1
|
Al-Shaeli M, Benkhaya S, Al-Juboori RA, Koyuncu I, Vatanpour V. pH-responsive membranes: Mechanisms, fabrications, and applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:173865. [PMID: 38880142 DOI: 10.1016/j.scitotenv.2024.173865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
Understanding the mechanisms of pH-responsiveness allows researchers to design and fabricate membranes with specific functionalities for various applications. The pH-responsive membranes (PRMs) are particular categories of membranes that have an amazing aptitude to change their properties such as permeability, selectivity and surface charge in response to changes in pH levels. This review provides a brief introduction to mechanisms of pH-responsiveness in polymers and categorizes the applied polymers and functional groups. After that, different techniques for fabricating pH-responsive membranes such as grafting, the blending of pH-responsive polymers/microgels/nanomaterials, novel polymers and graphene-layered PRMs are discussed. The application of PRMs in different processes such as filtration membranes, reverse osmosis, drug delivery, gas separation, pervaporation and self-cleaning/antifouling properties with perspective to the challenges and future progress are reviewed. Lastly, the development and limitations of PRM fabrications and applications are compared to provide inclusive information for the advancement of next-generation PRMs with improved separation and filtration performance.
Collapse
Affiliation(s)
- Muayad Al-Shaeli
- Paul Wurth Chair, Faculty of Science, Technology and Medicine, University of Luxembourg, Avenue de l'Universit'e, L-4365 Esch-sur-Alzette, Luxembourg
| | - Said Benkhaya
- Department of Civil and Environmental Engineering, Shantou University, Shantou, Guangdong 515063, China
| | - Raed A Al-Juboori
- NYUAD Water Research Center, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Ismail Koyuncu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, Turkey; Department of Environmental Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| | - Vahid Vatanpour
- Department of Environmental Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey; Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911 Tehran, Iran.
| |
Collapse
|
2
|
Bóna Á, Galambos I, Nemestóthy N. Progress towards Stable and High-Performance Polyelectrolyte Multilayer Nanofiltration Membranes for Future Wastewater Treatment Applications. MEMBRANES 2023; 13:368. [PMID: 37103795 PMCID: PMC10146247 DOI: 10.3390/membranes13040368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/09/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
The increasing demand for nanofiltration processes in drinking water treatment, industrial separation and wastewater treatment processes has highlighted several shortcomings of current state-of-the-art thin film composite (TFC NF) membranes, including limitations in chemical resistance, fouling resistance and selectivity. Polyelectrolyte multilayer (PEM) membranes provide a viable, industrially applicable alternative, providing significant improvements in these limitations. Laboratory experiments using artificial feedwaters have demonstrated selectivity an order of magnitude higher than polyamide NF, significantly higher fouling resistance and excellent chemical resistance (e.g., 200,000 ppmh chlorine resistance and stability over the 0-14 pH range). This review provides a brief overview of the various parameters that can be modified during the layer-by-layer procedure to determine and fine-tune the properties of the resulting NF membrane. The different parameters that can be adjusted during the layer-by-layer process are presented, which are used to optimize the properties of the resulting nanofiltration membrane. Substantial progress in PEM membrane development is presented, particularly selectivity improvements, of which the most promising route seems to be asymmetric PEM NF membranes, offering a breakthrough in active layer thickness and organic/salt selectivity: an average of 98% micropollutant rejection coupled with a NaCl rejection below 15%. Advantages for wastewater treatment are highlighted, including high selectivity, fouling resistance, chemical stability and a wide range of cleaning methods. Additionally, disadvantages of the current PEM NF membranes are also outlined; while these may impede their use in some industrial wastewater applications, they are largely not restrictive. The effect of realistic feeds (wastewaters and challenging surface waters) on PEM NF membrane performance is also presented: pilot studies conducted for up to 12 months show stable rejection values and no significant irreversible fouling. We close our review by identifying research areas where further studies are needed to facilitate the adoption of this notable technology.
Collapse
Affiliation(s)
- Áron Bóna
- Soós Ernő Research and Development Center, University of Pannonia, Vár u. 8., H-8800 Nagykanizsa, Hungary
| | - Ildikó Galambos
- Soós Ernő Research and Development Center, University of Pannonia, Vár u. 8., H-8800 Nagykanizsa, Hungary
| | - Nándor Nemestóthy
- Research Institute on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem u. 10., H-8200 Veszprém, Hungary
| |
Collapse
|
3
|
Bóna Á, Varga Á, Galambos I, Nemestóthy N. Dealcoholization of Unfiltered and Filtered Lager Beer by Hollow Fiber Polyelectrolyte Multilayer Nanofiltration Membranes-The Effect of Ion Rejection. MEMBRANES 2023; 13:283. [PMID: 36984669 PMCID: PMC10058455 DOI: 10.3390/membranes13030283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Membrane-based beverage dealcoholization is a successful process for producing low- and non-alcoholic beer and represents a fast-growing industry. Polyamide NF and RO membranes are commonly applied for this process. Polyelectrolyte multilayer (PEM) NF membranes are emerging as industrially relevant species, and their unique properties (usually hollow fiber geometry, high and tunable selectivity, low fouling) underlines the importance of testing them in the food industry as well. To test PEM NF membranes for beer dealcoholization at a small pilot scale, we dealcoholized filtered and unfiltered lager beer with the tightest available commercial polyelectrolyte multilayer NF membrane (NX Filtration dNF40), which has a MWCO = 400 Da, which is quite high for these purposes. Dealcoholization is possible with a reasonable flux (10 L/m2h) at low pressures (5-8.6 bar) with a real extract loss of 15-18% and an alcohol passage of ~100%. Inorganic salt passage is high (which is typical for PEM NF membranes), which greatly affected beer flavor. During the dealcoholization process, the membrane underwent changes which substantially increased its salt rejection values (MgSO4 passage decreased fourfold) while permeance loss was minimal (less than 10%). According to our sensory evaluation, the process yielded an acceptable tasting beer which could be greatly enhanced by the addition of the lost salts and glycerol.
