1
|
Han J, Xu D, Huang Y, Hua Y, Ding X, Lin Z, Zhou J, Lin H, Chen G, Wang J, Xu X, Liu J, Liu G. Developing fine-tuned MOF membranes for highly efficient separation and adsorption of chemical pollutant in water. CHEMICAL ENGINEERING JOURNAL 2024; 497:154508. [DOI: 10.1016/j.cej.2024.154508] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2025]
|
2
|
Xu H, Chen S, Zhao YF, Wang F, Guo F. MOF-Based Membranes for Remediated Application of Water Pollution. Chempluschem 2024; 89:e202400027. [PMID: 38369654 DOI: 10.1002/cplu.202400027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
Membrane separation plays a crucial role in the current increasingly complex energy environment. Membranes prepared by metal-organic framework (MOF) materials usually possess unique advantages in common, such as uniform pore size, ultra-high porosity, enhanced selectivity and throughput, and excellent adsorption property, which have been contributed to the separation fields. In this comprehensive review, we summarize various designs and synthesized strategies of free-standing MOF and composite MOF-based membranes for water treatment. Special emphases are given not only on the effects of MOF on membrane performance, removal efficiencies, and elimination mechanisms, but also on the importance of MOF-based membranes for the applications of oily and micro-pollutant removal, adsorption, separation, and catalysis. The challenges and opportunities in the future for the industrial implementation of MOF-based membranes are also discussed.
Collapse
Affiliation(s)
- Huan Xu
- School of art and design, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Shuyuan Chen
- School of art and design, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Ye-Fan Zhao
- School of art and design, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Fangfang Wang
- School of art and design, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Fan Guo
- School of art and design, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
3
|
Golgoli M, Farahbakhsh J, Najafi M, Khiadani M, Johns ML, Zargar M. Resilient forward osmosis membranes against microplastics fouling enhanced by MWCNTs/UiO-66-NH 2 hybrid nanoparticles. CHEMOSPHERE 2024; 359:142180. [PMID: 38679179 DOI: 10.1016/j.chemosphere.2024.142180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/15/2024] [Accepted: 04/26/2024] [Indexed: 05/01/2024]
Abstract
The escalating presence of microplastics (MPs) in wastewater necessitates the investigation of effective tertiary treatment process. Forward osmosis (FO) emerges as an effective non-pressurized membrane process, however, for the effective implementation of FO systems, the development of fouling-resistance FO membranes with high-performance is essential. This study focuses on the integration of MWCNT/UiO-66-NH2 as metal-organic frameworks (MOFs) and multi-wall carbon nanotubes (MWCNT) nanocomposites in thin film composite (TFC) FO membranes, harnessing the synergistic power of hybrid nanoparticles in FO membranes. The results showed that the addition of MWCNT/UiO-66-NH2 in the aqueous phase during polyamide formation changed the polyamide surface structure, and enhanced membranes' hydrophilicity by 44%. The water flux of the modified FO membrane incorporated with 0.1 wt% MWCNTs/UiO-66-NH2 increased by 67% and the reverse salt flux decreased by 22% as in comparison with the control membrane. Moreover, the modified membrane showed improved antifouling behavior against both organic foulant and MPs. The MWCNT/UiO-66-NH2 membrane experienced 35% flux decline while the control membrane experienced 65% flux decline. This proves that the integration of MWCNT/UiO-66-NH2 nanoparticles into TFC FO membranes is a viable approach in creating advanced FO membranes with high antifouling propensity with potential to be expanded further to other membrane applications.
Collapse
Affiliation(s)
- Mitra Golgoli
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia
| | - Javad Farahbakhsh
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia
| | - Mohadeseh Najafi
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia
| | - Mehdi Khiadani
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia
| | - Michael L Johns
- Fluid Science & Resources Division, Department of Chemical Engineering, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Masoumeh Zargar
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia.
| |
Collapse
|
4
|
Lair L, Ouimet JA, Dougher M, Boudouris BW, Dowling AW, Phillip WA. Critical Mineral Separations: Opportunities for Membrane Materials and Processes to Advance Sustainable Economies and Secure Supplies. Annu Rev Chem Biomol Eng 2024; 15:243-266. [PMID: 38663030 DOI: 10.1146/annurev-chembioeng-100722-114853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Sustainable energy solutions and electrification are driving increased demand for critical minerals. Unfortunately, current mineral processing techniques are resource intensive, use large quantities of hazardous chemicals, and occur at centralized facilities to realize economies of scale. These aspects of existing technologies are at odds with the sustainability goals driving increased demand for critical minerals. Here, we argue that the small footprint and modular nature of membrane technologies position them well to address declining concentrations in ores and brines, the variable feed concentrations encountered in recycling, and the environmental issues associated with current separation processes; thus, membrane technologies provide new sustainable pathways to strengthening resilient critical mineral supply chains. The success of creating circular economies hinges on overcoming diverse barriers across the molecular to infrastructure scales. As such, solving these challenges requires the convergence of research across disciplines rather than isolated innovations.
Collapse
Affiliation(s)
- Laurianne Lair
- 1Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, USA; , , , ,
| | - Jonathan Aubuchon Ouimet
- 1Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, USA; , , , ,
| | - Molly Dougher
- 1Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, USA; , , , ,
| | - Bryan W Boudouris
- 2Charles D. Davidson School of Chemical Engineering and Department of Chemistry, Purdue University, West Lafayette, Indiana, USA;
| | - Alexander W Dowling
- 1Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, USA; , , , ,
| | - William A Phillip
- 1Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, USA; , , , ,
| |
Collapse
|
5
|
Han J, Zhang H, Fan Y, Zhou L, Zhang Z, Li P, Li Z, Du Y, Meng Q. Progressive Insights into Metal-Organic Frameworks and Metal-Organic Framework-Membrane Composite Systems for Wastewater Management. Molecules 2024; 29:1615. [PMID: 38611894 PMCID: PMC11013246 DOI: 10.3390/molecules29071615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/20/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
The sustainable management of wastewater through recycling and utilization stands as a pressing concern in the trajectory of societal advancement. Prioritizing the elimination of diverse organic contaminants is paramount in wastewater treatment, garnering significant attention from researchers worldwide. Emerging metal-organic framework materials (MOFs), bridging organic and inorganic attributes, have surfaced as novel adsorbents, showcasing pivotal potential in wastewater remediation. Nevertheless, challenges like limited water stability, elevated dissolution rates, and inadequate hydrophobicity persist in the context of wastewater treatment. To enhance the performance of MOFs, they can be modified through chemical or physical methods, and combined with membrane materials as additives to create membrane composite materials. These membrane composites, derived from MOFs, exhibit remarkable characteristics including enhanced porosity, adjustable pore dimensions, superior permeability, optimal conductivity, and robust water stability. Their ability to effectively sequester organic compounds has spurred significant research in this field. This paper introduces methods for enhancing the performance of MOFs and explores their potential applications in water treatment. It delves into the detailed design, synthesis strategies, and fabrication of composite membranes using MOFs. Furthermore, it focuses on the application prospects, challenges, and opportunities associated with MOF composite membranes in water treatment.
