1
|
Sharma A, Rohne F, Vasquez‐Muñoz D, Jung S, Lomadze N, Pich A, Santer S, Bekir M. Selective Segregation of Thermo-Responsive Microgels via Microfluidic Technology. SMALL METHODS 2024; 8:e2400226. [PMID: 39091063 PMCID: PMC11672189 DOI: 10.1002/smtd.202400226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/19/2024] [Indexed: 08/04/2024]
Abstract
Separation of equally sized particles distinguished solely by material properties remains still a very challenging task. Here a simple separation of differently charged, thermo-responsive polymeric particles (for example microgels) but equal in size, via the combination of pressure-driven microfluidic flow and precise temperature control is proposed. The separation principle relies on forcing thermo-responsive microgels to undergo the volume phase transition during heating and therefore changing its size and correspondingly the change in drift along a pressure driven shear flow. Different thermo-responsive particle types such as different grades of ionizable groups inside the polymer matrix have different temperature regions of volume phase transition temperature (VPTT). This enables selective control of collapsed versus swollen microgels, and accordingly, this physical principle provides a simple method for fractioning a binary mixture with at least one thermo-responsive particle, which is achieved by elution times in the sense of particle chromatography. The concepts are visualized in experimental studies, with an intend to improve the purification strategy of the broad distribution of charged microgels into fractioning to more narrow distribution microgels distinguished solely by slight differences in net charge.
Collapse
Affiliation(s)
- Anjali Sharma
- Institute of Physics and AstronomyUniversity of Potsdam14476PotsdamGermany
| | - Fabian Rohne
- Institute of Physics and AstronomyUniversity of Potsdam14476PotsdamGermany
| | | | - Se‐Hyeong Jung
- DWI‐Leibniz Institute for Interactive Materials e.V.52074AachenGermany
| | - Nino Lomadze
- Institute of Physics and AstronomyUniversity of Potsdam14476PotsdamGermany
| | - Andrij Pich
- DWI‐Leibniz Institute for Interactive Materials e.V.52074AachenGermany
- Functional and Interactive PolymersInstitute of Technical and Macromolecular Chemistry, or, Laboratory for Soft Materials and InterfacesDepartment of MaterialsFederal Institute of Technology ZurichAachen Maastricht Institute for Biobased Materials (AMIBM) Maastricht UniversityGeleen6167 RDThe Netherlands
| | - Svetlana Santer
- Institute of Physics and AstronomyUniversity of Potsdam14476PotsdamGermany
| | - Marek Bekir
- Institute of Physics and AstronomyUniversity of Potsdam14476PotsdamGermany
| |
Collapse
|
2
|
Shao H, Chen Z, Chang J, Yin X, Chen Y, Liu Y, Zhang K, Yang W. Gum Arabic microgel-based biomimetic waterborne anticorrosive coatings with reinforced water and abrasive resistances. Carbohydr Polym 2024; 342:122408. [PMID: 39048241 DOI: 10.1016/j.carbpol.2024.122408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/14/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024]
Abstract
The inadequate water resistance and mechanical properties of waterborne anticorrosive coatings is a serious problem that leads to coating failure. When the bark of acacia trees sustains damage, the liquid Gum Arabic (GA) that oozes from the trunk coagulates at the site of injury to safeguard it, which is called "gummosis" self-protection. Inspired by this, biomimetic GA microgel-based waterborne anticorrosive coatings are designed. Microgel exhibits a crosslinked polymer network structure with a combination of advantageous characteristics derived from both solids and liquids. By encapsulating the liquid corrosion inhibitors (MeBT) within the solid microgel matrix, the coating system is endowed with self-protective capabilities. The as-prepared GAMG-MeBT microgels are introduced into waterborne epoxy (WE) matrix and sprayed onto the surface of Q235 steel. Corrosion studies reveal the 3.0-wt% GAMG-MeBT/WE coating exhibits an impedance modulus value in the low-frequency region (Z0.01Hz) of 1.37 × 109 Ω cm2 after immersing in 3.5-wt% NaCl solution for 60 days, which is nearly two orders of magnitude higher than that of the pure WE coatings. Moreover, the coatings display improved water resistance, enhanced abrasive resistance, and active corrosion protection. This work provides a new approach to solving the failure of WE anticorrosive coatings.
Collapse
Affiliation(s)
- Hanlin Shao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhihao Chen
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Jingli Chang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiaoshuang Yin
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yun Chen
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ying Liu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Kegui Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China.
| | - Wenzhong Yang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
3
|
Aki S, Ikeda Y, Imamura K, Honda R, Miura Y, Hoshino Y. Design Rationale for CO 2 Separation Membranes with Micropatterned Surface Structures. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7709-7720. [PMID: 38311921 DOI: 10.1021/acsami.3c15966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Here, we report the design rationale of CO2 separation membranes with micropatterned surface structures. Thin film composite (TFC) membranes with micropatterned surface structures were fabricated by spray coating amine-containing hydrogel particles on the top of micropatterned porous support membranes, which were synthesized by a polymerization-induced phase separation process in a micromold (PIPsμM). The pore size of the support membranes was optimized by tuning the proportion of good and poor solvents for the polymerization process so that the microgels would be assembled as a defect-free separation layer. The relationship between the size of the micropatterned structures on the surface of the support membrane and the thickness of the separation layer was optimized to maximize the surface area of the separation layer. The rationally designed micropatterned TFC membrane showed a CO2 permeability (835.8 GPU) proportional to the increase in surface area relative to the flat membrane with a high CO2/N2 selectivity of 58.7. The rational design for micropatterned TFC membranes will enable the development of inexpensive and high-performance functional membranes not only for CO2 separation but also for other applications such as water treatment and membrane reactors.
Collapse
Affiliation(s)
- Shoma Aki
- Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yuko Ikeda
- JCCL, Inc. ,4-1 Kyudai-Shinmachi, Nishi-ku, Fukuoka 819-0388, Japan
| | - Kazushi Imamura
- Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ryutaro Honda
- JCCL, Inc. ,4-1 Kyudai-Shinmachi, Nishi-ku, Fukuoka 819-0388, Japan
| | - Yoshiko Miura
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yu Hoshino
- Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
4
|
Uredat S, Gujare A, Runge J, Truzzolillo D, Oberdisse J, Hellweg T. A review of stimuli-responsive polymer-based gating membranes. Phys Chem Chem Phys 2024; 26:2732-2744. [PMID: 38193196 DOI: 10.1039/d3cp05143a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
The formation and properties of smart (stimuli-responsive) membranes are reviewed, with a special focus on temperature and pH triggering of gating to water, ions, polymers, nanoparticles, or other molecules of interest. The review is organized in two parts, starting with all-smart membranes based on intrinsically smart materials, in particular of the poly(N-isopropylacrylamide) family and similar polymers. The key steps of membrane fabrication are discussed, namely the deposition into thin films, functionalization of pores, and the secondary crosslinking of pre-existing microgel particles into membranes. The latter may be free-standing and do not necessitate the presence of a porous support layer. The temperature-dependent swelling properties of polymers provide a means of controlling the size of pores, and thus size-sensitive gating. Throughout the review, we highlight "positive" (gates open) or "negative" (closed) gating effects with respect to increasing temperature. In the second part, the functionalization of porous organic or inorganic membranes of various origins by either microgel particles or linear polymer brushes is discussed. In this case, the key steps are the adsorption or grafting mechanisms. Finally, whenever provided by the authors, the suitability of smart gating membranes for specific applications is highlighted.