Collapse
Affiliation(s)
- Áron Bóna
- Soós Ernő Research and Development Center, University of Pannonia, Vár u. 8, H-8800 Nagykanizsa, Hungary
| | - Áron Varga
- Department of Research and Development, Pécsi Brewery, Alkotmány utca 94, H-7624 Pécs, Hungary
| | - Ildikó Galambos
- Soós Ernő Research and Development Center, University of Pannonia, Vár u. 8, H-8800 Nagykanizsa, Hungary
| | - Nándor Nemestóthy
- Research Institute on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem u. 10, H-8200 Veszprém, Hungary
| |
Collapse
|
4
|
Lee J, Shin Y, Boo C, Hong S. Performance, limitation, and opportunities of acid-resistant nanofiltration membranes for industrial wastewater treatment. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Removal of antibiotics and antibiotic resistance genes by self-assembled nanofiltration membranes with tailored selectivity. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
6
|
Zhang Y, Guo Y, Wan Y, Pan G, Yu H, Du W, Shi H, Zhao M, Zhao G, Wu C, Liu Y. Tailoring molecular structure in the active layer of thin-film composite membrane for extreme pH condition. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03155-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Fazullin DD, Mavrin GV, Fazullina LI. Intensification of the Process of Separation of Oil Emulsions by Exposure to Ultrasonic Radiation. THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING 2022. [DOI: 10.1134/s0040579522030058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Vergara-Araya M, Oeltze H, Radeva J, Roth AG, Göbbert C, Niestroj-Pahl R, Dähne L, Wiese J. Operation of Hybrid Membranes for the Removal of Pharmaceuticals and Pollutants from Water and Wastewater. MEMBRANES 2022; 12:membranes12050502. [PMID: 35629828 PMCID: PMC9144941 DOI: 10.3390/membranes12050502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023]
Abstract
Hybrid ceramic membranes (i.e., membranes with a layer-by-layer (LbL) coating) are an emerging technology to remove diverse kinds of micropollutants from water. Hybrid ceramic membranes were tested under laboratory conditions as single-channel (filter area = 0.00754 m2) and multi-channel (0.35 m2) variants for the removal of pharmaceuticals (sulfamethoxazole, diclofenac, clofibric acid, and ibuprofen) and typical wastewater pollutants (i.e., COD, TOC, PO4-P, and TN) from drinking water and treated wastewater. The tests were conducted with two low transmembrane pressures (TMP) of 2 and 4 bar and constant temperatures and flow velocities, which showed rejections above 80% for all the tested pharmaceuticals as well for organic pollutants and phosphorous in the treated wastewater. Tests regarding sufficient cleaning regimes also showed that the LbL coating is stable and resistant to pHs between 2 and 10 with the use of typical cleaning agents (citric acid and NaOH) but not to higher pHs, a commercially available enzymatic solution, or backwashing. The hybrid membranes can contribute to the advanced treatment of water and wastewater with low operational costs, and their application at a larger scale is viable. However, the cleaning of the membranes must be further investigated to assure the stability and durability of the LbL coating.
Collapse
Affiliation(s)
- Mónica Vergara-Araya
- Department for Water, Environment, Construction, and Safety, Magdeburg-Stendal University of Applied Sciences, Breitscheidstr. 2, 39114 Magdeburg, Germany; (H.O.); (J.W.)
- Correspondence: ; Tel.: +49-(0391)866-4547
| | - Henning Oeltze
- Department for Water, Environment, Construction, and Safety, Magdeburg-Stendal University of Applied Sciences, Breitscheidstr. 2, 39114 Magdeburg, Germany; (H.O.); (J.W.)
| | - Jenny Radeva
- Nanostone Water GmbH, Am Bahndamm 12, 38820 Halberstadt, Germany; (J.R.); (A.G.R.); (C.G.)
| | - Anke Gundula Roth
- Nanostone Water GmbH, Am Bahndamm 12, 38820 Halberstadt, Germany; (J.R.); (A.G.R.); (C.G.)
| | - Christian Göbbert
- Nanostone Water GmbH, Am Bahndamm 12, 38820 Halberstadt, Germany; (J.R.); (A.G.R.); (C.G.)
| | - Robert Niestroj-Pahl
- Surflay Nanotec GmbH, Max-Planck-Str. 3, 12489 Berlin, Germany; (R.N.-P.); (L.D.)
| | - Lars Dähne
- Surflay Nanotec GmbH, Max-Planck-Str. 3, 12489 Berlin, Germany; (R.N.-P.); (L.D.)
| | - Jürgen Wiese
- Department for Water, Environment, Construction, and Safety, Magdeburg-Stendal University of Applied Sciences, Breitscheidstr. 2, 39114 Magdeburg, Germany; (H.O.); (J.W.)
