1
|
Wang Z, Sun X, Liu Q, Xia C, Yin Q, Liu S, Lu X, Chen H. Amino-ionic liquid-assisted highly compatible mixed matrix membranes of ZIF-8 and PIM-1 for efficient CO 2/N 2 separation. Dalton Trans 2025; 54:6281-6289. [PMID: 40130581 DOI: 10.1039/d5dt00335k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Mixed matrix membranes (MMMs), which incorporate metal-organic framework (MOF) nanofillers within a polymer matrix, offer a highly promising solution for CO2 capture and separation. However, poor interfacial compatibility and filler aggregation in MMMs pose significant challenges to enhancing CO2/N2 separation performance. Here, we present a novel approach using amino-ionic liquid modification to optimize MMMs, where the modified AFIL promotes the formation of ZIF-8 with well-defined facets and sharp edges and enhances the compatibility between ZIF-8 particles and PIM-1 polymer matrixes for favorable CO2 affinity and selective CO2 transport. The resulting 10 wt% AFIL@ZIF-8/PIM-1 exhibits exceptional gas separation performance with a CO2 permeability of 7864 ± 262.2 Barrer and a CO2/N2 selectivity of 29.66 ± 1.96. More importantly, the incorporation of AFIL into the ZIF-8 pores significantly enhances the thermal stability and aging resistance of AFIL@ZIF-8/PIM-1 MMMs via structural support and hydrogen bonding interactions. This work provides a practical approach for developing hybrid membranes for CO2/N2 separation, showcasing improved overall performance and strong interfacial compatibility.
Collapse
Affiliation(s)
- Zhaojie Wang
- Shandong Key Laboratory of Intelligent Energy Materials, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Xinle Sun
- Shandong Key Laboratory of Intelligent Energy Materials, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Qinglong Liu
- Shandong Key Laboratory of Intelligent Energy Materials, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Caifeng Xia
- Shandong Key Laboratory of Intelligent Energy Materials, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Qikang Yin
- College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China.
| | - Siyuan Liu
- Shandong Key Laboratory of Intelligent Energy Materials, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Xiaoqing Lu
- Shandong Key Laboratory of Intelligent Energy Materials, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Hongyu Chen
- College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China.
| |
Collapse
|
2
|
Qiu B, Gao Y, Gorgojo P, Fan X. Membranes of Polymer of Intrinsic Microporosity PIM-1 for Gas Separation: Modification Strategies and Meta-Analysis. NANO-MICRO LETTERS 2025; 17:114. [PMID: 39847125 PMCID: PMC11757663 DOI: 10.1007/s40820-024-01610-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/28/2024] [Indexed: 01/24/2025]
Abstract
Polymers of intrinsic microporosity (PIMs) have received considerable attention for making high-performance membranes for carbon dioxide separation over the last two decades, owing to their highly permeable porous structures. However, challenges regarding its relatively low selectivity, physical aging, and plasticisation impede relevant industrial adoptions for gas separation. To address these issues, several strategies including chain modification, post-modification, blending with other polymers, and the addition of fillers, have been developed and explored. PIM-1 is the most investigated PIMs, and hence here we review the state-of-the-arts of the modification strategies of PIM-1 critically and discuss the progress achieved for addressing the aforementioned challenges via meta-analysis. Additionally, the development of PIM-1-based thin film composite membranes is commented as well, shedding light on their potential in industrial gas separation. We hope that the review can be a timely snapshot of the relevant state-of-the-arts of PIMs guiding future design and optimisation of PIMs-based membranes for enhanced performance towards a higher technology readiness level for practical applications.
Collapse
Affiliation(s)
- Boya Qiu
- Department of Chemical Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester, M13 9PL, UK
| | - Yong Gao
- Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, People's Republic of China
| | - Patricia Gorgojo
- Department of Chemical Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester, M13 9PL, UK.
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC-Universidad de Zaragoza, Mariano Esquillor, 50018, Zaragoza, Spain.
- Departamento de Ingeniería Química y Tecnologías del Medio Ambiente, Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain.
| | - Xiaolei Fan
- Department of Chemical Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester, M13 9PL, UK.
- Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, People's Republic of China.
- Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, 211 Xingguang Road, Ningbo, 315048, People's Republic of China.
| |
Collapse
|
3
|
Mulk WU, Hassan Shah MU, Shah SN, Zhang QJ, Khan AL, Sheikh M, Younas M, Rezakazemi M. Enhancing CO 2 separation from N 2 mixtures using hydrophobic porous supports immobilized with tributyl-tetradecyl-phosphonium chloride [P 44414][Cl]. ENVIRONMENTAL RESEARCH 2023; 237:116879. [PMID: 37579965 DOI: 10.1016/j.envres.2023.116879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/29/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
The main obstacles in adopting solvent-based CO2 capture technology from power plant flue gases at the industrial scale are the energy requirements for solvent regeneration and their toxicity. These challenges can be overcome using new green and more stable ionic liquids (ILs) as solvents for post-combustion CO2 capture. In the current study, tributyl-tetradecyl-phosphonium chloride [P44414][Cl] as an IL, was immobilized on hydrophobic porous supports of polypropylene (PP), polyvinylidene fluoride (PVDF), and polytetrafluoroethylene (PTFE) at 298 ± 3 K and pressures up to 2 bar. The surface morphology indicated homogenous immobilization of the IL on the membrane support. Supported ionic liquid membranes (SILMs) were tested for CO2 permeability and CO2/N2 selectivity. None of the SILMs exhibited IL leaching up to 2 bar. The PTFE-based SILM performed better than other supports with minimum loss in water contact angle (WCA) and achieved good antiwetting with a maximum CO2 permeability and selectivity over N2 of 2300 ± 139 Barrer and 31.60 ± 2.4, respectively. This work achieves CO2 permeability about two-fold more than other works having CO2/N2 selectivity range of 25-35 in similar SILMs. The diffusivity of CO2 and N2 in [P44414][Cl] was measured as 3.64 ± 0.18 and 2.01 ± 0.09 [10-8 cm2 s-1] and CO2 and N2 solubility values were 9.79 ± 0.47 and 0.19 ± 0.001 [10-2 cm3(STP) cm-3 cmHg-1], respectively. The high values of Young's modulus and tensile strength of the PTFE support-based SILM (234 ± 12 MPa and 6.07 ± 0.31 MPa, respectively) indicated the long-term application of SILM in flue gas separation. The results indicated phosphonium chloride-based ILs could be better solvent candidates for CO2 removal from large volumes of flue gases than amine-based ILs.
Collapse
Affiliation(s)
- Waqad Ul Mulk
- Department of Mechanical Engineering, Faculty of Mechanical and Aeronautical Engineering, University of Engineering and Technology, Taxila, 47080, Rawalpindi, Pakistan; Department of Mechanical Engineering, Universiti Teknologi Petronas, 32610 Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Mansoor Ul Hassan Shah
- Department of Chemical Engineering, Faculty of Mechanical, Chemical, and Industrial Engineering, University of Engineering and Technology, Peshawar, 25120, Pakistan
| | - Syed Nasir Shah
- Research & Development Centre, Dubai Electricity and Water Authority (DEWA), P.O. Box 564, Dubai, United Arab Emirates
| | - Qi-Jun Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Asim Laeeq Khan
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Mahdi Sheikh
- Chemical Engineering Department, Escola D'Enginyeria de Barcelona Est (EEBE), Universitat Politécnica de Catalunya (UPC)-BarcelonaTECH, C/ Eduard Maristany 10-14, Campus Diagonal-Besós, 08930 Barcelona, Spain
| | - Mohammad Younas
- Department of Chemical Engineering, Faculty of Mechanical, Chemical, and Industrial Engineering, University of Engineering and Technology, Peshawar, 25120, Pakistan; CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China.
| | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran.
