1
|
Azarm N, Azarpira N, Toiserkani H. Incorporation of metallic-organic frameworks into chitosan/hyaluronic acid nano-fibrous scaffold: antimicrobial and non-cytotoxicity evaluation. Int J Biol Macromol 2025; 309:141776. [PMID: 40057099 DOI: 10.1016/j.ijbiomac.2025.141776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/20/2025] [Accepted: 03/04/2025] [Indexed: 04/11/2025]
Abstract
This study presents the development of an enhanced wound dressing utilizing electrospun chitosan/polyvinyl alcohol/hyaluronic acid (CS/PVA/HA) nanofibers combined with copper-based metal-organic frameworks (MOFs) and silver nanoparticles (AgNPs). The primary aim was to create a dressing that supports skin regeneration while exhibiting antimicrobial properties and moisture absorption capabilities. HKUST-1 MOFs were synthesized via a solvothermal method and subsequently integrated with AgNPs into the CS/PVA/HA matrix. Characterization through scanning electron microscopy (SEM), dynamic light scattering (DLS), and X-ray diffraction (XRD) revealed a size reduction of the MOFs from 470 nm to 95 nm after AgNP incorporation. Following electrospinning, the diameter of the nanofibers increased from 138 nm to 243 nm, and the surface area and pore volume improved significantly from 12.961 m2/g to 71.3 m2/g. This integration enhanced the hydrophilicity of the fibers, doubling water absorption and maintaining structural integrity over 21 days. Tensile strength testing confirmed Young's Modulus increased from 0.01905 MPa to 0.119 MPa. While fibroblast viability decreased from 128 % to 72 %, cell adherence was notably enhanced. Antibacterial assays demonstrated the effective inhibition of Gram-positive and Gram-negative bacterial growth due to HKUST@Ag crystals. These findings position this advanced wound dressing as a promising candidate for improved wound healing applications.
Collapse
Affiliation(s)
- Nakisa Azarm
- Department of Polymer Engineering, Faculty of Chemistry and Chemical Engineering, Graduate University of Advanced Technology, Kerman, Iran.
| | - Negar Azarpira
- Organ Transplant Research Center, Department of Pathology, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Hojjat Toiserkani
- Department of Polymer Engineering, Faculty of Chemistry and Chemical Engineering, Graduate University of Advanced Technology, Kerman, Iran.
| |
Collapse
|
2
|
Gebremariam S, Varghese AM, Ehrling S, Al Wahedi Y, AlHajaj A, Dumée LF, Karanikolos GN. Hierarchically Porous Structured Adsorbents with Ultrahigh Metal-Organic Framework Loading for CO 2 Capture. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50785-50799. [PMID: 39282713 PMCID: PMC11440468 DOI: 10.1021/acsami.4c10730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024]
Abstract
Metal-organic frameworks (MOFs) have emerged as promising candidates for CO2 adsorption due to their ultrahigh-specific surface area and highly tunable pore-surface properties. However, their large-scale application is hindered by processing issues associated with their microcrystalline powder nature, such as dustiness, pressure drop, and poor mass transfer within packed beds. To address these challenges, shaping/structuring micron-sized polycrystalline MOF powders into millimeter-sized structured forms while preserving porosity and functionality represents an effective yet challenging approach. In this study, a facile and versatile strategy was employed to integrate moisture-stable and scalable microcrystalline MOFs (UiO-66 and ZIF-8) into a poly(acrylonitrile) matrix to fabricate readily processable, millimeter-sized hierarchically porous structured adsorbents with ultrahigh MOF loadings (∼90 wt %) for direct industrial carbon capture applications. These structured composite beads retained the physicochemical properties and separation performance of the pristine MOF crystal particles. Structured UiO-66 and ZIF-8 exhibited high specific surface areas of 1130 m2 g-1 and 1431 m2 g-1, respectively. The structured UiO-66 achieved a CO2 adsorption capacity of 2.0 mmol g-1 at 1 bar and a dynamic CO2/N2 selectivity of 17 for a CO2/N2 gas mixture with a 15/85 volume ratio at 25 °C. Furthermore, the structured adsorbents exhibited excellent cyclability in static and dynamic CO2 adsorption studies, making them promising candidates for practical application.