| |
Collapse
|
9
|
Li LQ, Liu XH, Tang YJ, Xu ZL. How Does Alkali Etching Work on the Polyamide Membrane to Obtain an m-Phenylenediamine-Based NF Membrane? Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lan-Qian Li
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xu-Hong Liu
- Shanghai Sep-Bio Technology and Engineering Co., Ltd., 1288 Luoning Road, Shanghai 200949, China
| | - Yong-Jian Tang
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhen-Liang Xu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
10
|
Rose II, Kather M, Roth H, Dünkelberg H, Rein L, Klimosch SN, Schmolz M, Wessling M. Single-step chitosan functionalized membranes for heparinization. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
11
|
Emonds S, Kamp J, Viermann R, Kalde A, Roth H, Wessling M. Open and dense hollow fiber nanofiltration membranes through a streamlined polyelectrolyte-based spinning process. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Ahmadian-Alam L, Mahdavi H, Mousavi Davijani SM. Influence of structurally and morphologically different nanofillers on the performance of polysulfone membranes modified by the assembled PDDA/PAMPS-based hybrid multilayer thin film. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113809. [PMID: 34649317 DOI: 10.1016/j.jenvman.2021.113809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 09/11/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
A highly efficient nanofiltration membrane should exhibit high separation performance in removing divalent salts and organic solutes, as well as high permeation to meet practical separation and purification applications in aqueous media. Here, we designed a series of hybrid multilayer thin film membranes filled with the structurally and morphologically different nanofillers such as hexagonal boron nitride (HBN) nanosheets and metal-organic framework (MOF) nanoparticles, consisting of 3 and 6 layer pairs of polyelectrolyte through the layer-by-layer self-assembly technique (LBL) and characterized them in terms of dye and salt separation, as well as permeation. The rejection performance and permeability of the designed membranes manifested that HBN nanosheets were more effective than MOF nanoparticles in achieving a high-performance membrane. As compared to the bare multilayer thin film membrane, the addition of HBN nanosheets within the negatively-charged layers of the multilayer thin film membrane consisting of 6 bilayers resulted in good retention of up to 93% and 92% for acid blue (ACB) and bromophenol blue (BPB) dye molecules, respectively. Besides, this membrane exhibited 60% and 45% improvement in the water flux for ACB and BPB solutions, respectively, while the rejection of the sulfate ions maintained an acceptable value around 78%. Furthermore, it was found that this HBN-embedded hybrid multilayer membrane had superior potential for the removal of coherent foulant compared to all samples.
Collapse
Affiliation(s)
- Leila Ahmadian-Alam
- School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Hossein Mahdavi
- School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran.
| | | |
Collapse
|
13
|
Hollow-Fiber RO Membranes Fabricated via Adsorption of Low-Charge Poly(vinyl alcohol) Copolymers. MEMBRANES 2021; 11:membranes11120981. [PMID: 34940482 PMCID: PMC8706410 DOI: 10.3390/membranes11120981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/23/2022]
Abstract
We report a new type of alkaline-stable hollow-fiber reverse osmosis (RO) membrane with an outside-in configuration that was established via adsorption of positively charged poly(vinyl alcohol) copolymers containing a small amount of quaternary ammonium moieties. Anionic sulfonated poly(arylene ether sulfone nitrile) hollow-fiber membranes were utilized as a substrate upon which the cationic copolymer layer was self-organized via electrostatic interaction. While the adsorption of the low-charge copolymer on the membrane support proceeded in a Layer-by-Layer (LbL) fashion, it was found that the adsorbed amount by one immersion step was enough to form a defect-free separation layer with a thickness of around 20 nm after cross-linking of vinyl alcohol units with glutaraldehyde. The resultant hollow-fiber membrane showed excellent desalination performances (NaCl rejection of 98.3% at 5 bar and 1500 mg/L), which is comparable with commercial low-pressure polyamide RO membranes, as well as good alkaline resistance. The separation performance could be restored by repeating the LbL treatment after alkaline degradation. Such features of LbL membranes may contribute to extending RO membrane lifetimes.
Collapse
|
14
|
Recent developments in the preparation of improved nanofiltration membranes for extreme pH conditions. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119725] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Kamp J, Emonds S, Seidenfaden M, Papenheim P, Kryschewski M, Rubner J, Wessling M. Tuning the excess charge and inverting the salt rejection hierarchy of polyelectrolyte multilayer membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Gong L, Zhang J, Wang W, Xiang L, Pan M, Yang W, Han L, Wang J, Yan B, Zeng H. Ion-specific effect on self-cleaning performances of polyelectrolyte-functionalized membranes and the underlying nanomechanical mechanism. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Laghmari S, May P, Ulbricht M. Polyzwitterionic hydrogel coating for reverse osmosis membranes by concentration polarization-enhanced in situ “click” reaction that is applicable in modules. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
18
|
Kotobuki M, Gu Q, Zhang L, Wang J. Ceramic-Polymer Composite Membranes for Water and Wastewater Treatment: Bridging the Big Gap between Ceramics and Polymers. Molecules 2021; 26:3331. [PMID: 34206052 PMCID: PMC8198361 DOI: 10.3390/molecules26113331] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/25/2021] [Accepted: 05/30/2021] [Indexed: 11/25/2022] Open
Abstract
Clean water supply is an essential element for the entire sustainable human society, and the economic and technology development. Membrane filtration for water and wastewater treatments is the premier choice due to its high energy efficiency and effectiveness, where the separation is performed by passing water molecules through purposely tuned pores of membranes selectively without phase change and additional chemicals. Ceramics and polymers are two main candidate materials for membranes, where the majority has been made of polymeric materials, due to the low cost, easy processing, and tunability in pore configurations. In contrast, ceramic membranes have much better performance, extra-long service life, mechanical robustness, and high thermal and chemical stabilities, and they have also been applied in gas, petrochemical, food-beverage, and pharmaceutical industries, where most of polymeric membranes cannot perform properly. However, one of the main drawbacks of ceramic membranes is the high manufacturing cost, which is about three to five times higher than that of common polymeric types. To fill the large gap between the competing ceramic and polymeric membranes, one apparent solution is to develop a ceramic-polymer composite type. Indeed, the properly engineered ceramic-polymer composite membranes are able to integrate the advantages of both ceramic and polymeric materials together, providing improvement in membrane performance for efficient separation, raised life span and additional functionalities. In this overview, we first thoroughly examine three types of ceramic-polymer composite membranes, (i) ceramics in polymer membranes (nanocomposite membranes), (ii) thin film nanocomposite (TFN) membranes, and (iii) ceramic-supported polymer membranes. In the past decade, great progress has been made in improving the compatibility between ceramics and polymers, while the synergy between them has been among the main pursuits, especially in the development of the high performing nanocomposite membranes for water and wastewater treatment at lowered manufacturing cost. By looking into strategies to improve the compatibility among ceramic and polymeric components, we will conclude with briefing on the perspectives and challenges for the future development of the composite membranes.