| |
Collapse
|
4
|
Mulk WU, Ali SA, Shah SN, Shah MUH, Zhang QJ, Younas M, Fatehizadeh A, Sheikh M, Rezakazemi M. Breaking boundaries in CO2 capture: Ionic liquid-based membrane separation for post-combustion applications. J CO2 UTIL 2023; 75:102555. [DOI: 10.1016/j.jcou.2023.102555] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
|
5
|
Kumar De S, Won DI, Kim J, Kim DH. Integrated CO 2 capture and electrochemical upgradation: the underpinning mechanism and techno-chemical analysis. Chem Soc Rev 2023; 52:5744-5802. [PMID: 37539619 DOI: 10.1039/d2cs00512c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Coupling post-combustion CO2 capture with electrochemical utilization (CCU) is a quantum leap in renewable energy science since it eliminates the cost and energy involved in the transport and storage of CO2. However, the major challenges involved in industrial scale implementation are selecting an appropriate solvent/electrolyte for CO2 capture, modeling an appropriate infrastructure by coupling an electrolyser with a CO2 point source and a separator to isolate CO2 reduction reaction (CO2RR) products, and finally selection of an appropriate electrocatalyst. In this review, we highlight the major difficulties with detailed mechanistic interpretation in each step, to find out the underpinning mechanism involved in the integration of electrochemical CCU to achieve higher-value products. In the past decades, most of the studies dealt with individual parts of the integration process, i.e., either selecting a solvent for CO2 capture, designing an electrocatalyst, or choosing an ideal electrolyte. In this context, it is important to note that solvents such as monoethanolamine, bicarbonate, and ionic liquids are often used as electrolytes in CO2 capture media. Therefore, it is essential to fabricate a cost-effective electrolyser that should function as a reversible binder with CO2 and an electron pool capable of recovering the solvent to electrolyte reversibly. For example, reversible ionic liquids, which are non-ionic in their normal forms, but produce ionic forms after CO2 capture, can be further reverted back to their original non-ionic forms after CO2 release with almost 100% efficiency through the chemical or thermal modulations. This review also sheds light on a focused techno-economic evolution for converting the electrochemically integrated CCU process from a pilot-scale project to industrial-scale implementation. In brief, this review article will summarize a state-of-the-art argumentation of challenges and outcomes over the different segments involved in electrochemically integrated CCU to stimulate urgent progress in the field.
Collapse
Affiliation(s)
- Sandip Kumar De
- Department of Chemistry, UPL University of Sustainable Technology, 402, Ankleshwar - Valia Rd, Vataria, Gujarat 393135, India
| | - Dong-Il Won
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Jeongwon Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Dong Ha Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| |
Collapse
|
6
|
Open-Celled Foams from Polyethersulfone/Poly(Ethylene Glycol) Blends Using Foam Extrusion. Polymers (Basel) 2022; 15:polym15010118. [PMID: 36616468 PMCID: PMC9824152 DOI: 10.3390/polym15010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Polyethersulfone (PESU), as both a pristine polymer and a component of a blend, can be used to obtain highly porous foams through batch foaming. However, batch foaming is limited to a small scale and is a slow process. In our study, we used foam extrusion due to its capacity for large-scale continuous production and deployed carbon dioxide (CO2) and water as physical foaming agents. PESU is a high-temperature thermoplastic polymer that requires processing temperatures of at least 320 °C. To lower the processing temperature and obtain foams with higher porosity, we produced PESU/poly(ethylene glycol) (PEG) blends using material penetration. In this way, without the use of organic solvents or a compounding extruder, a partially miscible PESU/PEG blend was prepared. The thermal and rheological properties of homopolymers and blends were characterized and the CO2 sorption performance of selected blends was evaluated. By using these blends, we were able to significantly reduce the processing temperature required for the extrusion foaming process by approximately 100 °C without changing the duration of processing. This is a significant advancement that makes this process more energy-efficient and sustainable. Additionally, the effects of blend composition, nozzle temperature and foaming agent type were investigated, and we found that higher concentrations of PEG, lower nozzle temperatures, and a combination of CO2 and water as the foaming agent delivered high porosity. The optimum blend process settings provided foams with a porosity of approximately 51% and an average foam cell diameter of 5 µm, which is the lowest yet reported for extruded polymer foams according to the literature.