Collapse
Affiliation(s)
- Solomon
K. Gebremariam
- Department
of Chemical and Petroleum Engineering, Khalifa
University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
- Center
for Catalysis and Separation (CeCaS), Khalifa
University, P.O. Box
127788, Abu Dhabi 127788, United Arab Emirates
| | - Anish Mathai Varghese
- Department
of Chemical and Petroleum Engineering, Khalifa
University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
- Center
for Catalysis and Separation (CeCaS), Khalifa
University, P.O. Box
127788, Abu Dhabi 127788, United Arab Emirates
| | - Sebastian Ehrling
- 3P
Instruments GmbH & Co. KG, Bitterfelder Str. 1-5, Leipzig 04129, Germany
| | - Yasser Al Wahedi
- Abu
Dhabi Maritime Academy, P.O. Box 54477, Abu Dhabi 127788, United Arab Emirates
| | - Ahmed AlHajaj
- Department
of Chemical and Petroleum Engineering, Khalifa
University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
- Research
and Innovation Center on CO2 and H2 (RICH), Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
| | - Ludovic F. Dumée
- Department
of Chemical and Petroleum Engineering, Khalifa
University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
- Research
and Innovation Center on 2D nanomaterials (RIC-2D), Khalifa University, Arzanah precinct, Sas Al Nakhl, P.O. Box 127788, Abu Dhabi, 127788, United
Arab Emirates
| | - Georgios N. Karanikolos
- Department
of Chemical Engineering, University of Patras, Patras, 26504, Greece
- Institute
of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas
(FORTH/ICE-HT), Patras, 26504, Greece
| |
Collapse
|
3
|
Qiu Z, Chen J, Zeng J, Dai R, Wang Z. A review on artificial water channels incorporated polyamide membranes for water purification: Transport mechanisms and performance. WATER RESEARCH 2023; 247:120774. [PMID: 37898000 DOI: 10.1016/j.watres.2023.120774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/30/2023]
Abstract
While thin-film composite (TFC) polyamide (PA) membranes are advanced for removing salts and trace organic contaminants (TrOCs) from water, TFC PA membranes encounter a water permeance-selectivity trade-off due to PA layer structural characteristics. Drawing inspiration from the excellent water permeance and solute rejection of natural biological channels, the development of analogous artificial water channels (AWCs) in TFC PA membranes (abbreviated as AWCM) promises to achieve superior mass transfer efficiency, enabling breaking the upper bound of water permeance and selectivity. Herein, we first discussed the types and structural characteristics of AWCs, followed by summarizing the methods for constructing AWCM. We discussed whether the AWCs acted as the primary mass transfer channels in AWCM and emphasized the important role of the AWCs in water transport and ion/TrOCs rejection. We thoroughly summarized the molecular-level mechanisms and structure-performance relationship of water molecules, ions, and TrOCs transport in the confined nanospace of AWCs, which laid the foundation for illustrating the enhanced water permeance and salt/TrOCs selectivity of AWCM. Finally, we discussed the challenges encountered in the field of AWCM and proposed future perspectives for practical applications. This review is expected to offer guidance for understanding the transport mechanisms of AWCM and developing next-generation membrane for effective water treatment.
Collapse
Affiliation(s)
- Zhiwei Qiu
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jiansuxuan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jin Zeng
- School of Software Engineering, Tongji University, Shanghai 201804, PR China
| | - Ruobin Dai
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
4
|
Cheng Y, Datta SJ, Zhou S, Jia J, Shekhah O, Eddaoudi M. Advances in metal-organic framework-based membranes. Chem Soc Rev 2022; 51:8300-8350. [PMID: 36070414 DOI: 10.1039/d2cs00031h] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Membrane-based separations have garnered considerable attention owing to their high energy efficiency, low capital cost, small carbon footprint, and continuous operation mode. As a class of highly porous crystalline materials with well-defined pore systems and rich chemical functionalities, metal-organic frameworks (MOFs) have demonstrated great potential as promising membrane materials over the past few years. Different types of MOF-based membranes, including polycrystalline membranes, mixed matrix membranes (MMMs), and nanosheet-based membranes, have been developed for diversified applications with remarkable separation performances. In this comprehensive review, we first discuss the general classification of membranes and outline the historical development of MOF-based membranes. Subsequently, particular attention is devoted to design strategies for MOF-based membranes, along with detailed discussions on the latest advances on these membranes for various gas and liquid separation processes. Finally, challenges and future opportunities for the industrial implementation of these membranes are identified and outlined with the intent of providing insightful guidance on the design and fabrication of high-performance membranes in the future.