Collapse
Affiliation(s)
- Stefanie Uredat
- Department of Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany.
| | - Aditi Gujare
- Laboratoire Charles Coulomb (L2C), University of Montpellier, CNRS, 34095 Montpellier, France.
| | - Jonas Runge
- Department of Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany.
| | - Domenico Truzzolillo
- Laboratoire Charles Coulomb (L2C), University of Montpellier, CNRS, 34095 Montpellier, France.
| | - Julian Oberdisse
- Laboratoire Charles Coulomb (L2C), University of Montpellier, CNRS, 34095 Montpellier, France.
| | - Thomas Hellweg
- Department of Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany.
| |
Collapse
|
5
|
Maity S, Gaur D, Mishra B, Dubey NC, Tripathi BP. Bactericidal and biocatalytic temperature responsive microgel based self-cleaning membranes for water purification. J Colloid Interface Sci 2023; 642:129-144. [PMID: 37003009 DOI: 10.1016/j.jcis.2023.03.095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/01/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023]
Abstract
The present study focuses on creating an antimicrobial and biocatalytic smart gating membrane by synthesizing unique core-shell microgels. The core-shell microgels are synthesized by grafting short chains of poly(ethylenimine) (PEI) onto a poly((N-isopropyl acrylamide)-co-glycidyl methacrylate)) (P(NIPAm-co-GMA)) core. Subsequently, the produced microgels are utilized as a substrate for synthesizing and stabilizing silver nanoparticles (Ag NPs) through an in-situ approach. These Ag NPs immobilized microgels are then suction filtered over a polyethylene terephthalate (PET) track-etched support to create cross-linked composite microgel membranes (CMMs). After structural and permeation characterization of the prepared CMMs, the laccase enzyme is then covalently grafted to the surface of the membrane and tested for its effectiveness in degrading Reactive red-120 dye. The laccase immobilized biocatalytic CMMs show effective degradation of the Reactive red-120 by 71%, 48%, and 34% at pH 3, 4, and 5, respectively. Furthermore, the immobilized laccase enzyme showed better activity and stability in terms of thermal, pH, and storage compared to the free laccase, leading to increased reusability. The unique combination of Ag NPs and laccase on a thermoresponsive microgel support resulted in a responsive self-cleaning membrane with excellent antimicrobial and dye degradation capabilities for environmentally friendly separation technology.
Collapse
|
6
|
Huang T, Su Z, Hou K, Zeng J, Zhou H, Zhang L, Nunes SP. Advanced stimuli-responsive membranes for smart separation. Chem Soc Rev 2023. [PMID: 37184537 DOI: 10.1039/d2cs00911k] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Membranes have been extensively studied and applied in various fields owing to their high energy efficiency and small environmental impact. Further conferring membranes with stimuli responsiveness can allow them to dynamically tune their pore structure and/or surface properties for efficient separation performance. This review summarizes and discusses important developments and achievements in stimuli-responsive membranes. The most commonly utilized stimuli, including light, pH, temperature, ions, and electric and magnetic fields, are discussed in detail. Special attention is given to stimuli-responsive control of membrane pore structure (pore size and porosity/connectivity) and surface properties (wettability, surface topology, and surface charge), from the perspective of determining the appropriate membrane properties and microstructures. This review also focuses on strategies to prepare stimuli-responsive membranes, including blending, casting, polymerization, self-assembly, and electrospinning. Smart applications for separations are also reviewed as well as a discussion of remaining challenges and future prospects in this exciting field. This review offers critical insights for the membrane and broader materials science communities regarding the on-demand and dynamic control of membrane structures and properties. We hope that this review will inspire the design of novel stimuli-responsive membranes to promote sustainable development and make progress toward commercialization.
Collapse
Affiliation(s)
- Tiefan Huang
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Zhixin Su
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Kun Hou
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Jianxian Zeng
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Hu Zhou
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Lin Zhang
- Engineering Research Center of Membrane and Water Treatment of MOE, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- Academy of Ecological Civilization, Zhejiang University, Hangzhou, 310058, China
| | - Suzana P Nunes
- King Abdullah University of Science and Technology (KAUST), Nanostructured Polymeric Membranes Laboratory, Advanced Membranes and Porous Materials Center, Biological and Environmental Science and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
7
|
Lau HS, Lau SK, Soh LS, Hong SU, Gok XY, Yi S, Yong WF. State-of-the-Art Organic- and Inorganic-Based Hollow Fiber Membranes in Liquid and Gas Applications: Looking Back and Beyond. MEMBRANES 2022; 12:539. [PMID: 35629866 PMCID: PMC9144028 DOI: 10.3390/membranes12050539] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022]
Abstract
The aggravation of environmental problems such as water scarcity and air pollution has called upon the need for a sustainable solution globally. Membrane technology, owing to its simplicity, sustainability, and cost-effectiveness, has emerged as one of the favorable technologies for water and air purification. Among all of the membrane configurations, hollow fiber membranes hold promise due to their outstanding packing density and ease of module assembly. Herein, this review systematically outlines the fundamentals of hollow fiber membranes, which comprise the structural analyses and phase inversion mechanism. Furthermore, illustrations of the latest advances in the fabrication of organic, inorganic, and composite hollow fiber membranes are presented. Key findings on the utilization of hollow fiber membranes in microfiltration (MF), nanofiltration (NF), reverse osmosis (RO), forward osmosis (FO), pervaporation, gas and vapor separation, membrane distillation, and membrane contactor are also reported. Moreover, the applications in nuclear waste treatment and biomedical fields such as hemodialysis and drug delivery are emphasized. Subsequently, the emerging R&D areas, precisely on green fabrication and modification techniques as well as sustainable materials for hollow fiber membranes, are highlighted. Last but not least, this review offers invigorating perspectives on the future directions for the design of next-generation hollow fiber membranes for various applications. As such, the comprehensive and critical insights gained in this review are anticipated to provide a new research doorway to stimulate the future development and optimization of hollow fiber membranes.
Collapse
Affiliation(s)
- Hui Shen Lau
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Siew Kei Lau
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Leong Sing Soh
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Seang Uyin Hong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Xie Yuen Gok
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Shouliang Yi
- U.S. Department of Energy, National Energy Technology Laboratory, 626 Cochrans Mill Rd, Pittsburgh, PA 15236, USA;
| | - Wai Fen Yong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
8
|
Kalkan B, Orakdogen N. Negatively charged poly(N-isopropyl acrylamide-co-methacrylic acid)/polyacrylamide semi-IPN hydrogels: Correlation between swelling and compressive elasticity. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Enes da Silva MJ, Banerjee A, Lefferts L, Albanese JAF. In‐situ ATR‐IR Spectroscopy Reveals Complex Absorption‐Diffusion Dynamics in Model Polymer‐Membrane‐Catalyst Assemblies (PCMA). ChemCatChem 2022. [DOI: 10.1002/cctc.202101835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Maria Joao Enes da Silva
- University of Twente Institute for Nanotechnology: Universiteit Twente MESA+ Catalytic Processes and Materials Group NETHERLANDS
| | - Aayan Banerjee
- University of Twente Institute for Nanotechnology: Universiteit Twente MESA+ Catalytic Processes and Materials Group NETHERLANDS
| | - Leon Lefferts
- University of Twente Institute for Nanotechnology: Universiteit Twente MESA+ Catalytic Processes and Materials Group NETHERLANDS
| | - Jimmy Alexander Faria Albanese
- Universiteit Twente MESA+ Faculty of Science and Technology Drienerlolaan 5Meander ME361Netherlands 7522NB Enschede NETHERLANDS
| |
Collapse
|
10
|
Sharma A, Jung SH, Lomadze N, Pich A, Santer S, Bekir M. Adsorption Kinetics of a Photosensitive Surfactant Inside Microgels. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anjali Sharma
- Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany
| | - Se-Hyeong Jung
- DWI-Leibniz Institute for Interactive Materials e.V., 52074 Aachen, Germany
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Nino Lomadze
- Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany
| | - Andrij Pich
- DWI-Leibniz Institute for Interactive Materials e.V., 52074 Aachen, Germany
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074 Aachen, Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, 6167 RD Geleen, The Netherlands
| | - Svetlana Santer
- Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany
| | - Marek Bekir
- Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
11
|
Bandehali S, Parvizian F, Hosseini SM, Matsuura T, Drioli E, Shen J, Moghadassi A, Adeleye AS. Planning of smart gating membranes for water treatment. CHEMOSPHERE 2021; 283:131207. [PMID: 34157628 DOI: 10.1016/j.chemosphere.2021.131207] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
The use of membranes in desalination and water treatment has been intensively studied in recent years. The conventional membranes however have various problems such as uncontrollable pore size and membrane properties, which prevents membranes from quickly responding to alteration of operating and environmental conditions. As a result the membranes are fouled, and their separation performance is lowered. The preparation of smart gating membranes inspired by cell membranes is a new method to face these challenges. Introducing stimuli-responsive functional materials into traditional porous membranes and use of hydrogels and microgels can change surface properties and membrane pore sizes under different conditions. This review shows potential of smart gating membranes in water treatment. Various types of stimuli-response such as those of thermo-, pH-, ion-, molecule-, UV light-, magnetic-, redox- and electro-responsive gating membranes along with various gel types such as those of polyelectrolyte, PNIPAM-based, self-healing hydrogels and microgel based-smart gating membranes are discussed. Design strategies, separation mechanisms and challenges in fabrication of smart gating membranes in water treatment are also presented. It is demonstrated that experimental and modeling and simulation results have to be utilized effectively to produce smart gating membranes.