Collapse
|
7
|
Ferraro G, Astorino C, Bartoli M, Martis A, Lettieri S, Pirri CF, Bocchini S. Ionic Liquids-Polymer of Intrinsic Microporosity (PIMs) Blend Membranes for CO 2 Separation. MEMBRANES 2022; 12:1262. [PMID: 36557169 PMCID: PMC9786291 DOI: 10.3390/membranes12121262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 05/31/2023]
Abstract
Membranes with high CO2 solubility are essential for developing a separation technology with low carbon footprint. To this end, physical blend membranes of [BMIM][Ac] and [BMIM][Succ] as Ionic Liquids (ILs) and PIM-1 as the polymer were prepared trying to combine the high permeability properties of PIM-1 with the high CO2 solubility of the chosen ILs. Membranes with a PIM-1/[BMIM][Ac] 4/1 ratio nearly double their CO2 solubility at 0.8 bar (0.86 cm3 (STP)/cm3 cmHg), while other ratios still maintain similar solubilities to PIM-1 (0.47 cm3 (STP)/cm3 cmHg). Moreover, CO2 permeability of PIM-1/[BMIM][Ac] blended membranes were between 1050 and 2090 Barrer for 2/1 and 10/1 ratio, lower than PIM-1 membrane, but still highly permeable. The here presented self-standing and mechanically resistant blend membranes have yet a lower permeability compared to PIM-1 yet an improved CO2 solubility, which eventually will translate in higher CO2/N2 selectivity. These promising preliminary results will allow us to select and optimize the best performing PIM-1/ILs blends to develop outstanding membranes for an improved gas separation technology.
Collapse
Affiliation(s)
- Giuseppe Ferraro
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno 60, 10144 Turin, Italy
| | - Carmela Astorino
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno 60, 10144 Turin, Italy
- Dipartimento di Chimica Generale ed Organica Applicata, Università di Torino, Corso Massimo D’Azeglio 48, 10125 Turin, Italy
| | - Mattia Bartoli
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno 60, 10144 Turin, Italy
| | - Alberto Martis
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno 60, 10144 Turin, Italy
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
| | - Stefania Lettieri
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno 60, 10144 Turin, Italy
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
| | - Candido Fabrizio Pirri
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno 60, 10144 Turin, Italy
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
| | - Sergio Bocchini
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno 60, 10144 Turin, Italy
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
| |
Collapse
|
8
|
Khurram AR, Rafiq S, Tariq A, Jamil A, Iqbal T, Mahmood H, Mehdi MS, Abdulrahman A, Ali A, Akhtar MS, Asif S. Environmental remediation through various composite membranes moieties: Performances and thermomechanical properties. CHEMOSPHERE 2022; 309:136613. [PMID: 36183888 DOI: 10.1016/j.chemosphere.2022.136613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/12/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Pollution harms ecosystems and poses a serious threat to human health around the world through direct or indirect effects on air, water, and land. The importance of remediating effluents is paramount to reducing environmental concerns. CO2 emissions are removed efficiently and efficaciously with mixed matrix membranes (MMMs), which are viable replacements for less efficient and costly membranes. In the field of membrane technology, MMMs are advancing rapidly due to their good separation properties. The selection of filler to be incorporated in mixed matrix membranes is very considered very important. There has been considerable interest in MOFs, carbon nanotubes (CNTs), ionic liquids (ILs), carbon molecular sieves (CMSs), sulfonated fillers (SFs), and layered silicates (LSs) as inorganic fillers for improving the properties of mixed matrix membranes. These fillers promise superb results and long durability for mixed matrix membranes based on them. The purpose of this review is to review different fillers used in MMMs for improving separation properties, limitations, and thermomechanical properties for environmental control and remediation.
Collapse
Affiliation(s)
- Abdul Rehman Khurram
- Department of Chemical, Polymer & Composite Materials Engineering, University of Engineering and Technology, Lahore, New Campus, Pakistan
| | - Sikander Rafiq
- Department of Chemical, Polymer & Composite Materials Engineering, University of Engineering and Technology, Lahore, New Campus, Pakistan; Department of Food Engineering and Biotechnology, University of Engineering and Technology, Lahore, New Campus, Pakistan.