Collapse
Affiliation(s)
- Jilong Han
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; (J.H.); (H.Z.); (Y.F.); (L.Z.); (Z.Z.); (P.L.)
| | - Hanya Zhang
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; (J.H.); (H.Z.); (Y.F.); (L.Z.); (Z.Z.); (P.L.)
| | - Yuheng Fan
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; (J.H.); (H.Z.); (Y.F.); (L.Z.); (Z.Z.); (P.L.)
| | - Lilong Zhou
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; (J.H.); (H.Z.); (Y.F.); (L.Z.); (Z.Z.); (P.L.)
| | - Zhikun Zhang
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; (J.H.); (H.Z.); (Y.F.); (L.Z.); (Z.Z.); (P.L.)
| | - Pengfei Li
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; (J.H.); (H.Z.); (Y.F.); (L.Z.); (Z.Z.); (P.L.)
| | - Zhengjie Li
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; (J.H.); (H.Z.); (Y.F.); (L.Z.); (Z.Z.); (P.L.)
| | - Yongsheng Du
- Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China
| | - Qingfen Meng
- Qinghai Qaeidam Xinghua Lithium Salt Co., Ltd., Golmud 817000, China;
| |
Collapse
|
6
|
Shah SSA, Sohail M, Murtza G, Waseem A, Rehman AU, Hussain I, Bashir MS, Alarfaji SS, Hassan AM, Nazir MA, Javed MS, Najam T. Recent trends in wastewater treatment by using metal-organic frameworks (MOFs) and their composites: A critical view-point. CHEMOSPHERE 2024; 349:140729. [PMID: 37989439 DOI: 10.1016/j.chemosphere.2023.140729] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/26/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023]
Abstract
Respecting the basic need of clean and safe water on earth for every individual, it is necessary to take auspicious steps for waste-water treatment. Recently, metal-organic frameworks (MOFs) are considered as promising material because of their intrinsic features including the porosity and high surface area. Further, structural tunability of MOFs by following the principles of reticular chemistry, the MOFs can be functionalized for the high adsorption performance as well as adsorptive removal of target materials. However, there are still some major concerns associated with MOFs limiting their commercialization as promising adsorbents for waste-water treatment. The cost, toxicity and regenerability are the major issues to be addressed for MOFs to get insightful results. In this article, we have concise the current strategies to enhance the adsorption capacity of MOFs during the water-treatment for the removal of toxic dyes, pharmaceuticals, and heavy metals. Further, we have also discussed the role of metallic nodes, linkers and associated functional groups for effective removal of toxic water pollutants. In addition to conformist overview, we have critically analyzed the MOFs as adsorbents in terms of toxicity, cost and regenerability. These factors are utmost important to address before commercialization of MOFs as adsorbents for water-treatment. Finally, some future perspectives are discussed to give directions for potential research.
Collapse
Affiliation(s)
- Syed Shoaib Ahmad Shah
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Manzar Sohail
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Ghulam Murtza
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Amir Waseem
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Aziz Ur Rehman
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Iftikhar Hussain
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Muhammad Sohail Bashir
- Institute of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China
| | - Saleh S Alarfaji
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Ahmed M Hassan
- Faculty of Engineering and Technology, Future University in Egypt, New Cairo, 11835, Egypt
| | - Muhammad Altaf Nazir
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Muhammad Sufyan Javed
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China.
| | - Tayyaba Najam
- College of Chemistry and Environmental Sciences, Shenzhen University, Shenzhen, 518060, Guangdong, China.
| |
Collapse
|
7
|
Farahbakhsh J, Golgoli M, Khiadani M, Najafi M, Suwaileh W, Razmjou A, Zargar M. Recent advances in surface tailoring of thin film forward osmosis membranes: A review. CHEMOSPHERE 2024; 346:140493. [PMID: 37890801 DOI: 10.1016/j.chemosphere.2023.140493] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 10/03/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023]
Abstract
The recent advancements in fabricating forward osmosis (FO) membranes have shown promising results in desalination and water treatment. Different methods have been applied to improve FO performance, such as using mixed or new draw solutions, enhancing the recovery of draw solutions, membrane modification, and developing FO-hybrid systems. However, reliable methods to address the current issues, including reverse salt flux, fouling, and antibacterial activities, are still in progress. In recent decades, surface modification has been applied to different membrane processes, including FO membranes. Introducing nanochannels, bioparticles, new monomers, and hydrophilic-based materials to the surface layer of FO membranes has significantly impacted their performance and efficiency and resulted in better control over fouling and concentration polarization (CP) in these membranes. This review critically investigates the recent developments in FO membrane processes and fabrication techniques for FO surface-layer modification. In addition, this study focuses on the latest materials and structures used for the surface modification of FO membranes. Finally, the current challenges, gaps, and suggestions for future studies in this field have been discussed in detail.
Collapse
Affiliation(s)
- Javad Farahbakhsh
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Mitra Golgoli
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Mehdi Khiadani
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Mohadeseh Najafi
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Wafa Suwaileh
- Chemical Engineering Program, Texas A&M University at Qatar, Education City, Doha, Qatar
| | - Amir Razmjou
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia; School of Civil and Environmental Engineering, University of Technology Sydney (UTS), City Campus, Broadway, NSW, 2007, Australia; Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, Perth, WA, 6027, Australia
| | - Masoumeh Zargar
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia; Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, Perth, WA, 6027, Australia.