Collapse
Affiliation(s)
- Samaneh Bandehali
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, 38156-8-8349, Iran
| | - Fahime Parvizian
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, 38156-8-8349, Iran
| | - Sayed Mohsen Hosseini
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, 38156-8-8349, Iran.
| | - Takeshi Matsuura
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada.
| | - Enrico Drioli
- Institute on Membrane Technology, National Research Council of Italy (CNR-ITM), Via P. Bucci 17/C, Rende, CS, 87036, Italy; Department of Environmental and Chemical Engineering, University of Calabria, Via P. Bucci 45A, 87036, Rende, CS, Italy.
| | - Jiangnan Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Abdolreza Moghadassi
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, 38156-8-8349, Iran
| | - Adeyemi S Adeleye
- Department of Civil and Environmental Engineering, University of California, Irvine, CA, 92697-2175, USA
| |
Collapse
|
12
|
Hoshino Y, Gyobu T, Imamura K, Hamasaki A, Honda R, Horii R, Yamashita C, Terayama Y, Watanabe T, Aki S, Liu Y, Matsuda J, Miura Y, Taniguchi I. Assembly of Defect-Free Microgel Nanomembranes for CO 2 Separation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30030-30038. [PMID: 34139838 DOI: 10.1021/acsami.1c06447] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The development of robust and thin CO2 separation membranes that allow fast and selective permeation of CO2 will be crucial for rebalancing the global carbon cycle. Hydrogels are attractive membrane materials because of their tunable chemical properties and exceptionally high diffusion coefficients for solutes. However, their fragility prevents the fabrication of thin defect-free membranes suitable for gas separation. Here, we report the assembly of defect-free hydrogel nanomembranes for CO2 separation. Such membranes can be prepared by coating an aqueous suspension of colloidal hydrogel microparticles (microgels) onto a flat, rough, or micropatterned porous support as long as the pores are hydrophilic and the pore size is smaller than the diameter of the microgels. The deformability of the microgel particles enables the autonomous assembly of defect-free 30-50 nm-thick membrane layers from deformed ∼15 nm-thick discoidal particles. Microscopic analysis established that the penetration of water into the pores driven by capillary force assists the assembly of a defect-free dense hydrogel layer on the pores. Although the dried films did not show significant CO2 permeance even in the presence of amine groups, the permeance dramatically increased when the membranes are adequately hydrated to form a hydrogel. This result indicated the importance of free water in the membranes to achieve fast diffusion of bicarbonate ions. The hydrogel nanomembranes consisting of amine-containing microgel particles show selective CO2 permeation (850 GPU, αCO2/N2 = 25) against post-combustion gases. Acid-containing microgel membranes doped with amines show highly selective CO2 permeation against post-combustion gases (1010 GPU, αCO2/N2 = 216) and direct air capture (1270 GPU, αCO2/N2 = 2380). The membrane formation mechanism reported in this paper will provide insights into the self-assembly of soft matters. Furthermore, the versatile strategy of fabricating hydrogel nanomembranes by the autonomous assembly of deformable microgels will enable the large-scale manufacturing of high-performance separation membranes, allowing low-cost carbon capture from post-combustion gases and atmospheric air.
Collapse
Affiliation(s)
- Yu Hoshino
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Japan Carbon Cycle Lab., Inc., 4-1 Kyudaishinmachi, Nishi-ku, Fukuoka 819-0388, Japan
| | - Tomohiro Gyobu
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kazushi Imamura
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Akira Hamasaki
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ryutaro Honda
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ryoga Horii
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Chie Yamashita
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Japan Carbon Cycle Lab., Inc., 4-1 Kyudaishinmachi, Nishi-ku, Fukuoka 819-0388, Japan
| | - Yuki Terayama
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takeshi Watanabe
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Japan Carbon Cycle Lab., Inc., 4-1 Kyudaishinmachi, Nishi-ku, Fukuoka 819-0388, Japan
| | - Shoma Aki
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Japan Carbon Cycle Lab., Inc., 4-1 Kyudaishinmachi, Nishi-ku, Fukuoka 819-0388, Japan
| | - Yida Liu
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Junko Matsuda
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International Research Center for Hydrogen Energy, Kyushu University, Fukuoka 819-0395, Japan
| | - Yoshiko Miura
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ikuo Taniguchi
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
13
|
Saha P, Ganguly R, Li X, Das R, Singha NK, Pich A. Zwitterionic Nanogels and Microgels: An Overview on Their Synthesis and Applications. Macromol Rapid Commun 2021; 42:e2100112. [PMID: 34021658 DOI: 10.1002/marc.202100112] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/24/2021] [Indexed: 12/12/2022]
Abstract
Zwitterionic polymers by virtue of their unique chemical and physical attributes have attracted researchers in recent years. The simultaneous presence of positive and negative charges in the same repeat unit renders them of various interesting properties such as superhydrophilicity, which has significantly broadened their scope for being used in different applications. Among polyzwitterions of different architectures, micro- and/or nano-gels have started receiving attention only until recently. These 3D cross-linked colloidal structures show peculiar characteristics in context to their solution properties, which are attributable either to the comonomers present or the presence of different electrolytes and biological specimens. In this review, a concise yet detailed account is provided of the different synthetic techniques and application domains of zwitterion-based micro- and/or nanogels that have been explored in recent years. Here, the focus is kept solely on the "polybetaines," which have garnered maximum research interest and remain the extensively studied polyzwitterions in literature. While their vast application potential in the biomedical sector is being detailed here, some other areas of scope such as using them as microreactors for the synthesis of metal nanoparticles or making smart membranes for water-treatment are discussed in this minireview as well.