Collapse
Affiliation(s)
- Youdong Cheng
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Shuvo Jit Datta
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Sheng Zhou
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Jiangtao Jia
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Osama Shekhah
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Mohamed Eddaoudi
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| |
Collapse
|
5
|
Hosseinzadeh G, Ghasemian N, Zinatloo-Ajabshir S. TiO2/graphene nanocomposite supported on clinoptilolite nanoplate and its enhanced visible light photocatalytic activity. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2021.109144] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
An attempt to enhance water flux of hollow fiber polyamide composite nanofiltration membrane by the incorporation of hydrophilic and compatible PPTA/PSF microparticles. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
A rigid-flexible interpenetrating polyamide reverse osmosis membrane with improved antifouling property fabricated via two step modifications. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Kujawa J, Al-Gharabli S, Muzioł TM, Knozowska K, Li G, Dumée LF, Kujawski W. Crystalline porous frameworks as nano-enhancers for membrane liquid separation – Recent developments. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Liao Z, Zhu J, Li X, Van der Bruggen B. Regulating composition and structure of nanofillers in thin film nanocomposite (TFN) membranes for enhanced separation performance: A critical review. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118567] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
Jiang H, Liu Y, Xing W, Chen R. Porous Membrane Reactors for Liquid-Phase Heterogeneous Catalysis. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hong Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, People’s Republic of China
| | - Yefei Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, People’s Republic of China
| | - Weihong Xing
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, People’s Republic of China
| | - Rizhi Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, People’s Republic of China
| |
Collapse
|
11
|
Le T, Chen X, Dong H, Tarpeh W, Perea-Cachero A, Coronas J, Martin SM, Mohammad M, Razmjou A, Esfahani AR, Koutahzadeh N, Cheng P, Kidambi PR, Esfahani MR. An Evolving Insight into Metal Organic Framework-Functionalized Membranes for Water and Wastewater Treatment and Resource Recovery. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00543] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Tin Le
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Xi Chen
- Department of Chemical Engineering, Stanford University, Stanford, California 94305-6104, United States
| | - Hang Dong
- Department of Chemical Engineering, Stanford University, Stanford, California 94305-6104, United States
| | - William Tarpeh
- Department of Chemical Engineering, Stanford University, Stanford, California 94305-6104, United States
| | - Adelaida Perea-Cachero
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50018, Spain
- Chemical and Environmental Engineering Department, Universidad de Zaragoza, Zaragoza, 50018, Spain
| | - Joaquín Coronas
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50018, Spain
- Chemical and Environmental Engineering Department, Universidad de Zaragoza, Zaragoza, 50018, Spain
| | - Stephen M. Martin
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Munirah Mohammad
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Amir Razmjou
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Amirsalar R. Esfahani
- Department of Mechanical Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0002, United States
| | - Negin Koutahzadeh
- Environmental Health & Safety, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Peifu Cheng
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Piran R. Kidambi
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Milad Rabbani Esfahani
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
12
|
Sun DW, Huang L, Pu H, Ma J. Introducing reticular chemistry into agrochemistry. Chem Soc Rev 2020; 50:1070-1110. [PMID: 33236735 DOI: 10.1039/c9cs00829b] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
For survival and quality of life, human society has sought more productive, precise, and sustainable agriculture. Agrochemistry, which solves farming issues in a chemical manner, is the core engine that drives the evolution of modern agriculture. To date, agrochemistry has utilized chemical technologies in the form of pesticides, fertilizers, veterinary drugs and various functional materials to meet fundamental demands from human society, while increasing the socio-ecological consequences due to inefficient use. Thus, more useful, precise, and designable scaffolding materials are required to support sustainable agrochemistry. Reticular chemistry, which weaves molecular units into frameworks, has been applied in many fields based on two cutting-edge porous framework materials, namely metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs). With flexibility in composition, structure, and pore chemistry, MOFs and COFs have shown increasing functionalities associated with agrochemistry in the last decade, potentially introducing reticular chemistry as a highly accessible chemical toolbox into agrochemical technologies. In this critical review, we will demonstrate how reticular chemistry shapes the future of agrochemistry in the fields of farm sensing, agro-ecological preservation and reutilization, agrochemical formulations, smart indoor farming, agrobiotechnology, and beyond.