| |
Collapse
|
8
|
Ibraheem BM, Aani SA, Alsarayreh AA, Alsalhy QF, Salih IK. Forward Osmosis Membrane: Review of Fabrication, Modification, Challenges and Potential. MEMBRANES 2023; 13:membranes13040379. [PMID: 37103806 PMCID: PMC10142686 DOI: 10.3390/membranes13040379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/01/2023] [Accepted: 03/15/2023] [Indexed: 06/12/2023]
Abstract
Forward osmosis (FO) is a low-energy treatment process driven by osmosis to induce the separation of water from dissolved solutes/foulants through the membrane in hydraulic pressure absence while retaining all of these materials on the other side. All these advantages make it an alternative process to reduce the disadvantages of traditional desalination processes. However, several critical fundamentals still require more attention for understanding them, most notably the synthesis of novel membranes that offer a support layer with high flux and an active layer with high water permeability and solute rejection from both solutions at the same time, and a novel draw solution which provides low solute flux, high water flux, and easy regeneration. This work reviews the fundamentals controlling the FO process performance such as the role of the active layer and substrate and advances in the modification of FO membranes utilizing nanomaterials. Then, other aspects that affect the performance of FO are further summarized, including types of draw solutions and the role of operating conditions. Finally, challenges associated with the FO process, such as concentration polarization (CP), membrane fouling, and reverse solute diffusion (RSD) were analyzed by defining their causes and how to mitigate them. Moreover, factors affecting the energy consumption of the FO system were discussed and compared with reverse osmosis (RO). This review will provide in-depth details about FO technology, the issues it faces, and potential solutions to those issues to help the scientific researcher facilitate a full understanding of FO technology.
Collapse
Affiliation(s)
- Bakr M. Ibraheem
- Membrane Technology Research Unit, Department of Chemical Engineering, University of Technology-Iraq, Alsinaa Street 52, Baghdad 10066, Iraq
| | - Saif Al Aani
- The State Company of Energy Production—Middle Region, Ministry of Electricity, Baghdad 10013, Iraq
| | - Alanood A. Alsarayreh
- Department of Chemical Engineering, Faculty of Engineering, Mutah University, P.O. Box 7, Karak 61710, Jordan
| | - Qusay F. Alsalhy
- Membrane Technology Research Unit, Department of Chemical Engineering, University of Technology-Iraq, Alsinaa Street 52, Baghdad 10066, Iraq
| | - Issam K. Salih
- Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University College, Hillah 51001, Iraq
| |
Collapse
|
9
|
Thin-film composite polymer membranes based on nylon and halloysite: synthesis, characterization, and performance. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02730-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
10
|
Development of high-performance CuBTC MOF-based forward osmosis (FO) membranes and their cleaning strategies. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
11
|
Carboxylated-covalent organic frameworks and chitosan assembled membranes for precise and efficient dye separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
Wang J, Wang L, He M, Wang X, Lv Y, Huang D, Wang J, Miao R, Nie L, Hao J, Wang J. Recent advances in thin film nanocomposite membranes containing an interlayer (TFNi): fabrication, applications, characterization and perspectives. RSC Adv 2022; 12:34245-34267. [PMID: 36545600 PMCID: PMC9706687 DOI: 10.1039/d2ra06304b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
Polyamide (PA) reverse osmosis and nanofiltration membranes have been applied widely for desalination and wastewater reuse in the last 5-10 years. A novel thin-film nanocomposite (TFN) membrane featuring a nanomaterial interlayer (TFNi) has emerged in recent years and attracted the attention of researchers. The novel TFNi membranes are prepared from different nanomaterials and with different loading methods. The choices of intercalated nanomaterials, substrate layers and loading methods are based on the object to be treated. The introduction of nanostructured interlayers improves the formation of the PA separation layer and provides ultrafast water molecule transport channels. In this manner, the TFNi membrane mitigates the trade-off between permeability and selectivity reported for polyamide composite membranes. In addition, TFNi membranes enhance the removal of metal ions and organics and the recovery of organic solvents during nanofiltration and reverse osmosis, which is critical for environmental ecology and industrial applications. This review provides statistics and analyzes the developments in TFNi membranes over the last 5-10 years. The latest research results are reviewed, including the selection of the substrate and interlayer materials, preparation methods, specific application areas and more advanced characterization methods. Mechanistic aspects are analyzed to encourage future research, and potential mechanisms for industrialization are discussed.
Collapse
Affiliation(s)
- Jiaqi Wang
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Lei Wang
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Miaolu He
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Xudong Wang
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Yongtao Lv
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Danxi Huang
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Jin Wang
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Rui Miao
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Lujie Nie
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Jiajin Hao
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Jianmin Wang
- Zhongfan International Engineering Design Co. Lian Hu Road, No. 6 Courtyard Xi'an 710082 China
| |
Collapse
|
13
|
Polyamide (PA)- and Polyimide (PI)-based membranes for desalination application. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04559-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Ee LY, Tan RPW, Li SFY. Facile electrospray fabrication of ultralow biofouling cellulose acetate desalination membrane with nanocellulose/UiO66-NH2 fillers. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
A critical review on thin-film nanocomposite membranes enabled by nanomaterials incorporated in different positions and with diverse dimensions: Performance comparison and mechanisms. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Taghipour A, Rahimpour A, Rastgar M, Sadrzadeh M. Ultrasonically synthesized MOFs for modification of polymeric membranes: A critical review. ULTRASONICS SONOCHEMISTRY 2022; 90:106202. [PMID: 36274415 PMCID: PMC9593890 DOI: 10.1016/j.ultsonch.2022.106202] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Metal-organic framework (MOF) membranes hold the promise for energy-efficient separation processes. These nanocrystalline compounds can effectively separate materials with different sizes and shapes at a molecular level. Furthermore, MOFs are excellent candidates for improving membrane permeability and/or selectivity due to their unique properties, such as high specific area and special wettability. Generally, MOFs can be used as fillers in mixed matrix membranes (MMMs) or incorporated onto the membrane surface to modify the top layer. Characteristics of the MOFs, and correspondingly, the properties of the MOF-based membranes, are majorly affected by their production technique. This critical review discusses the sonication technique for MOF production and the opportunities and challenges of using MOF for making membranes. Effective parameters on the characteristics of the synthesized MOFs, such as sonication time and power, were discussed in detail. Although the ultrasonically synthesized MOFs have shown great potential in the fabrication/modification of membranes for gas and liquid separation/purification, so far, no comprehensive and critical review has been published to clarify such accomplishments and technological gaps for the future research direction. This paper aims to review the most recent research conducted on ultrasonically synthesized MOF for the modification of polymeric membranes. Recommendations are provided with the intent of identifying the potential future works to explore the influential sonication parameters.