Collapse
Affiliation(s)
- Pabitra Saha
- DWI - Leibniz-Institute for Interactive Materials, 52074, Aachen, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52062, Aachen, Germany
| | - Ritabrata Ganguly
- Rubber Technology Centre, Indian Institute of Technology, Kharagpur, Kharagpur, 721302, India
| | - Xin Li
- DWI - Leibniz-Institute for Interactive Materials, 52074, Aachen, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52062, Aachen, Germany
| | - Rohan Das
- Luxembourg Institute of Science and Technology (LIST), Avenue des Hauts-Fourneaux, Esch-sur-Alzette, 4362, Luxembourg
| | - Nikhil K Singha
- Rubber Technology Centre, Indian Institute of Technology, Kharagpur, Kharagpur, 721302, India
| | - Andrij Pich
- DWI - Leibniz-Institute for Interactive Materials, 52074, Aachen, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52062, Aachen, Germany.,Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Geleen, 6167, The Netherlands
| |
Collapse
|
14
|
Götz T, Landzettel J, Schiestel T. Thermo‐responsive mixed‐matrix hollow fiber membranes. J Appl Polym Sci 2021. [DOI: 10.1002/app.50787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Tobias Götz
- Innovation Field Membranes Fraunhofer Institute for Interfacial Engineering and Biotechnology Stuttgart Germany
| | - Jan Landzettel
- Innovation Field Membranes Fraunhofer Institute for Interfacial Engineering and Biotechnology Stuttgart Germany
| | - Thomas Schiestel
- Innovation Field Membranes Fraunhofer Institute for Interfacial Engineering and Biotechnology Stuttgart Germany
| |
Collapse
|
15
|
Nasimova IR, Rudyak VY, Doroganov AP, Kharitonova EP, Kozhunova EY. Microstructured Macromaterials Based on IPN Microgels. Polymers (Basel) 2021; 13:polym13071078. [PMID: 33805579 PMCID: PMC8036913 DOI: 10.3390/polym13071078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
This study investigates the formation of microstructured macromaterials from thermo- and pH-sensitive microgels based on interpenetrating networks of poly-N-isopropylacrylamide (PNIPAM) and polyacrylic acid (PAA). Macromaterials are produced as a result of the deposition of microgel particles and subsequent crosslinking of polyacrylic acid subnetworks to each other due to the formation of the anhydride bonds during annealing. Since both PNIPAM and PAA are environment-sensitive polymers, one can expect that their conformational state during material development will affect its resulting properties. Thus, the influence of conditions of preparation for annealing (pH of the solution, the temperature of preliminary drying) on the swelling behavior, pH- and thermosensitivity, and macromaterial inner structure was investigated. In parallel, the study of the effect of the relative conformations of the IPN microgel subnetworks on the formation of macromaterials was carried out by the computer simulations method. It was shown that the properties of the prepared macromaterials strongly depend both on the temperature and pH of the PNIPAM-PAA IPN microgel dispersions. This opens up new opportunities to obtain materials with pre-chosen characteristics and environmental sensitivity.
Collapse
Affiliation(s)
- Irina Rashitovna Nasimova
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.Y.R.); (A.P.D.); (E.P.K.); (E.Y.K.)
- Russian Academy of Science, 119991 Moscow, Russia
- Correspondence:
| | - Vladimir Yurievich Rudyak
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.Y.R.); (A.P.D.); (E.P.K.); (E.Y.K.)
| | - Anton Pavlovich Doroganov
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.Y.R.); (A.P.D.); (E.P.K.); (E.Y.K.)
| | - Elena Petrovna Kharitonova
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.Y.R.); (A.P.D.); (E.P.K.); (E.Y.K.)
| | - Elena Yurievna Kozhunova
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.Y.R.); (A.P.D.); (E.P.K.); (E.Y.K.)
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
16
|
Nothdurft K, Müller DH, Mürtz SD, Meyer AA, Guerzoni LPB, Jans A, Kühne AJC, De Laporte L, Brands T, Bardow A, Richtering W. Is the Microgel Collapse a Two-Step Process? Exploiting Cononsolvency to Probe the Collapse Dynamics of Poly- N-isopropylacrylamide (pNIPAM). J Phys Chem B 2021; 125:1503-1512. [PMID: 33503378 DOI: 10.1021/acs.jpcb.0c10430] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Many applications of responsive microgels rely on the fast adaptation of the polymer network. However, the underlying dynamics of the de-/swelling process of the gels have not been fully understood. In the present work, we focus on the collapse kinetics of poly-N-isopropylacrylamide (pNIPAM) microgels due to cononsolvency. Cononsolvency means that either of the pure solvents, e.g., pure water or pure methanol, act as a so-called good solvent, leading to a swollen state of the polymer network. However, in mixtures of water and methanol, the previously swollen network undergoes a drastic volume loss. To further elucidate the cononsolvency transition, pNIPAM microgels with diameters between 20 and 110 μm were synthesized by microfluidics. To follow the dynamics, pure water was suddenly exchanged with an unfavorable mixture of 20 mol% methanol (solvent-jump) within a microfluidic channel. The dynamic response of the microgels was investigated by optical and fluorescence microscopy and Raman microspectroscopy. The experimental data provide unique and detailed insight into the size-dependent kinetics of the volume phase transition due to cononsolvency. The change in the microgel's diameter over time points to a two-step process of the microgel collapse with a biexponential behavior. Furthermore, the dependence between the two time constants from this biexponential behavior and the microgel's diameter in the collapsed state deviates from the square-power law proposed by Tanaka and Fillmore [ J. Chem. Phys. 1979, 70, 1214-1218]. The deviation is discussed considering the adhesion-induced deformation of the gels and the physical processes underlying the collapse.
Collapse
Affiliation(s)
- Katja Nothdurft
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
| | - David H Müller
- Institute of Technical Thermodynamics, RWTH Aachen University, Schinkelstr. 8, 52062 Aachen, Germany
| | - Sonja D Mürtz
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
| | - Anna A Meyer
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
| | - Luis P B Guerzoni
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany
| | - Alexander Jans
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany
| | - Alexander J C Kühne
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany
| | - Laura De Laporte
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen, Worringerweg 1-2, 52074 Aachen, Germany
| | - Thorsten Brands
- Institute of Technical Thermodynamics, RWTH Aachen University, Schinkelstr. 8, 52062 Aachen, Germany
| | - André Bardow
- Institute of Technical Thermodynamics, RWTH Aachen University, Schinkelstr. 8, 52062 Aachen, Germany.,Department of Mechanical and Process Engineering, ETH Zürich, Tannenstr. 3, 8092 Zürich, Switzerland
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany.,DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany
| |
Collapse
|
17
|
Bell D, Ludwanowski S, Lüken A, Sarikaya B, Walther A, Wessling M. Hydrogel membranes made from crosslinked microgel multilayers with tunable density. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118912] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Saha P, Santi M, Emondts M, Roth H, Rahimi K, Großkurth J, Ganguly R, Wessling M, Singha NK, Pich A. Stimuli-Responsive Zwitterionic Core-Shell Microgels for Antifouling Surface Coatings. ACS APPLIED MATERIALS & INTERFACES 2020; 12:58223-58238. [PMID: 33331763 DOI: 10.1021/acsami.0c17427] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fouling on filtration membranes is induced by the nonspecific interactions between the membrane surface and the foulants, and effectively hinders their efficient use in various applications. Here, we established a facile method for the coating of membrane surface with a dual stimuli-responsive antifouling microgel system enriched with a high polyzwitterion content. Different poly(sulfobetaine) (PSB) zwitterionic polymers with defined molecular weights and narrow dispersities were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization and integrated onto poly(N-vinylcaprolactam) (PVCL) microgels via a controlled dosage of a cross-linker, adapting a precipitation polymerization technique to obtain a core-shell microstructure. Increasing the PSB macro-RAFT concentration resulted in a shift of both upper critical solution temperature and lower critical solution temperature toward higher temperatures. Cryogenic transmission electron microscopy at different temperatures suggested the formation of a core-shell morphology with a PVCL-rich core and a PSB-rich shell. On the other hand, the significant variations of different characteristic proton signals and reversible phase transitions of the microgel constituents were confirmed by temperature-dependent 1H NMR studies. Utilizing a quartz crystal microbalance with dissipation monitoring, we have been able to observe and quantitatively describe the antipolyelectrolyte behavior of the zwitterionic microgels. The oscillation frequency of the sensor proved to change reversibly according to the variations of the NaCl concentration, showing, in fact, the effect of the interaction between the salt and the opposite charges present in the microgel deposited on the sensor. Poly(ethersulfone) membranes, chosen as the model surface, when functionalized with zwitterionic microgel coatings, displayed protein-repelling property, stimulated by different transition temperatures, and showed even better performances at increasing NaCl concentration. These kinds of stimuli-responsive zwitterionic microgel can act as temperature-triggered drug delivery systems and as potential coating materials to prevent bioadhesion and biofouling as well.