Collapse
Affiliation(s)
| | | | | | - John Wang
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore; (M.K.); (Q.G.); (L.Z.)
| |
Collapse
|
19
|
Li Q, Zhang X, Zhou L, Li C, Zhang N, Yan T, Xu S, Wang J, Liu X. Polypeptide modified polyelectrolyte-based membrane with excellent antimicrobial property and permeability via brush assisted assembly and chlorination treatment. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Radeva J, Roth AG, Göbbert C, Niestroj-Pahl R, Dähne L, Wolfram A, Wiese J. Hybrid Ceramic Membranes for the Removal of Pharmaceuticals from Aqueous Solutions. MEMBRANES 2021; 11:280. [PMID: 33920279 PMCID: PMC8069598 DOI: 10.3390/membranes11040280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 12/01/2022]
Abstract
Layer-by-Layer (LbL) technology was used to coat alumina ceramic membranes with nanosized polyelectrolyte films. The polyelectrolyte chains form a network with nanopores on the ceramic surface and promote the rejection of small molecules such as pharmaceuticals, salts and industrial contaminants, which can otherwise not be eliminated using standard ultrafiltration methods. The properties and performance of newly developed hybrid membranes are in the focus of this investigation. The homogeneity of the applied coating layer was investigated by confocal fluorescence microscopy and scanning transmission electron microscopy (STEM). Properties such as permeability, bubble point, pore size distribution and Zeta potential were determined for both pristine and LbL coated membranes using various laboratory tests. Subsequently, a thorough comparison was drawn. The charging behavior at solid-liquid interface was characterized using streaming potential techniques. The retention potential was monitored by subjecting widely used pharmaceuticals such as diclofenac, ibuprofen and sulfamethoxazol. The results prove a successful elimination of pharmaceutical contaminants, up to 84% from drinking water, by applying a combination of polyelectrolyte multilayers and ceramic membranes.
Collapse
Affiliation(s)
- Jenny Radeva
- Nanostone Water GmbH, Am Bahndamm 12, 38820 Halberstadt, Germany; (A.G.R.); (C.G.)
| | - Anke Gundula Roth
- Nanostone Water GmbH, Am Bahndamm 12, 38820 Halberstadt, Germany; (A.G.R.); (C.G.)
| | - Christian Göbbert
- Nanostone Water GmbH, Am Bahndamm 12, 38820 Halberstadt, Germany; (A.G.R.); (C.G.)
| | - Robert Niestroj-Pahl
- Surflay Nanotec GmbH, Max-Planck-Straße 3, 12489 Berlin, Germany; (R.N.-P.); (L.D.)
| | - Lars Dähne
- Surflay Nanotec GmbH, Max-Planck-Straße 3, 12489 Berlin, Germany; (R.N.-P.); (L.D.)
| | - Axel Wolfram
- Fachhochschule Magdeburg-Stendal, Institut für Wasserwirtschaft und Ökotechnologie, Breitscheidstr. 2, 39114 Magdeburg, Germany; (A.W.); (J.W.)
| | - Jürgen Wiese
- Fachhochschule Magdeburg-Stendal, Institut für Wasserwirtschaft und Ökotechnologie, Breitscheidstr. 2, 39114 Magdeburg, Germany; (A.W.); (J.W.)
| |
Collapse
|
21
|
Keller R, Weyand J, Vennekoetter JB, Kamp J, Wessling M. An electro-Fenton process coupled with nanofiltration for enhanced conversion of cellobiose to glucose. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.05.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Theoretical Evaluation of Polyelectrolyte Layering during Layer-by-Layer Coating of Ultrafiltration Hollow Fiber Membranes. MEMBRANES 2021; 11:membranes11020106. [PMID: 33540874 PMCID: PMC7913055 DOI: 10.3390/membranes11020106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 11/16/2022]
Abstract
Layer-by-layer (LbL) modification of porous membranes for water filtration has become an active research field in the past few years. Different mechanisms regarding polyelectrolyte film growth, swelling and smoothing, transport through these films, etc., have been studied. Although there are conjectures, it is not yet fully understood where the polyelectrolyte layering takes place when modifying porous membranes, either within the pores or on top of the porous material. This study presents a theoretical approach to investigate the dominant layer buildup regime between pore-dominated vs. layer-dominated growth of polyelectrolytes on porous membranes without mechanically interfering or damaging the membrane material. For this, fouling mechanism processes are used as an analogy. The presented approach gives a new insight into layering conformation and might be helpful to investigate the interaction between the membrane surface and the PE film. Moreover, the MgSO4 rejection behavior of two types of modified membranes was investigated: one with an initial pore-dominated layer growth followed by a layer-dominated film growth; the other one with a completely layer-dominated film growth. The data confirm that a rejection for MgSO4 could only be achieved in the regime of layer-dominated film growth. Additionally, when layer-dominated film growth prevails from the early stages of the coating process, permeability values are higher at similar MgSO4 rejection rates compared to an initial pore-dominated and then layer-dominated film growth. Accordingly, the interaction between the membrane pore size and molecular weight of the polyelectrolytes in the coating solutions plays an important role during LbL coating.
Collapse
|
23
|
Kamp J, Emonds S, Wessling M. Designing tubular composite membranes of polyelectrolyte multilayer on ceramic supports with nanofiltration and reverse osmosis transport properties. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Dillmann S, Kaushik SA, Stumme J, Ernst M. Characterization and Performance of LbL-Coated Multibore Membranes: Zeta Potential, MWCO, Permeability and Sulfate Rejection. MEMBRANES 2020; 10:membranes10120412. [PMID: 33322011 PMCID: PMC7764170 DOI: 10.3390/membranes10120412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 11/30/2022]
Abstract
The characterization of membranes is suitable to investigate changes in the membrane properties caused by Layer-by-Layer (LbL) modification. Besides permeability, rejection, and molecular-weight cut-off (MWCO), which give information about the modification of the separation behaviour of the membrane, the zeta potential is capable of describing the surface charge of the membrane and its variation impacted by the properties of the polyelectrolyte multilayers (PEM). In this study, a new method for zeta potential measurement of hollow fibre membranes with several capillaries was developed and further investigations on the LbL modification of such membranes were performed. The results showed that an LbL coating with 8 DL PDADMAC/PSS led to a significant increase in the membrane charge of more than 20 mV. The coating with a different number of polyelectrolyte (PE) layers showed a zig-zag behaviour, comparable to data from flat sheet studies. However, in contrast to most flat sheet membranes, the charge curve assumes a totally negative trajectory at neutral pH. Further experiments on the MWCO of the LbL-modified membrane showed a reduction in the pore diameter from approx. 20 nm to less than 2 nm, reaching the range of nanofiltration membranes. With information on both the zeta potential and the MWCO, it was found that the rejection mechanism in LbL-modified multibore membranes is a complex interplay between the sieving effect due to reduction in the pore diameter and the repulsion effect of the charged membrane.