Collapse
Affiliation(s)
- Amirhossein Taghipour
- Department of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton AB T6G 1H9, Canada
| | - Ahmad Rahimpour
- Department of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton AB T6G 1H9, Canada.
| | - Masoud Rastgar
- Department of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton AB T6G 1H9, Canada
| | - Mohtada Sadrzadeh
- Department of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton AB T6G 1H9, Canada.
| |
Collapse
|
17
|
Cheng Y, Datta SJ, Zhou S, Jia J, Shekhah O, Eddaoudi M. Advances in metal-organic framework-based membranes. Chem Soc Rev 2022; 51:8300-8350. [PMID: 36070414 DOI: 10.1039/d2cs00031h] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Membrane-based separations have garnered considerable attention owing to their high energy efficiency, low capital cost, small carbon footprint, and continuous operation mode. As a class of highly porous crystalline materials with well-defined pore systems and rich chemical functionalities, metal-organic frameworks (MOFs) have demonstrated great potential as promising membrane materials over the past few years. Different types of MOF-based membranes, including polycrystalline membranes, mixed matrix membranes (MMMs), and nanosheet-based membranes, have been developed for diversified applications with remarkable separation performances. In this comprehensive review, we first discuss the general classification of membranes and outline the historical development of MOF-based membranes. Subsequently, particular attention is devoted to design strategies for MOF-based membranes, along with detailed discussions on the latest advances on these membranes for various gas and liquid separation processes. Finally, challenges and future opportunities for the industrial implementation of these membranes are identified and outlined with the intent of providing insightful guidance on the design and fabrication of high-performance membranes in the future.
Collapse
Affiliation(s)
- Youdong Cheng
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Shuvo Jit Datta
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Sheng Zhou
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Jiangtao Jia
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Osama Shekhah
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Mohamed Eddaoudi
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| |
Collapse
|
18
|
Yassari M, Shakeri A. Nature based forward osmosis membranes: A novel approach for improved anti-fouling properties of thin film composite membranes. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Shabani Z, Mohammadi T, Kasiri N, Sahebi S. Thin-Film Nanocomposite Forward Osmosis Membranes Prepared on PVC Substrates with Polydopamine Functionalized Zr-Based Metal Organic Frameworks. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Zahra Shabani
- Center of Excellence for Membrane Science and Technology, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846-13114, Iran
- Research and Technology Centre of Membrane Separation Processes, School of Chemical, Petroleum, and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846-13114, Iran
- Computer Aided Process Engineering (CAPE) Laboratory, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846-13114, Iran
| | - Toraj Mohammadi
- Center of Excellence for Membrane Science and Technology, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846-13114, Iran
- Research and Technology Centre of Membrane Separation Processes, School of Chemical, Petroleum, and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846-13114, Iran
| | - Norollah Kasiri
- Center of Excellence for Membrane Science and Technology, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846-13114, Iran
- Computer Aided Process Engineering (CAPE) Laboratory, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846-13114, Iran
| | - Soleyman Sahebi
- Center of Excellence for Membrane Science and Technology, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846-13114, Iran
- Research and Technology Centre of Membrane Separation Processes, School of Chemical, Petroleum, and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846-13114, Iran
| |
Collapse
|
20
|
Attia MS, Youssef AO, Abou-Omar MN, Mohamed EH, Boukherroub R, Khan A, Altalhi T, Amin MA. Emerging advances and current applications of nanoMOF-based membranes for water treatment. CHEMOSPHERE 2022; 292:133369. [PMID: 34953879 DOI: 10.1016/j.chemosphere.2021.133369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 11/28/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Metal-organic frameworks (MOFs) are significantly tunable materials that can be exploited in a wide range of applications. In recent years, a large number of studies have been focused on synthesizing nano-scale MOFs (nanoMOFs), thus taking advantage of these unique materials in various applications, especially those that are only possible at nano-scale. One of the technologies where nanoMOF materials occupy a central role is the membrane technology as one of the most efficient separation techniques. Therefore, numerous reports can be found on the enhancement of the physicochemical properties of polymeric membranes by using nanoMOFs, leading to remarkably improved performance. One of the most considerable applications of these nanoMOF-based membranes is in water treatment systems, because freshwater scarcity is now an undeniable crisis facing humanity. In this in-depth review, the most prominent synthesis and post-synthesis methods for the fabrication of nanoMOFs are initially discussed. Afterwards, different nanoMOF-based composite membranes such as thin-film nanocomposites (TFN) and mixed-matrix membranes (MMM) and their various fabrication methods are reviewed and compared. Then, the impacts of using MOFs-based membranes for water purification through growing metal-organic frameworks crystals on the support materials and utilization of metal-organic frameworks as fillers in mixed matrix membrane (MMM) are highlighted. Finally, a summary of pros and cons of using nanoMOFs in membrane technology for water treatment purposes and clear future prospects and research potentials are presented.
Collapse
Affiliation(s)
- M S Attia
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt.
| | - A O Youssef
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Mona N Abou-Omar
- Department of Chemistry, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Ekram H Mohamed
- Pharmaceutical Analytical, Chemistry Department, Faculty of Pharmacy, The British University in Egypt, 11837, El Sherouk City, Cairo, Egypt
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000, Lille, France
| | - Afrasyab Khan
- Institute of Engineering and Technology, Department of Hydraulics and Hydraulic and Pneumatic Systems, South Ural State University, Lenin Prospect 76, Chelyabinsk, 454080, Russian Federation
| | - Tariq Altalhi
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| |
Collapse
|
21
|
Yassari M, Shakeri A, Salehi H. ZIF-67 templated thin-film composite forward osmosis membrane: Importance of incorporation method on morphology and performance. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
22
|
Ag-based nanocapsule-regulated interfacial polymerization Enables synchronous nanostructure towards high-performance nanofiltration membrane for sustainable water remediation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Wang X, Wang Q, Zhao M, Zhang L, Ji X, Sun H, Sun Y, Ma Z, Xue J, Gao X. Fabrication of a Cation-Exchange Membrane via the Blending of SPES/N-Phthaloyl Chitosan/MIL-101(Fe) Using Response Surface Methodology for Desalination. MEMBRANES 2022; 12:144. [PMID: 35207066 PMCID: PMC8880603 DOI: 10.3390/membranes12020144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/01/2023]
Abstract
In the present work, a novel mixed matrix cation exchange membrane composed of sulfonated polyether sulfone (SPES), N-phthaloyl chitosan (NPHCs) and MIL-101(Fe) was synthesized using response surface methodology (RSM). The electrochemical and physical properties of the membrane, such as ion exchange capacity, water content, morphology, contact angle, fixed ion concentration and thermal stability were investigated. The RSM based on the Box-Behnken design (BBD) model was employed to simulate and evaluate the influence of preparation conditions on the properties of CEMs. The regression model was validated via the analysis of variance (ANOVA) which exhibited a high reliability and accuracy of the results. Moreover, the experimental data have a good fit and high reproducibility with the predicted results according to the regression analysis. The embedding of MIL-101(Fe) nanoparticles contributed to the improvement of ion selective separation by forming hydrogen bonds with the polymer network in the membrane. The optimum synthesis parameters such as degree of sulfonation (DS), the content of SPES and NPHCs and the content of MIL-101(Fe) were acquired to be 30%, 85:15 and 2%, respectively, and the corresponding desalination rate of the CEMs improved to 136% while the energy consumption reduced to 90%. These results revealed that the RSM was a promising strategy for optimizing the preparation factors of CEMs and other similar multi-response optimization studies.