| | - Alisha Tariq
- Department of Chemical, Polymer & Composite Materials Engineering, University of Engineering and Technology, Lahore, New Campus, Pakistan
| | - Asif Jamil
- Department of Chemical, Polymer & Composite Materials Engineering, University of Engineering and Technology, Lahore, New Campus, Pakistan
| | - Tanveer Iqbal
- Department of Chemical, Polymer & Composite Materials Engineering, University of Engineering and Technology, Lahore, New Campus, Pakistan
| | - Hamayoun Mahmood
- Department of Chemical, Polymer & Composite Materials Engineering, University of Engineering and Technology, Lahore, New Campus, Pakistan
| | - Muhammad Shozab Mehdi
- Department of Chemical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Khyber Pakhtunkhwa, Pakistan
| | - Aymn Abdulrahman
- Department of Chemical Engineering, University of Jeddah, Jeddah, Saudi Arabia
| | - Abulhassan Ali
- Department of Chemical Engineering, University of Jeddah, Jeddah, Saudi Arabia
| | - Muhammad Saeed Akhtar
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 712-749, South Korea.
| | - Saira Asif
- Sustainable Process Integration Laboratory, SPIL, NETME Centra, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno, Technická 2896/2, Brno, 616 00, Czech Republic.
| |
Collapse
|
9
|
A review of recent advances in carbon dioxide absorption–stripping by employing a gas–liquid hollow fiber polymeric membrane contactor. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04626-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
10
|
Kammakakam I, O’Harra KE, Bara JE, Jackson EM. Spirobisindane-Containing Imidazolium Polyimide Ionene: Structural Design and Gas Separation Performance of “Ionic PIMs”. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Irshad Kammakakam
- Department of Chemical & Biological Engineering, University of Alabama, Tuscaloosa, Alabama 35487-0203, United States
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Kathryn E. O’Harra
- Department of Chemical & Biological Engineering, University of Alabama, Tuscaloosa, Alabama 35487-0203, United States
| | - Jason E. Bara
- Department of Chemical & Biological Engineering, University of Alabama, Tuscaloosa, Alabama 35487-0203, United States
| | - Enrique M. Jackson
- NASA Marshall Space Flight Center, Huntsville, Alabama 35812, United States
| |
Collapse
|
11
|
Investigation on effect of ionic liquid on CO2 separation performance and properties of novel co-casted dual-layer PEBAX-ionic liquid/PES composite membrane. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.11.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Recent Advances of Polymeric Membranes in Tackling Plasticization and Aging for Practical Industrial CO2/CH4 Applications—A Review. MEMBRANES 2022; 12:membranes12010071. [PMID: 35054597 PMCID: PMC8778184 DOI: 10.3390/membranes12010071] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 12/23/2022]
Abstract
Membranes are a promising technology for bulk CO2 separation from natural gas mixtures due to their numerous advantages. Despite the numerous fundamental studies on creating better quality membrane efficiency, scaling up the research work for field testing requires huge efforts. The challenge is to ensure the stability of the membrane throughout the operation while maintaining its high performance. This review addresses the key challenges in the application of polymeric technology for CO2 separation, focusing on plasticization and aging. A brief introduction to the properties and limitations of the current commercial polymeric membrane is first deliberated. The effect of each plasticizer component in natural gas towards membrane performance and the relationship between operating conditions and the membrane efficiency are discussed in this review. The recent technological advancements and techniques to overcome the plasticization and aging issues covering polymer modification, high free-volume polymers, polymer blending and facilitated transport membranes (FTMs) have been highlighted. We also give our perspectives on a few main features of research related to polymeric membranes and the way forwards. Upcoming research must emphasize mixed gas with CO2 including minor condensable contaminants as per real natural gas, to determine the competitive sorption effect on CO2 permeability and membrane selectivity. The effects of pore blocking, plasticization and aging should be given particular attention to cater for large-scale applications.