Collapse
Affiliation(s)
- Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| | | | | | | |
Collapse
|
13
|
Development and Characterization of Membranes with PVA Containing Silver Particles: A Study of the Addition and Stability. Polymers (Basel) 2020; 12:polym12091937. [PMID: 32867143 PMCID: PMC7565032 DOI: 10.3390/polym12091937] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 11/18/2022] Open
Abstract
Developing technologies for the reduction of biofouling and enhancement of membrane functionality and durability are challenging but critical for the advancement of water purification processes. Silver (Ag) is often used in the process of purification due to its anti-fouling properties; however, the leaching of this metal from a filtration membrane significantly reduces its effectiveness. Our study was designed to integrate the positive characteristics of poly vinyl alcohol (PVA) with the controlled incorporation of nano-scale silver ions across the membrane. This approach was designed with three goals in mind: (1) to improve antifouling activity; (2) to prevent leaching of the metal; and (3) to extend the durability of the functionalized membrane. The fabrication method we used was a modified version of manual coating in combination with sufficient pressure to ensure impregnation and proper blending of PVA with cellulose acetate. We then used the spin coater to enhance the cross-linking reaction, which improved membrane durability. Our results indicate that PVA acts as a reducing agent of Ag+ to Ag0 using X-ray photoelectron spectroscopy analysis and demonstrate that the metal retention was increased by more than 90% using PVA in combination with ultraviolet-photo-irradiated Ag+ reduced to Ag0. The Ag+ ions have sp hybrid orbitals, which accept lone pairs of electrons from a hydroxyl oxygen atom, and the covalent binding of silver to the hydroxyl groups of PVA enhanced retention. In fact, membranes with reduced Ag displayed a more effective attachment of Ag and a more efficient eradication of E. coli growth. Compared to pristine membranes, bovine serum albumin (BSA) flux increased by 8% after the initial addition of Ag and by 17% following ultraviolet irradiation and reduction of Ag, whereas BSA rejection increased by 10% and 11%, respectively. The implementation of this hybrid method for modifying commercial membranes could lead to significant savings due to increased metal retention and membrane effectiveness. These enhancements would ultimately increase the membrane’s longevity and reduce the cost/benefit ratio.
Collapse
|
14
|
Li B, Chen X, Li K, Zhang C, He Y, Du R, Wang J, Chen L. Coupling membrane and Fe–Pd bimetallic nanoparticles for trichloroethene removing from water. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.06.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
Kotlhao K, Lawal IA, Moutloali RM, Klink MJ. Antifouling Properties of Silver-Zinc Oxide Polyamide Thin Film Composite Membrane and Rejection of 2-Chlorophenol and 2,4-Dichlorophenol. MEMBRANES 2019; 9:E96. [PMID: 31387240 PMCID: PMC6723071 DOI: 10.3390/membranes9080096] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/09/2019] [Accepted: 07/12/2019] [Indexed: 01/31/2023]
Abstract
The silver-zinc oxide (Ag-ZnO) polyamide thin film composite (PA-TFC) membrane was prepared by interfacial polymerization. The Ag-ZnO/PA-TFC membrane was characterized by attenuated total reflectance fourier-transform infrared spectroscopy (ATR-FTIR) for polyamide functional groups and contact angle for surface hydrophilicity. The Ag-ZnO/PA-TFC membrane was further characterized by Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) for morphology and surface roughness, respectively. The performance of the fabricated membrane was investigated using pure water flux, permeability, rejection, flux recovery, and fouling resistance using low molecular weight organic pollutants, 2-chlorophenol (2-CP) and 2,4-dichlorophenol (2,4-DCP). The results were compared to the neat (PA-TFC) membrane. It was observed that incorporation of Ag-ZnO nanocomposites into the PA-TFC membrane improved hydrophilicity, permeation, rejection, and fouling resistance properties of the membrane. The contact angle decreased from 62.8° to 54° for PA-TFC and the Ag-ZnO/PA-TFC membrane, respectively. The presence of Ag-ZnO enhanced permeability of the membrane from 0.9 (Lm-2h-1bar-1) to 1.9 (Lm-2h-1bar-1). Modification of the membrane with Ag-ZnO further showed an enhanced rejection of 2-CP and 2,4-DCP from 43% to 80% and 58% to 85%, respectively. The 2,4-DCP molecules were rejected more than 2-CP due to enhanced repulsive forces from the extra Cl ion. A high flux recovery of about 95% was achieved for the modified membrane compared to 64% for the neat membrane. The improved flux recovery was an indication of enhanced antifouling propensity.