Collapse
Affiliation(s)
- Pabitra Saha
- DWI-Leibniz-Institute for Interactive Materials, Aachen 52056, Germany
- Institute of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Aachen 52074, Germany
| | - Marta Santi
- DWI-Leibniz-Institute for Interactive Materials, Aachen 52056, Germany
- Institute of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Aachen 52074, Germany
| | - Meike Emondts
- DWI-Leibniz-Institute for Interactive Materials, Aachen 52056, Germany
- Institute of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Aachen 52074, Germany
| | - Hannah Roth
- DWI-Leibniz-Institute for Interactive Materials, Aachen 52056, Germany
- Chemical Process Engineering AVT.CVT, RWTH Aachen University, Aachen 52074, Germany
| | - Khosrow Rahimi
- DWI-Leibniz-Institute for Interactive Materials, Aachen 52056, Germany
- Institute of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Aachen 52074, Germany
| | | | - Ritabrata Ganguly
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Matthias Wessling
- DWI-Leibniz-Institute for Interactive Materials, Aachen 52056, Germany
- Chemical Process Engineering AVT.CVT, RWTH Aachen University, Aachen 52074, Germany
| | - Nikhil K Singha
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Andrij Pich
- DWI-Leibniz-Institute for Interactive Materials, Aachen 52056, Germany
- Institute of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Aachen 52074, Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Maastricht 6229 GT, The Netherlands
| |
Collapse
|
19
|
Djeljadini S, Lohaus T, Gausmann M, Rauer S, Kather M, Krause B, Pich A, Möller M, Wessling M. Trypsin-Free Cultivation of 3D Mini-Tissues in an Adaptive Membrane Bioreactor. ACTA ACUST UNITED AC 2020; 4:e2000081. [PMID: 33089652 DOI: 10.1002/adbi.202000081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 08/11/2020] [Indexed: 11/07/2022]
Abstract
The production of large scaffold-free tissues is a key challenge in regenerative medicine. Nowadays, temperature-responsive polymers allow intact tissue harvesting without needing proteolytic enzymes. This method is limited to tissue culture plastic with limited upscaling capacity and plain process control. Here, a thermoresponsive hollow fiber membrane bioreactor is presented to produce large scaffold-free tissues. Intact tissues, rich in cell-to-cell connections and ECM, are harvested from a poly(N-vinylcaprolactam) microgel functionalized poly(ether sulfone)/poly(vinylpyrrolidone) hollow fiber membrane by a temperature shift. The harvested 3D tissues adhere in successive cultivation and exhibit high vitality for several days. The facile adsorptive coating waives the need for extensive surface treatment. The research is anticipated to be a starting point for upscaling the production of interconnected tissues enabling new opportunities in regenerative medicine, large-scale drug screening on physiological relevant tissues, and potentially opening new chances in cell-based therapies.
Collapse
Affiliation(s)
- Suzana Djeljadini
- Aachener Verfahrenstechnik, Chair of Chemical Process Engineering, RWTH Aachen University, Forckenbeckstrasse 51, Aachen, 52074, Germany
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, Aachen, 52074, Germany
| | - Theresa Lohaus
- Aachener Verfahrenstechnik, Chair of Chemical Process Engineering, RWTH Aachen University, Forckenbeckstrasse 51, Aachen, 52074, Germany
| | - Marcel Gausmann
- Aachener Verfahrenstechnik, Chair of Chemical Process Engineering, RWTH Aachen University, Forckenbeckstrasse 51, Aachen, 52074, Germany
| | - Sebastian Rauer
- Aachener Verfahrenstechnik, Chair of Chemical Process Engineering, RWTH Aachen University, Forckenbeckstrasse 51, Aachen, 52074, Germany
| | - Michael Kather
- Aachener Verfahrenstechnik, Chair of Chemical Process Engineering, RWTH Aachen University, Forckenbeckstrasse 51, Aachen, 52074, Germany
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, Aachen, 52074, Germany
| | - Bernd Krause
- Baxter International Inc., Research and Development, Holger-Crafoord-Straße 26, Hechingen, 72379, Germany
| | - Andrij Pich
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, Aachen, 52074, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen, 52074, Germany
| | - Martin Möller
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, Aachen, 52074, Germany
| | - Matthias Wessling
- Aachener Verfahrenstechnik, Chair of Chemical Process Engineering, RWTH Aachen University, Forckenbeckstrasse 51, Aachen, 52074, Germany
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, Aachen, 52074, Germany
| |
Collapse
|
20
|
Lohaus T, Beck J, Harhues T, de Wit P, Benes NE, Wessling M. Direct membrane heating for temperature induced fouling prevention. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118431] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
|
22
|
Gavrilov AA, Rudyak VY, Chertovich AV. Computer simulation of the core-shell microgels synthesis via precipitation polymerization. J Colloid Interface Sci 2020; 574:393-398. [DOI: 10.1016/j.jcis.2020.04.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 01/21/2023]
|
23
|
Grinberg VY, Burova TV, Grinberg NV, Buyanovskaya AG, Khokhlov AR, Kozhunova EY, Vyshivannaya OV, Nasimova IR. Functionalized thermoresponsive microgels based on N-isopropylacrylamide: Energetics and mechanism of phase transitions. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109722] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Eelkema R, Pich A. Pros and Cons: Supramolecular or Macromolecular: What Is Best for Functional Hydrogels with Advanced Properties? ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906012. [PMID: 31919957 DOI: 10.1002/adma.201906012] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/28/2019] [Indexed: 06/10/2023]
Abstract
Hydrogels are fascinating soft materials with unique properties. Many biological systems are based on hydrogel-like structures, underlining their versatility and relevance. The properties of hydrogels strongly depend on the structure of the building blocks they are composed of, as well as the nature of interactions between them in the network structure. Herein, gel networks made by supramolecular interactions are compared to covalent macromolecular networks, drawing conclusions about their performance and application as responsive materials.
Collapse
Affiliation(s)
- Rienk Eelkema
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Andrij Pich
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- DWI - Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52056, Aachen, Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD, Geleen, The Netherlands
| |
Collapse
|
25
|
Bushuev NV, Gumerov RA, Bochenek S, Pich A, Richtering W, Potemkin II. Compression and Ordering of Microgels in Monolayers Formed at Liquid-Liquid Interfaces: Computer Simulation Studies. ACS APPLIED MATERIALS & INTERFACES 2020; 12:19903-19915. [PMID: 32248678 DOI: 10.1021/acsami.0c01600] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Monolayers of polymer microgels adsorbed at the liquid interfaces were studied by dissipative particle dynamics simulations. The results demonstrated that the compressibility of the monolayers can be widely tuned by varying the cross-linking density of the microgels and their (in)compatibility with the immiscible liquids. In particular, the compression of the monolayers (increase of 2D concentration of the microgels) leads to the decrease of their lateral size. Herewith, the shape of the individual soft particles gradually changes from oblate (diluted 2D system) to nearly spherical (compressed monolayer). The polymer concentration profiles plotted along the normal to the interface reveal a nonmonotonous shape with a sharp maximum at the interface. This is a consequence of the shielding effect: saturation of the interface by monomer units of the subchains is driven by minimization of unfavorable contacts between the immiscible liquids and is opposed by elasticity of the network. The decrease of the interfacial tension upon concentration (compression) of the monolayer is quantified. It has been demonstrated that the interfacial tension significantly differs if the solubility of the polymer chains of the microgel network in the liquids changes. These results correlate well with experimental data. The examination of the microgels' crystalline ordering in monolayers demonstrated a nonmonotonous dependency on the compression degree (microgel concentration). Finally, the worsening of the solvent quality leads to the collapse of the microgels in monolayer and nonmonotonous behavior of the interfacial tension.