Collapse
Affiliation(s)
- Xiaomeng Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (X.W.); (Q.W.); (M.Z.); (L.Z.)
| | - Qun Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (X.W.); (Q.W.); (M.Z.); (L.Z.)
| | - Mengjuan Zhao
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (X.W.); (Q.W.); (M.Z.); (L.Z.)
| | - Lu Zhang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (X.W.); (Q.W.); (M.Z.); (L.Z.)
| | - Xiaosheng Ji
- Sanya Institute of Oceanology, Chinese Academy of Sciences, Sanya 572000, China
| | - Hui Sun
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China;
| | - Yongchao Sun
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; (Y.S.); (X.G.)
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhun Ma
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (X.W.); (Q.W.); (M.Z.); (L.Z.)
| | - Jianliang Xue
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China;
| | - Xueli Gao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; (Y.S.); (X.G.)
| |
Collapse
|
24
|
Yassari M, Shakeri A, Salehi H, Razavi SR. Enhancement in forward osmosis performance of thin-film nanocomposite membrane using tannic acid-functionalized graphene oxide. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02894-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Ouimet JA, Liu X, Brown DJ, Eugene EA, Popps T, Muetzel ZW, Dowling AW, Phillip WA. DATA: Diafiltration Apparatus for high-Throughput Analysis. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
26
|
Bayrami A, Bagherzadeh M, Navi H, Nikkhoo M, Amini M. Zwitterion-functionalized MIL-125-NH 2-based thin-film nanocomposite forward osmosis membranes: towards improved performance for salt rejection and heavy metal removal. NEW J CHEM 2022. [DOI: 10.1039/d2nj02608b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Incorporating zwitterion-functionalized MIL-125-NH2 nanoparticles in the rejection layer of TFN FO membranes improves their water/ion separation performance and antifouling ability.
Collapse
Affiliation(s)
- Arshad Bayrami
- Chemistry Department, Sharif University of Technology, P.O. Box 11155-3615, Tehran, Iran
| | - Mojtaba Bagherzadeh
- Chemistry Department, Sharif University of Technology, P.O. Box 11155-3615, Tehran, Iran
| | - Hossein Navi
- Chemistry Department, Sharif University of Technology, P.O. Box 11155-3615, Tehran, Iran
| | - Mohammad Nikkhoo
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Tehran, Iran
| | - Mojtaba Amini
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
27
|
High-Performance Thin-Film nanocomposite forward osmosis membranes modified with Poly(dopamine) coated UiO66-(COOH)2. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
Abdullah N, Yusof N, Jye LW, Jaafar J, Misdan N, Ismail AF. Removal of lead(II) by nanofiltration-ranged thin film nanocomposite membrane incorporated UiO-66-NH2: Comparative removal performance between hydraulic-driven and osmotic-driven membrane process. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.08.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Fabricating compact covalent organic framework membranes with superior performance in dye separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119667] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
30
|
Effect of the different layered structural modification on the performances of the thin-film composite forward osmosis flat sheet membranes – A review. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Mixed monomer derived porous aromatic frameworks with superior membrane performance for CO2 capture. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
Metal Organic Framework in Membrane Separation for Wastewater Treatment: Potential and Way Forward. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-021-05509-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Liao Z, Zhu J, Li X, Van der Bruggen B. Regulating composition and structure of nanofillers in thin film nanocomposite (TFN) membranes for enhanced separation performance: A critical review. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118567] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
34
|
Epitaxially grown MOF membranes with photocatalytic bactericidal activity for biofouling mitigation in desalination. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Shukla AK, Alam J, Alhoshan MS, Ali FAA, Mishra U, Hamid AA. Thin-Film Nanocomposite Membrane Incorporated with Porous Zn-Based Metal-Organic Frameworks: Toward Enhancement of Desalination Performance and Chlorine Resistance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:28818-28831. [PMID: 34105354 DOI: 10.1021/acsami.1c05469] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Metal-organic framework (MOF) materials have received extensive attention for the design of advanced thin-film nanocomposite (TFN) membranes with excellent permselectivity. However, the relationship between the unique physicochemical properties and performance of engineered MOF-based membranes has yet to be extensively investigated. In this work, we investigate the incorporation of porous zinc-based MOFs (Zn-MOFs) into a polyamide active layer for the fabrication of TFN membranes on porous poly(phenylsulfone) (PPSU) support layers through an interfacial polymerization approach. The actual effects of varying the amount of Zn-MOF added as a nanofiller on the physicochemical properties and desalination performance of TFN membranes are studied. The presence and layout of Zn-MOFs on the top layer of the membranes were confirmed by X-ray photoelectron spectroscopy, scanning electron microscopy, and ζ potential analysis. The characterization results revealed that Zn-MOFs strongly bind with polyamide and significantly change the membrane chemistry and morphology. The results indicate that all four studied TFN membranes with incorporated Zn-MOFs enhanced the water permeability while retaining high salt rejection compared to a thin-film composite membrane. Moreover, the highest-performing membrane (50 mg/L Zn-MOF added nanofiller) not only exhibited a water permeability of 2.46 ± 0.12 LMH/bar but also maintained selectivity to reject NaCl (>90%) and Na2SO4 (>95%), similar to benchmark values. Furthermore, the membranes showed outstanding water stability throughout 72 h filtration and chlorine resistance after a 264 h chlorine-soaking test because of the better compatibility between the polyamide and Zn-MOF nanofiller. Therefore, the developed TFN membrane has potential to solve trade-off difficulties between permeability and selectivity. Our findings indicate that porous Zn-MOFs play a significant role in the development of a TFN membrane with high desalination performance and chlorine resistance.