Collapse
Affiliation(s)
- Saskia Dillmann
- Institute for Water Resources and Water Supply, Hamburg University of Technology, Am Schwarzenberg-Campus 3, 20173 Hamburg, Germany;
- Correspondence:
| | | | - Jakob Stumme
- DVGW Research Centre TUHH, Am Schwarzenberg-Campus 3, 20173 Hamburg, Germany; (S.A.K.); (J.S.)
| | - Mathias Ernst
- Institute for Water Resources and Water Supply, Hamburg University of Technology, Am Schwarzenberg-Campus 3, 20173 Hamburg, Germany;
- DVGW Research Centre TUHH, Am Schwarzenberg-Campus 3, 20173 Hamburg, Germany; (S.A.K.); (J.S.)
| |
Collapse
|
25
|
Performance of Layer-by-Layer-Modified Multibore ® Ultrafiltration Capillary Membranes for Salt Retention and Removal of Antibiotic Resistance Genes. MEMBRANES 2020; 10:membranes10120398. [PMID: 33291315 PMCID: PMC7762176 DOI: 10.3390/membranes10120398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 11/16/2022]
Abstract
Polyether sulfone Multibore® ultrafiltration membranes were modified using polyelectrolyte multilayers via the layer-by-layer (LbL) technique in order to increase their rejection capabilities towards salts and antibiotic resistance genes. The modified capillary membranes were characterized to exhibit a molecular weight cut-off (at 90% rejection) of 384 Da. The zeta-potential at pH 7 was −40 mV. Laboratory tests using single-fiber modified membrane modules were performed to evaluate the removal of antibiotic resistance genes; the LbL-coated membranes were able to completely retain DNA fragments from 90 to 1500 nt in length. Furthermore, the pure water permeability and the retention of single inorganic salts, MgSO4, CaCl2 and NaCl, were measured using a mini-plant testing unit. The modified membranes had a retention of 80% toward MgSO4 and CaCl2 salts, and 23% in case of NaCl. The modified membranes were also found to be stable against mechanical backwashing (up to 80 LMH) and chemical regeneration (in acidic conditions and basic/oxidizing conditions).
Collapse
|
26
|
Elshof M, de Vos W, de Grooth J, Benes N. On the long-term pH stability of polyelectrolyte multilayer nanofiltration membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118532] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Roy S, Majumdar S, Sahoo GC, Bhowmick S, Kundu AK, Mondal P. Removal of As(V), Cr(VI) and Cu(II) using novel amine functionalized composite nanofiltration membranes fabricated on ceramic tubular substrate. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:122841. [PMID: 32526441 DOI: 10.1016/j.jhazmat.2020.122841] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/25/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Novel amine functionalized composite membranes were prepared over tubular ceramic substrate using facile dip-coating and cross-flow filtration approach. The two fabricated membranes, P-60S and P-60S-EDTA with polyethyleneimine (PEI) and EDTA-modified PEI as functional layers respectively, were characterized in terms of EDX, FTIR, XPS, FESEM, AFM and contact angle analyses which confirmed their stable physical and chemical structure for use in high pressure application. Clean water permeability and MWCO study revealed the superior permeability and rejection efficiency of the P-60S-EDTA compared to the P-60S membrane. Incorporation of bulky EDTA molecules in the membrane functional layer simultaneously decreased pore size and increased membrane hydrophilicity. The removal of As(V), Cr(VI) and Cu(II) heavy metals by both membranes were found to be highly pH dependent and overall rejection improved in case of P-60S-EDTA membrane [99.82% for Cu(II), 96.75% for As(V) and 97.22% for Cr(VI)]. Interestingly, rejection of As(V) and Cr(VI) was significantly improved in presence of Cu(II) due to volume resistance provided by EDTA-Cu(II) complex towards the passage of other heavy metal ions. Excellent stability of P-60S-EDTA membrane in continuous operation of 36 h in both ideal and practical water environment suggests its promising application in real field heavy metal contaminated waste water treatment.
Collapse
Affiliation(s)
- Sanjukta Roy
- Water Technology Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S.C. Mullick Road, Kolkata 700 032, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Glass and Ceramic Research Institute, 196, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Swachchha Majumdar
- Water Technology Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Ganesh C Sahoo
- Water Technology Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Subhamoy Bhowmick
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India
| | - Amit K Kundu
- Department of Chemistry, University of Kalyani, Nadia 741235, West Bengal, India
| | - Priyanka Mondal
- Water Technology Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S.C. Mullick Road, Kolkata 700 032, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Glass and Ceramic Research Institute, 196, Raja S.C. Mullick Road, Kolkata 700 032, India.