Collapse
Affiliation(s)
- Nikita V Bushuev
- Physics Department, Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russian Federation
| | - Rustam A Gumerov
- Physics Department, Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russian Federation
- DWI-Leibniz Institute for Interactive Materials e.V., Forckenbeckstraße 50, Aachen 52056, Germany
| | - Steffen Bochenek
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, Aachen 52056, Germany
| | - Andrij Pich
- DWI-Leibniz Institute for Interactive Materials e.V., Forckenbeckstraße 50, Aachen 52056, Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Urmonderbaan 22, Geleen 6167 RD, The Netherlands
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, Aachen 52056, Germany
| | - Igor I Potemkin
- Physics Department, Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russian Federation
- DWI-Leibniz Institute for Interactive Materials e.V., Forckenbeckstraße 50, Aachen 52056, Germany
- National Research South Ural State University, Chelyabinsk 454080, Russian Federation
| |
Collapse
|
26
|
Roghmans F, Evdochenko E, Martí-Calatayud M, Garthe M, Tiwari R, Walther A, Wessling M. On the permselectivity of cation-exchange membranes bearing an ion selective coating. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117854] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
Wolff HJM, Linkhorst J, Göttlich T, Savinsky J, Krüger AJD, de Laporte L, Wessling M. Soft temperature-responsive microgels of complex shape in stop-flow lithography. LAB ON A CHIP 2020; 20:285-295. [PMID: 31802080 DOI: 10.1039/c9lc00749k] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Stop-flow lithography (SFL) has emerged as a facile high-throughput fabrication method for μm-sized anisometric particles; yet, the fabrication of soft, anisometric microgels has not frequently been addressed in the literature. Furthermore, and to the best of the authors' knowledge, no soft, complex-shaped microgels with temperature-responsive behavior have been fabricated with this technology before. However, such microgels have tremendous potential as building blocks and actuating elements in rapidly developing fields, such as tissue engineering and additive manufacturing of soft polymeric building blocks, bio-hybrid materials, or soft micro-robotics. Given their great potential, we prove in this work that SFL is a viable method for the fabrication of soft, temperature-responsive, and complex-shaped microgels. The microgels, fabricated in this work, consist of poly(N-isopropylacrylamide) (pNIPAm), which is crosslinked with N,N'-methylenebis(acrylamide). The results confirm that the shape of the pNIPAm microgels is determined by the transparency mask, used in SFL. Furthermore, it is shown that, in order to realize stable microgels, a minimum threshold of crosslinker concentration of 2 wt% is required. Above this threshold, the stiffness of pNIPAm microgels can be deliberately altered by adjusting the concentration of the crosslinker. The fabricated pNIPAm microgels show the targeted temperature-responsive behavior. Within this context, temperature-dependent reversible swelling is confirmed, even for fractal-like geometries, such as micro snowflakes. Thus, these microgels provide the targeted unique combination of softness, shape complexity, and temperature responsiveness and increase the freedom of design for actuated building blocks.
Collapse
Affiliation(s)
- Hanna J M Wolff
- RWTH Aachen University, AVT.CVT - Chemical Process Engineering, Forckenbeckstr. 51, 52074 Aachen, Germany.
| | - John Linkhorst
- RWTH Aachen University, AVT.CVT - Chemical Process Engineering, Forckenbeckstr. 51, 52074 Aachen, Germany.
| | - Tim Göttlich
- RWTH Aachen University, AVT.CVT - Chemical Process Engineering, Forckenbeckstr. 51, 52074 Aachen, Germany.
| | - Johann Savinsky
- RWTH Aachen University, AVT.CVT - Chemical Process Engineering, Forckenbeckstr. 51, 52074 Aachen, Germany.
| | - Andreas J D Krüger
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany
| | - Laura de Laporte
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany and RWTH Aachen University, ITMC - Institute of Technical and Macromolecular Chemistry, Worringerweg 2, 52074 Aachen, Germany
| | - Matthias Wessling
- RWTH Aachen University, AVT.CVT - Chemical Process Engineering, Forckenbeckstr. 51, 52074 Aachen, Germany. and DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany
| |
Collapse
|
28
|
Charged microgels adsorbed on porous membranes - A study of their mobility and molecular retention. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Gavrilov AA, Richtering W, Potemkin II. Polyelectrolyte Microgels at a Liquid–Liquid Interface: Swelling and Long-Range Ordering. J Phys Chem B 2019; 123:8590-8598. [DOI: 10.1021/acs.jpcb.9b07725] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Alexey A. Gavrilov
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, Aachen 52056, Germany
| | - Igor I. Potemkin
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russian Federation
- DWI - Leibniz Institute for Interactive Materials, Aachen 52056, Germany
- National Research South Ural State University, Chelyabinsk 454080, Russian Federation
| |
Collapse
|
30
|
Rudyak VY, Kozhunova EY, Chertovich AV. Towards the realistic computer model of precipitation polymerization microgels. Sci Rep 2019; 9:13052. [PMID: 31506571 PMCID: PMC6737091 DOI: 10.1038/s41598-019-49512-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 08/06/2019] [Indexed: 11/08/2022] Open
Abstract
In this paper we propose a new method of coarse-grained computer simulations of the microgel formation in course of free radical precipitation polymerization. For the first time, we simulate the precipitation polymerization process from a dilute solution of initial components to a final microgel particle with coarse grained molecular dynamics, and compare it to the experimental data. We expect that our simulation studies of PNIPA-like microgels will be able to elucidate the subject of nucleation and growth kinetics and to describe in detail the network topology and structure. Performed computer simulations help to determine the characteristic phases of the growth process and show the necessity of prolongated synthesis for the formation of stable microgel particles. We demonstrate the important role of dangling ends in microgels, which occupy as much as 50% of its molecular mass and have previously unattended influence on the swelling behavior. The verification of the model is made by the comparison of collapse curves and structure factors between simulated and experimental systems, and high quality matching is achieved. This work could help to open new horizons in studies that require the knowledge of detailed and realistic structures of the microgel networks.
Collapse
Affiliation(s)
- Vladimir Yu Rudyak
- Lomonosov Moscow State University, Faculty of Physics, Moscow, 119991, Russia.
| | - Elena Yu Kozhunova
- Lomonosov Moscow State University, Faculty of Physics, Moscow, 119991, Russia
| | - Alexander V Chertovich
- Lomonosov Moscow State University, Faculty of Physics, Moscow, 119991, Russia
- Semenov Institute of Chemical Physics, Moscow, 119991, Russia
| |
Collapse
|
31
|
Janssen FAL, Kather M, Ksiazkiewicz A, Pich A, Mitsos A. Synthesis of Poly( N-vinylcaprolactam)-Based Microgels by Precipitation Polymerization: Pseudo-Bulk Model for Particle Growth and Size Distribution. ACS OMEGA 2019; 4:13795-13807. [PMID: 31681904 PMCID: PMC6822303 DOI: 10.1021/acsomega.9b01335] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Particle size distribution and in particular the mean particle size are key properties of microgels, which are determined by synthesis conditions. To describe particle growth and particle size distribution over the progress of synthesis of poly(N-vinylcaprolactam)-based microgels, a pseudo-bulk model for precipitation copolymerization with cross-linking is formulated. The model is fitted and compared to experimental data from reaction calorimetry and dynamic light scattering, showing good agreement with polymerization progress, final particle size, and narrow particle size distribution. Predictions of particle growth and reaction progress for different experimental setups are compared to the corresponding experimental data, demonstrating the predictive capability and limitations of the model. The comparison to reaction calorimetry measurements shows the strength in the prediction of the overall polymerization progress. The results for the prediction of the particle radii reveal significant deviations and highlight the demand for further investigation, including additional data.