Collapse
Affiliation(s)
- Arun Kumar Shukla
- King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Javed Alam
- King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mansour Saleh Alhoshan
- King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Department of Chemical Engineering, College of Engineering, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- K.A. CARE Energy Research and Innovation Center at Riyadh, P.O. Box 2022, Riyadh 11451, Saudi Arabia
| | - Fekri Abdulraqeb Ahmed Ali
- Department of Chemical Engineering, College of Engineering, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Umesh Mishra
- Department of Civil Engineering, National Institute of Technology, Jirania, Agartala 799046, Tripura (W), India
| | - Ali Awadh Hamid
- Department of Chemical Engineering, College of Engineering, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
36
|
Roso M, Cerclé C, Patience GS, Ajji A. Experimental methods in chemical engineering: Barrier properties. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.23983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Martina Roso
- Department of Industrial Engineering University of Padova Padova Italy
| | - Claire Cerclé
- Chemical Engineering Polytechnique Montréal Montréal Québec Canada
| | | | - Abdellah Ajji
- Chemical Engineering Polytechnique Montréal Montréal Québec Canada
| |
Collapse
|
37
|
Le T, Chen X, Dong H, Tarpeh W, Perea-Cachero A, Coronas J, Martin SM, Mohammad M, Razmjou A, Esfahani AR, Koutahzadeh N, Cheng P, Kidambi PR, Esfahani MR. An Evolving Insight into Metal Organic Framework-Functionalized Membranes for Water and Wastewater Treatment and Resource Recovery. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00543] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Tin Le
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Xi Chen
- Department of Chemical Engineering, Stanford University, Stanford, California 94305-6104, United States
| | - Hang Dong
- Department of Chemical Engineering, Stanford University, Stanford, California 94305-6104, United States
| | - William Tarpeh
- Department of Chemical Engineering, Stanford University, Stanford, California 94305-6104, United States
| | - Adelaida Perea-Cachero
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50018, Spain
- Chemical and Environmental Engineering Department, Universidad de Zaragoza, Zaragoza, 50018, Spain
| | - Joaquín Coronas
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50018, Spain
- Chemical and Environmental Engineering Department, Universidad de Zaragoza, Zaragoza, 50018, Spain
| | - Stephen M. Martin
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Munirah Mohammad
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Amir Razmjou
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Amirsalar R. Esfahani
- Department of Mechanical Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0002, United States
| | - Negin Koutahzadeh
- Environmental Health & Safety, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Peifu Cheng
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Piran R. Kidambi
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Milad Rabbani Esfahani
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
38
|
Geng Z, Liang S, Sun M, Liu C, He N, Yang X, Cui X, Fan W, Wang X, Huo Y. High-Performance, Free-Standing Symmetric Hybrid Membranes for Osmotic Separation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8967-8975. [PMID: 33576595 DOI: 10.1021/acsami.0c22124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The internal concentration polarization (ICP) of asymmetric osmotic membranes with support layers greatly reduced membrane water permeability, therefore compromising membrane performance. In this study, a series of free-standing symmetric hybrid forward osmosis (FO) membranes without experiencing ICP were fabricated by covalently linking metal-organic framework (MOF) nanofillers with a polymer matrix. Owing to the introduction of MOFs, which allow only water permeation but reject salts by steric hindrance, the prepared hybrid membranes could approach the empirical permeability-selectivity trade-off. The optimized hybrid membrane displayed an outstanding water/Na2SO4 selectivity of ∼1208.4 L mol-1, compared with that of conventional membranes of ∼375.6 L mol-1. Additionally, the fabricated hybrid membranes showed excellent mechanical robustness, maintaining structural integrity during the long-term FO separation of high-salinity solution. This work provides an effective methodology to fabricate high-performance, symmetric MOF-based membranes for osmotic separation processes such as seawater desalination and water purification.
Collapse
Affiliation(s)
- Zhi Geng
- College of Environment, Research Centre for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| | - Shiqiang Liang
- College of Environment, Research Centre for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| | - Meng Sun
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Chuhan Liu
- College of Environment, Research Centre for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| | - Nan He
- College of Environment, Research Centre for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| | - Xia Yang
- College of Environment, Research Centre for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| | - Xiaochun Cui
- College of Environment, Research Centre for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| | - Wei Fan
- College of Environment, Research Centre for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| | - Xianze Wang
- College of Environment, Research Centre for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| | - Yang Huo
- College of Environment, Research Centre for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| |
Collapse
|
39
|
Alihemati Z, Hashemifard SA, Matsuura T, Ismail AF. Feasibility of using polycarbonate as a substrate of thin film composite membrane in forward osmosis. J Appl Polym Sci 2021. [DOI: 10.1002/app.50511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Z. Alihemati
- Sustainable Membrane Technology Research Group (SMTRG), Faculty of Petroleum, Gas and Petrochemical Engineering (FPGPE) Persian Gulf University (PGU) Bushehr Iran
| | - S. A. Hashemifard
- Sustainable Membrane Technology Research Group (SMTRG), Faculty of Petroleum, Gas and Petrochemical Engineering (FPGPE) Persian Gulf University (PGU) Bushehr Iran
| | - T. Matsuura
- Advanced Membrane Technology Research Centre (AMTEC) Universiti Teknologi Malaysia Skudai Malaysia
- Department of Chemical and Biological Engineering University of Ottawa Ottawa Canada
| | - A. F. Ismail
- Advanced Membrane Technology Research Centre (AMTEC) Universiti Teknologi Malaysia Skudai Malaysia
| |
Collapse
|
40
|
He M, Wang L, Zhang Z, Zhang Y, Zhu J, Wang X, Lv Y, Miao R. Stable Forward Osmosis Nanocomposite Membrane Doped with Sulfonated Graphene Oxide@Metal-Organic Frameworks for Heavy Metal Removal. ACS APPLIED MATERIALS & INTERFACES 2020; 12:57102-57116. [PMID: 33317267 DOI: 10.1021/acsami.0c17405] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A sulfonated graphene oxide@metal-organic framework-modified forward osmosis nanocomposite (SGO@UiO-66-TFN) membrane was developed to improve stability and heavy metal removal performance. An in situ growth method was applied to uniformly distribute UiO-66 nanomaterial with a frame structure on SGO nanosheets to form SGO@UiO-66 composite nanomaterial. This nanomaterial was then added to a polyamide layer using interfacial polymerization. The cross-linking between SGO@UiO-66 and m-phenylenediamine improved the stability of the nanomaterial in the membrane. Additionally, the water permeability was improved because of additional water channels introduced by SGO@UiO-66. SGO, with its lamellar structure, and UiO-66, with its frame structure, made the diffusion path of the solute more circuitous, which improved the heavy metal removal and salt rejection performances. Moreover, the hydrophilic layer of the SGO@UiO-66-TFN membrane could block contaminants and loosen the structure of the pollution layer, ensuring that the membrane maintained a high removal rate. The water flux and reverse solute flux of the SGO@UiO-66-TFN membrane reached 14.77 LMH and 2.95 gMH, and compared with the thin-film composite membrane, these values were increased by 41 and 64%, respectively. The membrane also demonstrated a good heavy metal ion removal performance. In 2 h, the heavy metal ion removal rate (2000 ppm Cu2+ and Pb2+) was greater than 99.4%, and in 10 h the removal rate was greater than 97.5%.