| |
Collapse
|
28
|
Unraveling the effect of charge distribution in a polyelectrolyte multilayer nanofiltration membrane on its ion transport properties. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118045] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
Bóna Á, Bakonyi P, Galambos I, Bélafi-Bakó K, Nemestóthy N. Separation of Volatile Fatty Acids from Model Anaerobic Effluents Using Various Membrane Technologies. MEMBRANES 2020; 10:E252. [PMID: 32987682 PMCID: PMC7598613 DOI: 10.3390/membranes10100252] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 11/22/2022]
Abstract
Effluents of anaerobic processes still contain valuable components, among which volatile fatty acids (VFAs) can be regarded and should be recovered and/or used further in applications such as microbial electrochemical technology to generate energy/energy carriers. To accomplish the separation of VFAs from waste liquors, various membrane-based solutions applying different transport mechanisms and traits are available, including pressure-driven nanofiltration (NF) and reverse osmosis (RO) which are capable to clarify, fractionate and concentrate salts and organics. Besides, emerging techniques using a membrane such as forward osmosis (FO) and supported liquid membrane (SILM) technology can be taken into consideration for VFA separation. In this work, we evaluate these four various downstream methods (NF, RO, FO and SILM) to determine the best one, comparatively, for enriching VFAs from pH-varied model solutions composed of acetic, butyric and propionic acids in different concentrations. The assessment of the separation experiments was supported by statistical examination to draw more solid conclusions. Accordingly, it turned out that all methods can separate VFAs from the model solution. The highest average retention was achieved by RO (84% at the applied transmembrane pressure of 6 bar), while NF provided the highest permeance (6.5 L/m2hbar) and a high selectivity between different VFAs.
Collapse
Affiliation(s)
- Áron Bóna
- Research Institute on Bioengineering, Membrane Technology and Energetics, University of Pannonia, 8200 Veszprém, Hungary; (Á.B.); (P.B.); (K.B.-B.)
- Soós Ernő Research and Development Center, University of Pannonia, 8200 Nagykanizsa, Hungary;
| | - Péter Bakonyi
- Research Institute on Bioengineering, Membrane Technology and Energetics, University of Pannonia, 8200 Veszprém, Hungary; (Á.B.); (P.B.); (K.B.-B.)
| | - Ildikó Galambos
- Soós Ernő Research and Development Center, University of Pannonia, 8200 Nagykanizsa, Hungary;
| | - Katalin Bélafi-Bakó
- Research Institute on Bioengineering, Membrane Technology and Energetics, University of Pannonia, 8200 Veszprém, Hungary; (Á.B.); (P.B.); (K.B.-B.)
| | - Nándor Nemestóthy
- Research Institute on Bioengineering, Membrane Technology and Energetics, University of Pannonia, 8200 Veszprém, Hungary; (Á.B.); (P.B.); (K.B.-B.)
| |
Collapse
|
30
|
Roth H, Menne D, Kamp J, Emonds S, Wollf H, Wessling M. Schnell zu neuen Materialien – Effizientes Forschungsdatenmanagement an der Aachener Verfahrenstechnik. CHEM-ING-TECH 2020. [DOI: 10.1002/cite.202055486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- H. Roth
- FURTHRresearch GmbH & Co. KG Kapuzinergasse 7–9 52068 Aachen Deutschland
- DWI – Leibniz-Institut für Interaktive Materialien Forckenbeckstr. 50 52074 Aachen Deutschland
| | - D. Menne
- FURTHRresearch GmbH & Co. KG Kapuzinergasse 7–9 52068 Aachen Deutschland
| | - J. Kamp
- Chemische Verfahrenstechnik AVT. CVT Forckenbeckstr. 51 52074 Aachen Deutschland
| | - S. Emonds
- Chemische Verfahrenstechnik AVT. CVT Forckenbeckstr. 51 52074 Aachen Deutschland
- DWI – Leibniz-Institut für Interaktive Materialien Forckenbeckstr. 50 52074 Aachen Deutschland
| | - H. Wollf
- Chemische Verfahrenstechnik AVT. CVT Forckenbeckstr. 51 52074 Aachen Deutschland
| | - M. Wessling
- Chemische Verfahrenstechnik AVT. CVT Forckenbeckstr. 51 52074 Aachen Deutschland
- DWI – Leibniz-Institut für Interaktive Materialien Forckenbeckstr. 50 52074 Aachen Deutschland
| |
Collapse
|
31
|
Multi-scale membrane process optimization with high-fidelity ion transport models through machine learning. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118208] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Sigurdardottir SB, DuChanois RM, Epsztein R, Pinelo M, Elimelech M. Energy barriers to anion transport in polyelectrolyte multilayer nanofiltration membranes: Role of intra-pore diffusion. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117921] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Assessment of Layer-By-Layer Modified Nanofiltration Membrane Stability in Phosphoric Acid. MEMBRANES 2020; 10:membranes10040061. [PMID: 32260137 PMCID: PMC7231399 DOI: 10.3390/membranes10040061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/29/2020] [Accepted: 03/31/2020] [Indexed: 11/17/2022]
Abstract
Nanofiltration (NF) can enable P recovery from waste streams via retaining multivalent impurities from spent pickling acid. However, with the currently available membranes, an economically feasible process is impossible. Layer-by-layer modified NF membranes are a promising solution for the recovery of P from acidic leachate. LbL membranes show a high level of versatility in terms of fine tuning for ion retention, which is necessary to achieve sufficient phosphorus yields. However, the stability of layer-by-layer modified membranes during phosphoric acid (H3PO4) filtration needs to be further investigated. In our study, we show that a polyethersulfone hollow fiber membrane modified with four or eight bi-layers was stable during immersing and filtering of a 15% H3PO4 solution. A sulfonated polyethersulfone (sPES)-based hollow fiber LbL membrane was only stable during filtration. Thus, we show the importance of applying real process conditions to evaluate membranes. Another important aspect is the influence of the high ionic strength of the feed solution on the membrane. We show that a high ionic strength led to a decrease in Mg retention, which could be increased to 85% by adjusting the process parameters.