Collapse
|
13
|
Caliskan E, Shishatskiy S, Neumann S, Abetz V, Filiz V. Investigation of the Side Chain Effect on Gas and Water Vapor Transport Properties of Anthracene-Maleimide Based Polymers of Intrinsic Microporosity. Polymers (Basel) 2021; 14:119. [PMID: 35012141 PMCID: PMC8747615 DOI: 10.3390/polym14010119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 02/01/2023] Open
Abstract
In the present work, a set of anthracene maleimide monomers with different aliphatic side groups obtained by Diels Alder reactions were used as precursors for a series of polymers of intrinsic microporosity (PIM) based homo- and copolymers that were successfully synthesized and characterized. Polymers with different sizes and shapes of aliphatic side groups were characterized by size-exclusion chromatography (SEC), (nuclear magnetic resonance) 1H-NMR, thermogravimetric (TG) analysis coupled with Fourier-Transform-Infrared (FTIR) spectroscopy (TG-FTIR) and density measurements. The TG-FTIR measurement of the monomer-containing methyl side group revealed that the maleimide group decomposes prior to the anthracene backbone. Thermal treatment of homopolymer methyl-100 thick film was conducted to establish retro-Diels Alder rearrangement of the homopolymer. Gas and water vapor transport properties of homopolymers and copolymers were investigated by time-lag measurements. Homopolymers with bulky side groups (i-propyl-100 and t-butyl-100) experienced a strong impact of these side groups in fractional free volume (FFV) and penetrant permeability, compared to the homopolymers with linear alkyl side chains. The effect of anthracene maleimide derivatives with a variety of aliphatic side groups on water vapor transport is discussed. The maleimide moiety increased the water affinity of the homopolymers. Phenyl-100 exhibited a high water solubility, which is related to a higher amount of aromatic rings in the polymer. Copolymers (methyl-50 and t-butyl-50) showed higher CO2 and CH4 permeability compared to PIM-1. In summary, the introduction of bulky substituents increased free volume and permeability whilst the maleimide moiety enhanced the water vapor affinity of the polymers.
Collapse
Affiliation(s)
- Esra Caliskan
- Institute of Membrane Research, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany; (E.C.); (S.S.); (S.N.); (V.A.)
| | - Sergey Shishatskiy
- Institute of Membrane Research, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany; (E.C.); (S.S.); (S.N.); (V.A.)
| | - Silvio Neumann
- Institute of Membrane Research, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany; (E.C.); (S.S.); (S.N.); (V.A.)
| | - Volker Abetz
- Institute of Membrane Research, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany; (E.C.); (S.S.); (S.N.); (V.A.)
- Institute of Physical Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Volkan Filiz
- Institute of Membrane Research, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany; (E.C.); (S.S.); (S.N.); (V.A.)
| |
Collapse
|
14
|
Kuzminova A, Dmitrenko M, Zolotarev A, Korniak A, Poloneeva D, Selyutin A, Emeline A, Yushkin A, Foster A, Budd P, Ermakov S. Novel Mixed Matrix Membranes Based on Polymer of Intrinsic Microporosity PIM-1 Modified with Metal-Organic Frameworks for Removal of Heavy Metal Ions and Food Dyes by Nanofiltration. MEMBRANES 2021; 12:membranes12010014. [PMID: 35054540 PMCID: PMC8782022 DOI: 10.3390/membranes12010014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/18/2022]
Abstract
Nowadays, nanofiltration is widely used for water treatment due to its advantages, such as energy-saving, sustainability, high efficiency, and compact equipment. In the present work, novel nanofiltration membranes based on the polymer of intrinsic microporosity PIM-1 modified by metal-organic frameworks (MOFs)-MIL-140A and MIL-125-were developed to increase nanofiltration efficiency for the removal of heavy metal ions and dyes. The structural and physicochemical properties of the developed PIM-1 and PIM-1/MOFs membranes were studied by the spectroscopic technique (FTIR), microscopic methods (SEM and AFM), and contact angle measurement. Transport properties of the developed PIM-1 and PIM-1/MOFs membranes were evaluated in the nanofiltration of the model and real mixtures containing food dyes and heavy metal ions. It was found that the introduction of MOFs (MIL-140A and MIL-125) led to an increase in membrane permeability. It was demonstrated that the membranes could be used to remove and concentrate the food dyes and heavy metal ions from model and real mixtures.
Collapse
Affiliation(s)
- Anna Kuzminova
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.Z.); (A.K.); (D.P.); (A.S.); (A.E.); (S.E.)