Collapse
Affiliation(s)
- Miaolu He
- Shaanxi Provincial Key Laboratory of Membrane Separation, Membrane Separation Research Institute, Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an 710054, China
| | - Lei Wang
- Shaanxi Provincial Key Laboratory of Membrane Separation, Membrane Separation Research Institute, Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an 710054, China
| | - Zhe Zhang
- Shaanxi Provincial Key Laboratory of Membrane Separation, Membrane Separation Research Institute, Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an 710054, China
| | - Yan Zhang
- Shaanxi Provincial Key Laboratory of Membrane Separation, Membrane Separation Research Institute, Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an 710054, China
| | - Jiani Zhu
- Shaanxi Provincial Key Laboratory of Membrane Separation, Membrane Separation Research Institute, Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an 710054, China
| | - Xudong Wang
- Shaanxi Provincial Key Laboratory of Membrane Separation, Membrane Separation Research Institute, Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an 710054, China
| | - Yongtao Lv
- Shaanxi Provincial Key Laboratory of Membrane Separation, Membrane Separation Research Institute, Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an 710054, China
| | - Rui Miao
- Shaanxi Provincial Key Laboratory of Membrane Separation, Membrane Separation Research Institute, Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an 710054, China
| |
Collapse
|
41
|
Kallem P, Banat F, Yejin L, Choi H. High performance nanofiber-supported thin film composite forward osmosis membranes based on continuous thermal-rolling pretreated electrospun PES/PAN blend substrates. CHEMOSPHERE 2020; 261:127687. [PMID: 32750620 DOI: 10.1016/j.chemosphere.2020.127687] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 05/28/2023]
Abstract
One of the major challenges facing the practical application of forward osmosis (FO) membranes is the need for high performance. Thus, the fabrication of highly permselective FO membranes is of great importance. The objective of this study was to improve the wettability/hydrophilicity of electrospun nanofiber (ESNF)-based substrates for the fabrication of nanofiber-supported thin film composite (NTFC) membranes for FO application. This study explored the impact of electrospun polyethersulfone/polyacrylonitrile (PES/PAN) nanofibers as the blend support to produce NTFC membranes. The blending of PES/PAN in the spinning dope was optimized. The blending of hydrophilic PAN (0-10 wt%) in PES affects the fiber diameter, hydrophilicity, water uptake, and roughness of the ESNF membrane substrates. Continuous thermal-rolling pretreatment was performed on the ESNF substrates prior to interfacial polymerization for polyamide active layer deposition. The results indicated that the fabricated NTFC membrane achieved significantly greater water flux (L/m2 h) while retaining a low specific salt flux (g/L) compared to traditional TFC membranes. The NTFC membrane flux increased with an increase in PAN content in the ESNF substrate. According to the FO performance results, the NTFC-10 (PES/PAN blend ratio of 90:10) exhibited optimal performance: a high water flux of 42.1 and 52.2 L/m2 h for the FO and PRO modes, respectively, and low specific salt flux of 0.27 and 0.24 g/L for the FO and PRO modes, respectively, using 1 M NaCl as the draw solution. This demonstrated the higher selectivity and water flux achieved by the developed NTFC membranes compared to the traditional TFC membranes.
Collapse
Affiliation(s)
- Parashuram Kallem
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Fawzi Banat
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Liang Yejin
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 261, Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Heechul Choi
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 261, Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea; Center for Membranes, Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea.
| |
Collapse
|
42
|
Sui X, Yuan Z, Yu Y, Goh K, Chen Y. 2D Material Based Advanced Membranes for Separations in Organic Solvents. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003400. [PMID: 33217172 DOI: 10.1002/smll.202003400] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/25/2020] [Indexed: 06/11/2023]
Abstract
2D materials have shown high potentials for fabricating next-generation membranes. To date, extensive studies have focused on the applications of 2D material membranes in gas and aqueous media. Recently, compelling opportunities emerge for 2D material membranes in separation applications in organic solvents because of their unique properties, such as ultrathin mono- to few-layers, outstanding chemical resistance toward organic solvents. Hence, this review aims to provide a timely overview of the current state-of-the-art of 2D material membranes focusing on their applications in organic solvent separations. 2D material membranes fabricated using graphene materials and a few representative nongraphene-based 2D materials, including covalent organic frameworks and MXenes, are summarized. The key membrane design strategies and their effects on separation performances in organic solvents are also examined. Last, several perspectives are provided in terms of the critical challenges for 2D material membranes, including standardization of membrane performance evaluation, improving understandings of separation mechanisms, managing the trade-off of permeability and selectivity, issues related to application versatility, long-term stability, and fabrication scalability. This review will provide a useful guide for researchers in creating novel 2D material membranes for advancing new separation techniques in organic solvents.
Collapse
Affiliation(s)
- Xiao Sui
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Ziwen Yuan
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Yanxi Yu
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Kunli Goh
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore
| | - Yuan Chen
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
43
|
Zeng X, Chen B, Zhou SF, Zhan G. Synthesis of ZIF-8 Nanocrystals Mediated by CO 2 Gas Bubbling: Dissolution and Recrystallization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:14306-14317. [PMID: 33206528 DOI: 10.1021/acs.langmuir.0c02549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Crystal size and morphology of zeolitic imidazolate frameworks (ZIFs) can be generally controlled based on the classical theory of nucleation and growth. Herein, we have developed an alternative method to adjust the nucleation and growth kinetics of microporous ZIF-8 nanocrystals mediated by continuous CO2 gas bubbling. In particular, CO2 bubbling led to the dissolution of ZIF-8 slurry, while the evacuation of CO2 bubbling resulted in the formation of new ZIF-8 nanoparticles with a considerably smaller size. A plausible mechanism of the CO2-mediated synthesis of ZIF-8 nanoparticles was proposed based on comprehensive characterizations and analyses, which indicated that the dissolved CO2 in methanol was able to perturb the pre-equilibrium states of crystallization intermediates and led to a comparatively fast nucleation rate due to a low number of overcoordinated species between the metal ion and the ligand. Both methanol and the base were critically important to the dissolution-recrystallization of ZIF-8, wherein the methyl carbonate linker might be reversibly produced by CO2 insertion into the methoxide group (Zn-OCH3). Also, the CO2-mediated synthesis led to the small particle size, high crystallinity, good thermal stability, and high purity of ZIF-8, as compared to the conventional ZIF-8 prepared without CO2 gas bubbling. As proof of workability, the prepared monodispersed ZIF-8 nanoparticles showed a much higher photocatalytic activity toward various organic dyes' decomposition than the conventional ZIF-8. Also, the CO2 bubbling-mediated method could be further extended to prepare other ZIFs (e.g., ZIF-67).