Collapse
Affiliation(s)
- Franca A. L. Janssen
- Aachener Verfahrenstechnik—Process Systems
Engineering and Institute of Technical and Macromolecular Chemistry,
RWTH Aachen University, 52056 Aachen,
Germany
| | - Michael Kather
- Aachener Verfahrenstechnik—Process Systems
Engineering and Institute of Technical and Macromolecular Chemistry,
RWTH Aachen University, 52056 Aachen,
Germany
- DWI—Leibniz-Institute for
Interactive Materials, 52056 Aachen, Germany
| | - Agnieszka Ksiazkiewicz
- Aachener Verfahrenstechnik—Process Systems
Engineering and Institute of Technical and Macromolecular Chemistry,
RWTH Aachen University, 52056 Aachen,
Germany
| | - Andrij Pich
- Aachener Verfahrenstechnik—Process Systems
Engineering and Institute of Technical and Macromolecular Chemistry,
RWTH Aachen University, 52056 Aachen,
Germany
- DWI—Leibniz-Institute for
Interactive Materials, 52056 Aachen, Germany
| | - Alexander Mitsos
- Aachener Verfahrenstechnik—Process Systems
Engineering and Institute of Technical and Macromolecular Chemistry,
RWTH Aachen University, 52056 Aachen,
Germany
| |
Collapse
|
32
|
“Smart” IPN microgels with different network structures: Self-crosslinked vs conventionally crosslinked. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.05.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
Aksoy C, Kaner P, Asatekin A, Çulfaz-Emecen PZ. Co-Deposition of Stimuli-Responsive Microgels with Foulants During Ultrafiltration as a Fouling Removal Strategy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:18711-18719. [PMID: 31059214 DOI: 10.1021/acsami.9b03217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, we show that codeposition of temperature responsive microgels in the foulant cake layer and cleaning of the cake upon stimuli-induced size change of the microgels is an effective method of fouling removal. Humic acid in CaCl2 solution was used as a model foulant and poly( n-isopropylacrylamide) (p(NIPAm)) and poly( n-isopropylacrylamide- co-sulfobetainemethacrylate) (p(NIPAm- co-SBMA)) were used as temperature responsive microgels. Filtrations were done below the lower critical solution temperature (LCST) and temperature was increased to above the LCST for cleaning. As an extra cleaning a temperature swing of above, below and then again above the LCST was applied. P(NIPAm) was found to be ineffective in cleaning the foulant deposit despite the 20-fold change in its volume with temperature change at LCST. P(NIPAm- co-SBMA) microgels, on the other hand, provided high fouling reversibility on hydrophilic poly(ether sulfone)(PES)/poly(vinylpyrrolidone) (PVP) and hydrophobic PES membranes. Better fouling reversibility with these microgels was observed at low and high solution ionic strength. While the use of microgels alone increased fouling reversibility to some extent, even in the absence of temperature stimulus, 100% reversibility could only be obtained when a temperature switch was applied in the presence of microgels, showing the effect of microgels' volume change in cleaning.
Collapse
Affiliation(s)
- Canan Aksoy
- Middle East Technical University , Chemical Engineering Department , Ankara 06800 , Turkey
| | - Papatya Kaner
- Chemical and Biological Engineering , Tufts University , Medford , Massachusetts 02155 , United States
| | - Ayse Asatekin
- Chemical and Biological Engineering , Tufts University , Medford , Massachusetts 02155 , United States
| | - P Zeynep Çulfaz-Emecen
- Middle East Technical University , Chemical Engineering Department , Ankara 06800 , Turkey
| |
Collapse
|
34
|
Virtanen OLJ, Kather M, Meyer-Kirschner J, Melle A, Radulescu A, Viell J, Mitsos A, Pich A, Richtering W. Direct Monitoring of Microgel Formation during Precipitation Polymerization of N-Isopropylacrylamide Using in Situ SANS. ACS OMEGA 2019; 4:3690-3699. [PMID: 31459582 PMCID: PMC6648459 DOI: 10.1021/acsomega.8b03461] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/04/2019] [Indexed: 05/20/2023]
Abstract
Poly(N-isopropylacrylamide) microgels have found various uses in fundamental polymer and colloid science as well as in different applications. They are conveniently prepared by precipitation polymerization. In this reaction, radical polymerization and colloidal stabilization interact with each other to produce well-defined thermosensitive particles of narrow size distribution. However, the underlying mechanism of precipitation polymerization has not been fully understood. In particular, the crucial early stages of microgel formation have been poorly investigated so far. In this contribution, we have used small-angle neutron scattering in conjunction with a stopped-flow device to monitor the particle growth during precipitation polymerization in situ. The average particle volume growth is found to follow pseudo-first order kinetics, indicating that the polymerization rate is determined by the availability of the unreacted monomer, as the initiator concentration does not change considerably during the reaction. This is confirmed by calorimetric investigation of the polymerization process. Peroxide initiator-induced self-crosslinking of N-isopropylacrylamide and the use of the bifunctional crosslinker N,N'-methylenebisacrylamide are shown to decrease the particle number density in the batch. The results of the in situ small-angle neutron scattering measurements indicate that the particles form at an early stage in the reaction and their number density remains approximately the same thereafter. The overall reaction rate is found to be sensitive to monomer and initiator concentration in accordance with a radical solution polymerization mechanism, supporting the results from our earlier studies.
Collapse
Affiliation(s)
- Otto L. J. Virtanen
- Institute of Physical
Chemistry, RWTH Aachen University, Landoltweg 2, 52064 Aachen, Germany
| | - Michael Kather
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
- DWI—Leibniz-Institute for Interactive
Materials, RWTH Aachen University, Forckenbeckstr. 50, 52056 Aachen, Germany
| | - Julian Meyer-Kirschner
- Aachener Verfahrenstechnik
- Process Systems Engineering, RWTH Aachen
University, Forckenbeckstr.
51, 52074 Aachen, Germany
| | - Andrea Melle
- Institute of Physical
Chemistry, RWTH Aachen University, Landoltweg 2, 52064 Aachen, Germany
- DWI—Leibniz-Institute for Interactive
Materials, RWTH Aachen University, Forckenbeckstr. 50, 52056 Aachen, Germany
| | - Aurel Radulescu
- Juelich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz
Zentrum (MLZ), Forschungszentrum Juelich
GmbH, Lichtenbergstr.
1, 85748 Garching, Germany
| | - Jörn Viell
- Aachener Verfahrenstechnik
- Process Systems Engineering, RWTH Aachen
University, Forckenbeckstr.
51, 52074 Aachen, Germany
| | - Alexander Mitsos
- Aachener Verfahrenstechnik
- Process Systems Engineering, RWTH Aachen
University, Forckenbeckstr.