- Correspondence: ; Tel.: +7-(812)363-60-00
| | - Mariia Dmitrenko
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.Z.); (A.K.); (D.P.); (A.S.); (A.E.); (S.E.)
| | - Andrey Zolotarev
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.Z.); (A.K.); (D.P.); (A.S.); (A.E.); (S.E.)
| | - Aleksandra Korniak
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.Z.); (A.K.); (D.P.); (A.S.); (A.E.); (S.E.)
| | - Daria Poloneeva
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.Z.); (A.K.); (D.P.); (A.S.); (A.E.); (S.E.)
| | - Artem Selyutin
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.Z.); (A.K.); (D.P.); (A.S.); (A.E.); (S.E.)
| | - Alexei Emeline
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.Z.); (A.K.); (D.P.); (A.S.); (A.E.); (S.E.)
| | - Alexey Yushkin
- A. V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky Prospekt, 119991 Moscow, Russia;
| | - Andrew Foster
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK; (A.F.); (P.B.)
| | - Peter Budd
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK; (A.F.); (P.B.)
| | - Sergey Ermakov
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.Z.); (A.K.); (D.P.); (A.S.); (A.E.); (S.E.)
| |
Collapse
|
15
|
Bandehali S, Ebadi Amooghin A, Sanaeepur H, Ahmadi R, Fuoco A, Jansen JC, Shirazian S. Polymers of intrinsic microporosity and thermally rearranged polymer membranes for highly efficient gas separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Taheri P, Raisi A, Maleh MS. CO 2-selective poly (ether-block-amide)/polyethylene glycol composite blend membrane for CO 2 separation from gas mixtures. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:38274-38291. [PMID: 33733421 DOI: 10.1007/s11356-021-13447-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
This work focuses on the preparation of composite blend membranes based on poly (ether-block-amide) (Pebax-1657) by incorporating polyethylene glycol (PEG) for gas separation applications. The influence of PEG with different molecular weights (PEG600, PEG1500, and PEG4000) at loading content in the range of 10%wt. to 40%wt. was investigated on the microstructure and gas separation performance of the prepared blend membranes. The fabricated membranes were characterized using SEM, XRD, and water contact angle analyses. Based on the experimental results, the blending of low molecular weight PEG (PEG600) into the Pebax-1657 matrix increased the chain mobility of the membrane, led to a smooth microstructure, and improved the hydrophilicity of the blend membranes, as well as enhanced the gas permeability of N2, O2, CH4, and CO2, but only slightly affected the ideal selectivity of O2/N2, CH4/N2, CO2/N2, and CO2/CH4. In contrast, the incorporation of PEG1500 and PEG4000 meaningfully increased the membrane crystallinity, decreased chain mobility, resulted in a rough microstructure, and reduced the blend membranes' hydrophilicity. For CO2/N2 mixture, the Pebax/40%PEG600 membrane had CO2 permeability of 62.9 Barrer and selectivity of 83.8, while the Pebax/20%PEG600 showed the CO2 permeability of 63.12 Barrer and selectivity of 23.6 for CO2/CH4 separation.
Collapse
Affiliation(s)
- Parisa Taheri
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave, P.O. Box 15875-4413, Tehran, Iran
| | - Ahmadreza Raisi
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave, P.O. Box 15875-4413, Tehran, Iran.
| | - Mohammad Salehi Maleh
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave, P.O. Box 15875-4413, Tehran, Iran
| |
Collapse
|
17
|
Friess K, Izák P, Kárászová M, Pasichnyk M, Lanč M, Nikolaeva D, Luis P, Jansen JC. A Review on Ionic Liquid Gas Separation Membranes. MEMBRANES 2021; 11:97. [PMID: 33573138 PMCID: PMC7911519 DOI: 10.3390/membranes11020097] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 02/02/2023]
Abstract
Ionic liquids have attracted the attention of the industry and research community as versatile solvents with unique properties, such as ionic conductivity, low volatility, high solubility of gases and vapors, thermal stability, and the possibility to combine anions and cations to yield an almost endless list of different structures. These features open perspectives for numerous applications, such as the reaction medium for chemical synthesis, electrolytes for batteries, solvent for gas sorption processes, and also membranes for gas separation. In the search for better-performing membrane materials and membranes for gas and vapor separation, ionic liquids have been investigated extensively in the last decade and a half. This review gives a complete overview of the main developments in the field of ionic liquid membranes since their first introduction. It covers all different materials, membrane types, their preparation, pure and mixed gas transport properties, and examples of potential gas separation applications. Special systems will also be discussed, including facilitated transport membranes and mixed matrix membranes. The main strengths and weaknesses of the different membrane types will be discussed, subdividing them into supported ionic liquid membranes (SILMs), poly(ionic liquids) or polymerized ionic liquids (PILs), polymer/ionic liquid blends (physically or chemically cross-linked 'ion-gels'), and PIL/IL blends. Since membrane processes are advancing as an energy-efficient alternative to traditional separation processes, having shown promising results for complex new separation challenges like carbon capture as well, they may be the key to developing a more sustainable future society. In this light, this review presents the state-of-the-art of ionic liquid membranes, to analyze their potential in the gas separation processes of the future.