Collapse
Affiliation(s)
- Kate Kotlhao
- Faculty of Applied and Computer Sciences, Department of Chemistry, Vaal University of Technology, Private Bag X021, Vanderbijlpark 1900, South Africa
| | - Isiaka A Lawal
- Faculty of Applied and Computer Sciences, Department of Chemistry, Vaal University of Technology, Private Bag X021, Vanderbijlpark 1900, South Africa
| | - Richard M Moutloali
- Faculty of Science, Department of Applied Chemistry, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa
| | - Michael J Klink
- Faculty of Applied and Computer Sciences, Department of Chemistry, Vaal University of Technology, Private Bag X021, Vanderbijlpark 1900, South Africa.
- Faculty of Applied and Computer Sciences, Department of Biotechnology. Vaal University of Technology, Private Bag X021, Vanderbijlpark 1900, South Africa.
| |
Collapse
|
16
|
Barchanska H, Plonka J, Jaros A, Ostrowska A. Potential application of Pistia stratiotes for the phytoremediation of mesotrione and its degradation products from water. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:1090-1097. [PMID: 31084361 DOI: 10.1080/15226514.2019.1606780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The aim of the present work is to estimate remediation potential of Pistia stratiotes, its ability to uptake mesotrione (MES) - one of the most frequently used herbicides, and its main degradation products: 2-amino-4-methylsulfonyl benzoic acid (AMBA) and 4-methylsulfonyl-2-nitrobenzoic acid (MNBA). This research focuses on model experiments performed under laboratory conditions. The results show that Pistia stratiotes can uptake up to 75% of degradation products from 1 L of surface water samples polluted with 0.4 µg/L of each analyte during 7 days without significant phytotoxic effect. Under the same experimental conditions, the effectiveness of mesotrione sorption is in the range of 42-58%. The phytotoxicity of this compound is higher in comparison to its degradation products (decrease of chlorophyll concentration in plant tissues exposed to MES 27-32% vs 4-13% in case of exposition to AMBA and MNBA). The adequate nutrition of the plants is crucial to their well-being and thus the sorption of pollutants.
Collapse
Affiliation(s)
- Hanna Barchanska
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology , Gliwice , Poland
| | - Joanna Plonka
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology , Gliwice , Poland
| | - Angelika Jaros
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology , Gliwice , Poland
| | - Angelika Ostrowska
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology , Gliwice , Poland
| |
Collapse
|
17
|
Yuan S, Li J, Zhu J, Volodine A, Li J, Zhang G, Van Puyvelde P, Van der Bruggen B. Hydrophilic nanofiltration membranes with reduced humic acid fouling fabricated from copolymers designed by introducing carboxyl groups in the pendant benzene ring. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.06.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
18
|
Zhong B, Wang S, Dong H, Luo Y, Jia Z, Zhou X, Chen M, Xie D, Jia D. Halloysite Tubes as Nanocontainers for Herbicide and Its Controlled Release in Biodegradable Poly(vinyl alcohol)/Starch Film. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10445-10451. [PMID: 29131614 DOI: 10.1021/acs.jafc.7b04220] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Commercial herbicide atrazine (AT) was first loaded into the lumen of halloysite nanotubes (HNTs) in the amount of 9 wt %, and then the AT-loaded HNTs (HNTs-AT) were further incorporated into poly(vinyl alcohol)/starch composites (PVA/ST, with the weight ratio of 80/20) to construct a dual drug delivery system. AT loaded in nanotubes displayed much slower release from PVA/ST film in water than free AT; for example, the total release amount of AT from PVA/ST film with loaded AT was only 61% after 96 h, while this value reached 97% in PVA/ST film with free AT. The release behavior of AT from PVA/ST film with HNTs-AT was first dominated by the mechanism of matrix erosion and then by the mechanism of Fickian diffusion. In addition, combining HNTs and PVA/ST blends together in the controlled release of herbicide also reduced its leaching through the soil layer, which would be useful for diminishing the environmental pollution caused by pesticide.