Collapse
|
34
|
Thinking the future of membranes: Perspectives for advanced and new membrane materials and manufacturing processes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117761] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
35
|
Wu X, Liu H, Wei Y, Fei Y, Qi H. Negatively charged organic–inorganic hybrid silica nanofiltration membranes for lithium extraction. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2019.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
36
|
Ma MQ, Zhang C, Zhu CY, Huang S, Yang J, Xu ZK. Nanocomposite membranes embedded with functionalized MoS2 nanosheets for enhanced interfacial compatibility and nanofiltration performance. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117316] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
37
|
Wolters R, Hubrich M, Kozariszczuk M, Mund P, Kamp J, Wessling M. Kühl‐ und Prozesswasserbehandlung in der Stahlindustrie. CHEM-ING-TECH 2019. [DOI: 10.1002/cite.201900050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ralf Wolters
- VDEh-Betriebsforschungsinstitut GmbH Sohnstraße 65 40237 Düsseldorf Deutschland
| | - Martin Hubrich
- VDEh-Betriebsforschungsinstitut GmbH Sohnstraße 65 40237 Düsseldorf Deutschland
| | | | - Peter Mund
- atech innovations gmbh Am Wiesenbusch 26 45966 Gladbeck Deutschland
| | - Johannes Kamp
- RWTH Aachen AVT.CVT – Aachener Verfahrenstechnik, Chemische Verfahrenstechnik Forckenbeckstraße 51 52074 Aachen Deutschland
- DWI – Leibniz Institut für Interaktive Materialien Forckenbeckstraße 50 52074 Aachen Deutschland
| | - Matthias Wessling
- RWTH Aachen AVT.CVT – Aachener Verfahrenstechnik, Chemische Verfahrenstechnik Forckenbeckstraße 51 52074 Aachen Deutschland
- DWI – Leibniz Institut für Interaktive Materialien Forckenbeckstraße 50 52074 Aachen Deutschland
| |
Collapse
|
38
|
From micro to nano: Polyamide thin film on microfiltration ceramic tubular membranes for nanofiltration. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.06.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Remmen K, Müller B, Köser J, Wessling M, Wintgens T. Phosphorus recovery in an acidic environment using layer-by-layer modified membranes. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.03.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
40
|
Zhao S, Caruso F, Dähne L, Decher G, De Geest BG, Fan J, Feliu N, Gogotsi Y, Hammond PT, Hersam MC, Khademhosseini A, Kotov N, Leporatti S, Li Y, Lisdat F, Liz-Marzán LM, Moya S, Mulvaney P, Rogach AL, Roy S, Shchukin DG, Skirtach AG, Stevens MM, Sukhorukov GB, Weiss PS, Yue Z, Zhu D, Parak WJ. The Future of Layer-by-Layer Assembly: A Tribute to ACS Nano Associate Editor Helmuth Möhwald. ACS NANO 2019; 13:6151-6169. [PMID: 31124656 DOI: 10.1021/acsnano.9b03326] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Layer-by-layer (LbL) assembly is a widely used tool for engineering materials and coatings. In this Perspective, dedicated to the memory of ACS Nano associate editor Prof. Dr. Helmuth Möhwald, we discuss the developments and applications that are to come in LbL assembly, focusing on coatings, bulk materials, membranes, nanocomposites, and delivery vehicles.
Collapse
Affiliation(s)
- Shuang Zhao
- Fachbereich Physik, CHyN , Universität Hamburg , 22607 Hamburg , Germany
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering , The University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Lars Dähne
- Surflay Nanotec GmbH , 12489 Berlin , Germany
| | - Gero Decher
- CNRS Institut Charles Sadron, Faculté de Chimie , Université de Strasbourg, Int. Center for Frontier Research in Chemistry , Strasbourg F-67034 , France
- Int. Center for Materials Nanoarchitectonics , Ibaraki 305-0044 , Japan
| | - Bruno G De Geest
- Department of Pharmaceutics , Ghent University , 9000 Ghent , Belgium
| | - Jinchen Fan
- Department of Chemical Engineering and Biointerfaces Institute , University of Michigan , Ann Arbor , Michigan 48105 , United States
| | - Neus Feliu
- Fachbereich Physik, CHyN , Universität Hamburg , 22607 Hamburg , Germany
| | - Yury Gogotsi
- Department of Materials Science and Engineering and A. J. Drexel Nanomaterials Institute , Drexel University , Philadelphia , Pennsylvania 19104 , United States
| | - Paula T Hammond
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02459 , United States
| | - Mark C Hersam
- Department of Materials Science and Engineering , Northwestern University , Evanston , Illinois 60208-3108 , United States
| | - Ali Khademhosseini
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI) , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Nicholas Kotov
- Department of Chemical Engineering and Biointerfaces Institute , University of Michigan , Ann Arbor , Michigan 48105 , United States
- Michigan Institute for Translational Nanotechnology , Ypsilanti , Michigan 48198 , United States
| | - Stefano Leporatti
- CNR Nanotec-Istituto di Nanotecnologia , Italian National Research Council , Lecce 73100 , Italy
| | - Yan Li
- College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Fred Lisdat
- Biosystems Technology, Institute for Applied Life Sciences , Technical University , D-15745 Wildau , Germany
| | - Luis M Liz-Marzán
- CIC biomaGUNE , San Sebastian 20009 , Spain
- Ikerbasque, Basque Foundation for Science , Bilbao 48013 , Spain
| | | | - Paul Mulvaney
- ARC Centre of Excellence in Exciton Science, School of Chemistry , University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Andrey L Rogach
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP) , City University of Hong Kong , Kowloon Tong , Hong Kong SAR
| | - Sathi Roy
- Fachbereich Physik, CHyN , Universität Hamburg , 22607 Hamburg , Germany
| | - Dmitry G Shchukin
- Stephenson Institute for Renewable Energy, Department of Chemistry , University of Liverpool , Liverpool L69 7ZF , United Kingdom
| | - Andre G Skirtach
- Nano-BioTechnology group, Department of Biotechnology, Faculty of Bioscience Engineering , Ghent University , 9000 Ghent , Belgium
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering and Institute for Biomedical Engineering , Imperial College London , London SW7 2AZ , United Kingdom
| | - Gleb B Sukhorukov
- School of Engineering and Materials Science , Queen Mary University of London , London E1 4NS , United Kingdom
| | - Paul S Weiss
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI) , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Chemistry and Biochemistry and Department of Materials Science and Engineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Zhao Yue