51, 52074 Aachen, Germany
| | - Andrij Pich
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
- DWI—Leibniz-Institute for Interactive
Materials, RWTH Aachen University, Forckenbeckstr. 50, 52056 Aachen, Germany
| | - Walter Richtering
- Institute of Physical
Chemistry, RWTH Aachen University, Landoltweg 2, 52064 Aachen, Germany
| |
Collapse
|
35
|
Jung F, Janssen FAL, Ksiazkiewicz A, Caspari A, Mhamdi A, Pich A, Mitsos A. Identifiability Analysis and Parameter Estimation of Microgel Synthesis: A Set-Membership Approach. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b05274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Falco Jung
- Aachener Verfahrenstechnik-Process Systems Engineering, RWTH Aachen University, 52074 Aachen, Germany
| | - Franca A. L. Janssen
- Aachener Verfahrenstechnik-Process Systems Engineering, RWTH Aachen University, 52074 Aachen, Germany
| | | | - Adrian Caspari
- Aachener Verfahrenstechnik-Process Systems Engineering, RWTH Aachen University, 52074 Aachen, Germany
| | - Adel Mhamdi
- Aachener Verfahrenstechnik-Process Systems Engineering, RWTH Aachen University, 52074 Aachen, Germany
| | - Andrij Pich
- DWI Leibniz Institute for Interactive Materials e.V., 52074 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Alexander Mitsos
- Aachener Verfahrenstechnik-Process Systems Engineering, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
36
|
Najmi H, El-Tabach E, Gascoin N, Chetehouna K, Falempin F. Axial Distribution of Permeance and Selectivity of a Porous Cylindrical Tube for Binary Gas Mixtures (CO 2/N 2). Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b06191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- H. Najmi
- INSA Centre Val
de Loire, Université d’Orléans, PRISME EA 4229, F-18022 Bourges, France
| | - E. El-Tabach
- Université
d’Orléans, INSA-CVL, PRISME, EA 4229, F45072 Orléans, France
| | - N. Gascoin
- INSA Centre Val
de Loire, Université d’Orléans, PRISME EA 4229, F-18022 Bourges, France
| | - K. Chetehouna
- INSA Centre Val
de Loire, Université d’Orléans, PRISME EA 4229, F-18022 Bourges, France
| | - F. Falempin
- MBDA, 1 avenue Réaumur, 92358 Le Plessis-Robinson cedex, France
| |
Collapse
|
37
|
Portnov IV, Möller M, Richtering W, Potemkin II. Microgel in a Pore: Intraparticle Segregation or Snail-like Behavior Caused by Collapse and Swelling. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01569] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ivan V. Portnov
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russian Federation
- DWI − Leibniz Institute for Interactive Materials, Aachen 52056, Germany
| | - Martin Möller
- DWI − Leibniz Institute for Interactive Materials, Aachen 52056, Germany
| | - Walter Richtering
- DWI − Leibniz Institute for Interactive Materials, Aachen 52056, Germany
| | - Igor I. Potemkin
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russian Federation
- DWI − Leibniz Institute for Interactive Materials, Aachen 52056, Germany
- National Research
South Ural State University, Chelyabinsk 454080, Russian Federation
| |
Collapse
|
38
|
Gavrilov AA, Potemkin II. Adaptive structure of gels and microgels with sliding cross-links: enhanced softness, stretchability and permeability. SOFT MATTER 2018; 14:5098-5105. [PMID: 29873660 DOI: 10.1039/c8sm00192h] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We propose an experimentally-inspired model of gels and microgels with sliding cross-links, and use this model to study the mechanical and structural properties with molecular dynamics simulations. In the model, the gels and microgels are made of linear polymer chains with threaded rings, which are capable of sliding along the chains, and bulky end-groups keeping the rings threaded (thus mimicking polyrotaxanes); the chains are covalently linked to each other not through the backbones but through the rings. Both gels and microgels are shown to be much softer in the regime of intermediate and large deformations and also much more stretchable than the topologically equivalent chemical counterparts. The physical reason for that is the mobility of the cross-links which leads to the formation of long, longitudinally oriented "subchains" between cross-linked rings upon uniaxial deformation. The microgels are tested for adsorption on a solid flat surface and for interaction with colloidal particles of different sizes. We demonstrate that the sliding microgel is subjected to stronger flattening on the surface than the chemical one. Enforced penetration of solid particles into the sliding microgel without breaking of covalent bonds is predicted even if the size of the particles is comparable to or larger than the mesh size of the chemical microgel and smaller than the size of polyrotaxane. This penetration is accompanied by the disappearance of the cavity: the microgel is characterized by adaptive porosity tunable to the guest-object.
Collapse
Affiliation(s)
- Alexey A Gavrilov
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russian Federation.
| | | |
Collapse
|
39
|
|
40
|
Najmi H, El-Tabach E, Gascoin N, Chetehouna K, Falempin F. Axial distribution of permeance and of ideal selectivity of a porous cylindrical tube. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
41
|
Rudyak VY, Gavrilov AA, Kozhunova EY, Chertovich AV. Shell-corona microgels from double interpenetrating networks. SOFT MATTER 2018; 14:2777-2781. [PMID: 29633777 DOI: 10.1039/c8sm00170g] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Polymer microgels with a dense outer shell offer outstanding features as universal carriers for different guest molecules. In this paper, microgels formed by an interpenetrating network comprised of collapsed and swollen subnetworks are investigated using dissipative particle dynamics (DPD) computer simulations, and it is found that such systems can form classical core-corona structures, shell-corona structures, and core-shell-corona structures, depending on the subchain length and molecular mass of the system. The core-corona structures consisting of a dense core and soft corona are formed at small microgel sizes when the subnetworks are able to effectively separate in space. The most interesting shell-corona structures consist of a soft cavity in a dense shell surrounded with a loose corona, and are found at intermediate gel sizes; the area of their existence depends on the subchain length and the corresponding mesh size. At larger molecular masses the collapsing network forms additional cores inside the soft cavity, leading to the core-shell-corona structure.
Collapse
Affiliation(s)
- Vladimir Yu Rudyak
- Lomonosov Moscow State University, Faculty of Physics, Moscow, 119991, Russia.
| | | | | | | |
Collapse
|
42
|
Meyer-Kirschner J, Kather M, Ksiazkiewicz A, Pich A, Mitsos A, Viell J. Monitoring Microgel Synthesis by Copolymerization of N-isopropylacrylamide and N-vinylcaprolactam via In-Line Raman Spectroscopy and Indirect Hard Modeling. MACROMOL REACT ENG 2018. [DOI: 10.1002/mren.201700067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Julian Meyer-Kirschner
- Aachener Verfahrenstechnik - Process Systems Engineering; RWTH Aachen University; Forckenbeckstr. 51 52074 Aachen Germany
| | - Michael Kather
- Institute of Technical and Macromolecular Chemistry; RWTH Aachen University and DWI Leibniz Institute for Interactive Materials e.V.; Forckenbeckstr. 50 52074 Aachen Germany
| | - Agnieszka Ksiazkiewicz
- Institute of Technical and Macromolecular Chemistry; RWTH Aachen University and DWI Leibniz Institute for Interactive Materials e.V.; Forckenbeckstr. 50 52074 Aachen Germany
| | - Andrij Pich
- Institute of Technical and Macromolecular Chemistry; RWTH Aachen University and DWI Leibniz Institute for Interactive Materials e.V.; Forckenbeckstr. 50 52074 Aachen Germany
| | - Alexander Mitsos
- Aachener Verfahrenstechnik - Process Systems Engineering; RWTH Aachen University; Forckenbeckstr. 51 52074 Aachen Germany
| | - Joern Viell
- Aachener Verfahrenstechnik - Process Systems Engineering; RWTH Aachen University; Forckenbeckstr. 51 52074 Aachen Germany
| |
Collapse
|
43
|
Protein valves formed through click-reaction grafting of poly(N-isopropylacrylamide) onto electrospun poly(2,6-dimethyl-1,4-phenylene oxide) fibrous membranes. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.01.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
44
|
Self-assembly of rarely polymer-grafted nanoparticles in dilute solutions and on a surface: From non-spherical vesicles to graphene-like sheets. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.03.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
45
|
Symmetrical polysulfone/poly(acrylic acid) porous membranes with uniform wormlike morphology and pH responsibility: Preparation, characterization and application in water purification. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.12.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|