Collapse
Affiliation(s)
- Bangchao Zhong
- Key Lab of Guangdong for High Property and Functional Polymer Materials, South China University of Technology , Guangzhou 510640, China
| | - Song Wang
- Key Lab of Guangdong for High Property and Functional Polymer Materials, South China University of Technology , Guangzhou 510640, China
| | - Huanhuan Dong
- Key Lab of Guangdong for High Property and Functional Polymer Materials, South China University of Technology , Guangzhou 510640, China
| | - Yuanfang Luo
- Key Lab of Guangdong for High Property and Functional Polymer Materials, South China University of Technology , Guangzhou 510640, China
| | - Zhixin Jia
- Key Lab of Guangdong for High Property and Functional Polymer Materials, South China University of Technology , Guangzhou 510640, China
| | - Xiangyang Zhou
- Department of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering , Guangzhou 510225, China
| | - Mingzhou Chen
- Guangzhou Sugarcane Industry Research Institute, Guangdong Academy of Sciences , Guangzhou 510316, China
| | - Dong Xie
- Guangzhou Sugarcane Industry Research Institute, Guangdong Academy of Sciences , Guangzhou 510316, China
| | - Demin Jia
- Key Lab of Guangdong for High Property and Functional Polymer Materials, South China University of Technology , Guangzhou 510640, China
| |
Collapse
|
19
|
Jiang S, Li Y, Ladewig BP. A review of reverse osmosis membrane fouling and control strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 595:567-583. [PMID: 28399496 DOI: 10.1016/j.scitotenv.2017.03.235] [Citation(s) in RCA: 301] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/23/2017] [Accepted: 03/25/2017] [Indexed: 05/08/2023]
Abstract
Reverse osmosis (RO) membrane technology is one of the most important technologies for water treatment. However, membrane fouling is an inevitable issue. Membrane fouling leads to higher operating pressure, flux decline, frequent chemical cleaning and shorter membrane life. This paper reviews membrane fouling types and fouling control strategies, with a focus on the latest developments. The fundamentals of fouling are discussed in detail, including biofouling, organic fouling, inorganic scaling and colloidal fouling. Furthermore, fouling mitigation technologies are also discussed comprehensively. Pretreatment is widely used in practice to reduce the burden for the following RO operation while real time monitoring of RO has the advantage and potential of providing support for effective and efficient cleaning. Surface modification could slow down membrane fouling by changing surface properties such as surface smoothness and hydrophilicity, while novel membrane materials and synthesis processes build a promising future for the next generation of RO membranes with big advancements in fouling resistance. Especially in this review paper, statistical analysis is conducted where appropriate to reveal the research interests in RO fouling and control.
Collapse
Affiliation(s)
- Shanxue Jiang
- Barrer Centre, Department of Chemical Engineering, Imperial College London, United Kingdom
| | - Yuening Li
- College of Environmental Science and Engineering, China
| | - Bradley P Ladewig
- Barrer Centre, Department of Chemical Engineering, Imperial College London, United Kingdom.
| |
Collapse
|
20
|
Cu(BDC) as a catalyst for rapid reduction of methyl orange: room temperature synthesis using recycled terephthalic acid. CHEMICAL PAPERS 2017. [DOI: 10.1007/s11696-017-0297-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Li X, Liu Y, Wang J, Gascon J, Li J, Van der Bruggen B. Metal–organic frameworks based membranes for liquid separation. Chem Soc Rev 2017; 46:7124-7144. [DOI: 10.1039/c7cs00575j] [Citation(s) in RCA: 409] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This Tutorial Review highlights the achievements in the rational design and the latest applications of MOF-based membranes in liquid separation.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse
- School of Environment and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| | - Yuxin Liu
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse
- School of Environment and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| | - Jing Wang
- Department of Chemical Engineering
- KU Leuven
- B-3001 Leuven
- Belgium
| | - Jorge Gascon
- King Abdullah University of Science and Technology
- KAUST Catalysis Center
- Advanced Catalytic Materials
- Thuwal 23955
- Saudi Arabia
| | - Jiansheng Li
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse
- School of Environment and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| | - Bart Van der Bruggen
- Department of Chemical Engineering
- KU Leuven
- B-3001 Leuven
- Belgium
- Faculty of Engineering and the Built Environment
| |
Collapse
|