou X. High-performance thin-film composite forward osmosis membrane fabricated on low-cost PVB/PVC substrate. NEW J CHEM 2018. [DOI: 10.1039/c8nj01677a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The incorporation of the PVB significantly improved the performance of the PVB/PVC substrates based thin-film composite forward osmosis membrane.
Collapse
Affiliation(s)
- Ke Zheng
- School of Environment and Energy
- South China University of Technology
- Guangzhou Higher Education Mega Center
- Guangzhou 510006
- P. R. China
| | - Shaoqi Zhou
- School of Environment and Energy
- South China University of Technology
- Guangzhou Higher Education Mega Center
- Guangzhou 510006
- P. R. China
| | - Xuan Zhou
- School of Environment and Energy
- South China University of Technology
- Guangzhou Higher Education Mega Center
- Guangzhou 510006
- P. R. China
| |
Collapse
|
33
|
Silva TLS, Morales-Torres S, Castro-Silva S, Figueiredo JL, Silva AMT. An overview on exploration and environmental impact of unconventional gas sources and treatment options for produced water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017. [PMID: 28628868 DOI: 10.1016/j.jenvman.2017.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Rising global energy demands associated to unbalanced allocation of water resources highlight the importance of water management solutions for the gas industry. Advanced drilling, completion and stimulation techniques for gas extraction, allow more economical access to unconventional gas reserves. This stimulated a shale gas revolution, besides tight gas and coalbed methane, also causing escalating water handling challenges in order to avoid a major impact on the environment. Hydraulic fracturing allied to horizontal drilling is gaining higher relevance in the exploration of unconventional gas reserves, but a large amount of wastewater (known as "produced water") is generated. Its variable chemical composition and flow rates, together with more severe regulations and public concern, have promoted the development of solutions for the treatment and reuse of such produced water. This work intends to provide an overview on the exploration and subsequent environmental implications of unconventional gas sources, as well as the technologies for treatment of produced water, describing the main results and drawbacks, together with some cost estimates. In particular, the growing volumes of produced water from shale gas plays are creating an interesting market opportunity for water technology and service providers. Membrane-based technologies (membrane distillation, forward osmosis, membrane bioreactors and pervaporation) and advanced oxidation processes (ozonation, Fenton, photocatalysis) are claimed to be adequate treatment solutions.
Collapse
Affiliation(s)
- Tânia L S Silva
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Sergio Morales-Torres
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Sérgio Castro-Silva
- Adventech-Advanced Environmental Technologies, Centro Empresarial e Tecnológico, Rua de Fundões 151, 3700-121, São João da Madeira, Portugal
| | - José L Figueiredo
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Adrián M T Silva
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| |
Collapse
|
34
|
Goh PS, Ismail AF, Matsuura T. Perspective and Roadmap of Energy-Efficient Desalination Integrated with Nanomaterials. SEPARATION AND PURIFICATION REVIEWS 2017. [DOI: 10.1080/15422119.2017.1335214] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- P. S. Goh
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
| | - A. F. Ismail
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
| | - T. Matsuura
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
35
|
Nano-sized metal organic framework to improve the structural properties and desalination performance of thin film composite forward osmosis membrane. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.02.049] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Yuan HG, Liu YY, Liu TY, Wang XL. Self-standing nanofilms of polysulfone doped with sulfonated polysulfone via solvent evaporation for forward osmosis. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2016.09.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|