- Department of Microelectronics , Nankai University , Tianjin 300350 , China
| | - Dingcheng Zhu
- Fachbereich Physik, CHyN , Universität Hamburg , 22607 Hamburg , Germany
| | - Wolfgang J Parak
- Fachbereich Physik, CHyN , Universität Hamburg , 22607 Hamburg , Germany
- CIC biomaGUNE , San Sebastian 20009 , Spain
| |
Collapse
|
41
|
Gao J, Zhang M, Wang J, Liu G, Liu H, Jiang Y. Bioinspired Modification of Layer-Stacked Molybdenum Disulfide (MoS 2) Membranes for Enhanced Nanofiltration Performance. ACS OMEGA 2019; 4:4012-4022. [PMID: 31459610 PMCID: PMC6648815 DOI: 10.1021/acsomega.9b00155] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 02/14/2019] [Indexed: 05/12/2023]
Abstract
Inorganic nanofiltration membranes with high flux are urgently needed in water purification processes. Herein, polydopamine (PDA)-modified layer-stacked molybdenum disulfide (MoS2) nanofiltration membranes (NFMs) were fabricated via a pressure-assisted self-assembly process. The separation performance of the as-prepared membranes with various MoS2 loadings at different dopamine polymerization times was evaluated. The pure water permeance of PDA-modified MoS2 NFMs, with MoS2 loading of 0.1103 mg/cm2 at 4 h modification, could reach 135.3 LMH/bar. The rejection toward methylene blue could reach 100% with molecular weight cutoff approximately 671 Da and a high permeability of salts. Furthermore, the resultant membrane also exhibited a satisfactory long-term stability toward dye solution and antifouling property toward bovine serum albumin. This work may give inspiration to the development of inorganic membranes with high performance, especially high pure water permeance, for water-related processes.
Collapse
Affiliation(s)
- Jing Gao
- School of Chemical
Engineering and Technology, Hebei University
of Technology, 8 Guangrong Road, Hongqiao District, Tianjin 300130, P. R. China
| | - Miyu Zhang
- School of Chemical
Engineering and Technology, Hebei University
of Technology, 8 Guangrong Road, Hongqiao District, Tianjin 300130, P. R. China
| | - Jingtao Wang
- School of Chemical Engineering and Energy, Zhengzhou University, 100 Science Avenue, Zhengzhou City, Henan Province 450001, P. R. China
| | - Guanhua Liu
- School of Chemical
Engineering and Technology, Hebei University
of Technology, 8 Guangrong Road, Hongqiao District, Tianjin 300130, P. R. China
- Key Laboratory for Green Chemical Technology of Ministry
of Education, School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300350, P. R. China
| | - Hengrao Liu
- School of Chemical
Engineering and Technology, Hebei University
of Technology, 8 Guangrong Road, Hongqiao District, Tianjin 300130, P. R. China
| | - Yanjun Jiang
- School of Chemical
Engineering and Technology, Hebei University
of Technology, 8 Guangrong Road, Hongqiao District, Tianjin 300130, P. R. China
| |
Collapse
|
42
|
Preparation of Layer-by-Layer Nanofiltration Membranes by Dynamic Deposition and Crosslinking. MEMBRANES 2019; 9:membranes9020020. [PMID: 30682860 PMCID: PMC6410208 DOI: 10.3390/membranes9020020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 11/17/2022]
Abstract
In recent decades, the advancements in layer-by-layer (LBL) assembly technology have provoked increasing interest in the preparation of multilayer polyelectrolyte membranes with excellent performance. In the current study, a novel nanofiltration (NF) membrane was prepared by pressure-driven layer-by-layer (LBL) assembly of polyethylenimine (PEI) and polyacrylicacid (PAA) on a porous substrate with chemical crosslinking. The effect of deposition pressure on separation performance of the prepared membranes was studied. The surface morphology, hydrophilicity and the charge property of the dynamically-deposited membranes were compared with those prepared by static adsorption. The characterization results showed that dynamic deposition process resulted in a smoother membrane surface with improved hydrophilicity. The mechanism of water-path formation was proposed to interpret the effect of pressure on the membrane performance. Glutaraldehyde (GA) was used as a crosslinker to reduce the number of polyelectrolyte bilayers for obtaining good separation performance. The rejections of different inorganic salts of the dynamically-deposited NF membrane were also investigated.
Collapse
|
43
|
Rall D, Menne D, Schweidtmann AM, Kamp J, von Kolzenberg L, Mitsos A, Wessling M. Rational design of ion separation membranes. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.10.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Layer-by-layer assembly of anion exchange membrane by electrodeposition of polyelectrolytes for improved antifouling performance. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.04.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
Effect of polycation structure on the fabrication of polyelectrolyte multilayer hollow fiber membranes for loose nanofiltration applications. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2017.11.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Smirnova NN. Ultrafiltration membranes based on interpolyelectrolyte complexes: Adsorption and mass-exchange properties. RUSS J APPL CHEM+ 2017. [DOI: 10.1134/s1070427217060131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Numerical simulation of ionic transport processes through bilayer ion-exchange membranes in reverse electrodialysis stacks. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2016.11.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
48
|
Wu C, Zhao L, Zhang Y. pH-Responsive nanofiltration membranes based on porphyrin supramolecular self-assembly by layer-by-layer technique. RSC Adv 2017. [DOI: 10.1039/c7ra08568k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel pH-responsive nanofiltration membrane was fabricated by means of layer-by-layer technique based on porphyrin supramolecular self-assembly.
Collapse
Affiliation(s)
- Chenglin Wu
- School of Pharmaceutical and Chemical Engineering
- Taizhou University
- Taizhou
- P. R. China
| | - Lizhi Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes
- School of Materials Science and Engineering
- Tianjin Polytechnic University
- Tianjin
- P. R. China
| | - Yuzhong Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes
- School of Materials Science and Engineering
- Tianjin Polytechnic University
- Tianjin
- P. R. China
| |
Collapse
|