Collapse
Affiliation(s)
- Xiaoli Zeng
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian 361021, P. R. China
| | - Bin Chen
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian 361021, P. R. China
| | - Shu-Feng Zhou
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian 361021, P. R. China
| | - Guowu Zhan
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian 361021, P. R. China
| |
Collapse
|
44
|
Jun BM, Al-Hamadani YA, Son A, Park CM, Jang M, Jang A, Kim NC, Yoon Y. Applications of metal-organic framework based membranes in water purification: A review. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116947] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
45
|
Pejman M, Dadashi Firouzjaei M, Aghapour Aktij S, Das P, Zolghadr E, Jafarian H, Arabi Shamsabadi A, Elliott M, Sadrzadeh M, Sangermano M, Rahimpour A, Tiraferri A. In Situ Ag-MOF Growth on Pre-Grafted Zwitterions Imparts Outstanding Antifouling Properties to Forward Osmosis Membranes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:36287-36300. [PMID: 32677425 PMCID: PMC8009475 DOI: 10.1021/acsami.0c12141] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 07/17/2020] [Indexed: 05/28/2023]
Abstract
In this study, a polyamide forward osmosis membrane was functionalized with zwitterions followed by the in situ growth of metal-organic frameworks with silver as a metal core (Ag-MOFs) to improve its antibacterial and antifouling activity. First, 3-bromopropionic acid was grafted onto the membrane surface after its activation with N,N-diethylethylenediamine. Then, the in situ growth of Ag-MOFs was achieved by a simple membrane immersion sequentially in a silver nitrate solution and in a ligand solution (2-methylimidazole), exploiting the underlying zwitterions as binding sites for the metal. The successful membrane functionalization and the enhanced surface wettability were verified through an array of characterization techniques. When evaluated in forward osmosis tests, the modified membranes exhibited high performance and improved permeability compared to pristine membranes. Static antibacterial experiments, evaluated by confocal microscopy and colony-forming unit plate count, resulted in a 77% increase in the bacterial inhibition rate due to the activity of the Ag-MOFs. Microscopy micrographs of the Escherichia coli bacteria suggested the deterioration of the biological cells. The antifouling properties of the functionalized membranes translated into a significantly lower flux decline in forward osmosis filtrations. These modified surfaces displayed negligible depletion of silver ions over 30 days, confirming the stable immobilization of Ag-MOFs on their surface.
Collapse
Affiliation(s)
- Mehdi Pejman
- Department of Environment,
Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Mostafa Dadashi Firouzjaei
- Department of Civil,
Construction and Environmental Engineering, University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Sadegh Aghapour Aktij
- Department of Mechanical Engineering, 10-367
Donadeo Innovation Center for Engineering, Advanced Water Research
Lab (AWRL), University of Alberta, Edmonton, AB T6G 1H9, Canada
- Department
of Chemical & Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Parnab Das
- Department of Civil,
Construction and Environmental Engineering, University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Ehsan Zolghadr
- Department of Physics and Astronomy, University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Hesam Jafarian
- Department of Mining and Metallurgical
Engineering, Amirkabir University of Technology, Tehran 159163-4311, Iran
| | - Ahmad Arabi Shamsabadi
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Mark Elliott
- Department of Civil,
Construction and Environmental Engineering, University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Mohtada Sadrzadeh
- Department of Mechanical Engineering, 10-367
Donadeo Innovation Center for Engineering, Advanced Water Research
Lab (AWRL), University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Marco Sangermano
- Department
of Applied Science and Technology, Politecnico
di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
| | - Ahmad Rahimpour
- Department of Environment,
Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
- Department
of Applied Science and Technology, Politecnico
di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- Department of Chemical
Engineering, Babol Noshirvani University
of Technology, Shariati Avenue, Babol Mazandaran, 4714871167, Iran
| | - Alberto Tiraferri
- Department of Environment,
Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| |
Collapse
|
46
|
Size-controlled graphene oxide for highly permeable and fouling-resistant outer-selective hollow fiber thin-film composite membranes for forward osmosis. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118171] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
47
|
Wang XP, Hou J, Chen FS, Meng XM. In-situ growth of metal-organic framework film on a polydopamine-modified flexible substrate for antibacterial and forward osmosis membranes. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116239] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
48
|
Aghili F, Ghoreyshi AA, Rahimpour A, Van der Bruggen B. New Chemistry for Mixed Matrix Membranes: Growth of Continuous Multilayer UiO-66-NH2 on UiO-66-NH2-Based Polyacrylonitrile for Highly Efficient Separations. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b07063] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Fatemeh Aghili
- Department of Chemical Engineering, Babol Noshirvani University of Technology, Shariati Street, 47148-71167 Babol, Iran
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
| | - Ali Asghar Ghoreyshi
- Department of Chemical Engineering, Babol Noshirvani University of Technology, Shariati Street, 47148-71167 Babol, Iran
| | - Ahmad Rahimpour
- Department of Chemical Engineering, Babol Noshirvani University of Technology, Shariati Street, 47148-71167 Babol, Iran
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
- Faculty of Engineering and the Built Environment, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
| |
Collapse
|
49
|
Yahaya NZS, Paiman SH, Abdullah N, Mu’ammar Mahpoz N, Raffi AA, Rahman MA, Abas KH, Aziz AA, Othman MHD, Jaafar J. Synthesis and characterizations of MIL-140B-Al2O3/YSZ ceramic membrane using solvothermal method for seawater desalination. JOURNAL OF THE AUSTRALIAN CERAMIC SOCIETY 2020; 56:291-300. [DOI: 10.1007/s41779-019-00435-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/07/2019] [Accepted: 11/08/2019] [Indexed: 09/02/2023]
|
50
|
Poly(piperazine trimesamide) thin film nanocomposite membrane formation based on MIL-101: Filler aggregation and interfacial polymerization dynamics. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117482] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|