Collapse
Affiliation(s)
- Karel Friess
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (K.F.); (P.I.); (M.L.)
- Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135, 165 02 Prague, Czech Republic; (M.K.); (M.P.)
| | - Pavel Izák
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (K.F.); (P.I.); (M.L.)
- Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135, 165 02 Prague, Czech Republic; (M.K.); (M.P.)
| | - Magda Kárászová
- Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135, 165 02 Prague, Czech Republic; (M.K.); (M.P.)
| | - Mariia Pasichnyk
- Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135, 165 02 Prague, Czech Republic; (M.K.); (M.P.)
| | - Marek Lanč
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (K.F.); (P.I.); (M.L.)
| | - Daria Nikolaeva
- Materials & Process Engineering, UCLouvain, Place Sainte Barbe 2, 1348 Louvain-la-Neuve, Belgium; (D.N.); (P.L.)
| | - Patricia Luis
- Materials & Process Engineering, UCLouvain, Place Sainte Barbe 2, 1348 Louvain-la-Neuve, Belgium; (D.N.); (P.L.)
| | | |
Collapse
|
18
|
Rashid TU. Ionic liquids: Innovative fluids for sustainable gas separation from industrial waste stream. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114916] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
19
|
Lian S, Song C, Liu Q, Duan E, Ren H, Kitamura Y. Recent advances in ionic liquids-based hybrid processes for CO 2 capture and utilization. J Environ Sci (China) 2021; 99:281-295. [PMID: 33183708 DOI: 10.1016/j.jes.2020.06.034] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/22/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
CO2 capture and utilization (CCU) is an effective strategy to mitigate global warming. Absorption, adsorption and membranes are methods used for CO2 separation and capture, and various catalytic pathways have also been developed for CO2 utilization. Although widely researched and used in industry, these processes are energy-intensive and this challenge needs to be overcome. To realize further optimization, novel materials and processes are continuously being developed. New generation materials such as ionic liquids (ILs) have shown promising potential for cost-effective CO2 capture and utilization. This study reviews the current status of ILs-based solvents, adsorbents, membranes, catalysts and their hybrid processes for CO2 capture and utilization. The special properties of ILs are integrated into new materials through hybridization, which significantly improves the performance in the process of CCU.
Collapse
Affiliation(s)
- Shaohan Lian
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Chunfeng Song
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Qingling Liu
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Erhong Duan
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
| | - Hongwei Ren
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China.
| | - Yutaka Kitamura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
20
|
Han J, Bai L, Jiang H, Zeng S, Yang B, Bai Y, Zhang X. Task-Specific Ionic Liquids Tuning ZIF-67/PIM-1 Mixed Matrix Membranes for Efficient CO2 Separation. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04830] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jiuli Han
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Bai
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
| | - Haiyan Jiang
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaojuan Zeng
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Bingbing Yang
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinge Bai
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiangping Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
|
22
|
Wang C, Guo F, Li H, Xu J, Hu J, Liu H, Wang M. A porous ionic polymer bionic carrier in a mixed matrix membrane for facilitating selective CO2 permeability. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Gillono M, Chiappone A, Mendola L, Gomez Gomez M, Scaltrito L, Pirri CF, Roppolo I. Study on the Printability through Digital Light Processing Technique of Ionic Liquids for CO 2 Capture. Polymers (Basel) 2019; 11:E1932. [PMID: 31771145 PMCID: PMC6960677 DOI: 10.3390/polym11121932] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 01/23/2023] Open
Abstract
Here we present new 3D printable materials based on the introduction of different commercially available ionic liquids (ILs) in the starting formulations. We evaluate the influence of these additives on the printability of such formulations through light-induced 3D printing (digital light processing-DLP), investigating as well the effect of ionic liquids with polymerizable groups. The physical chemical properties of such materials are compared, focusing on the permeability towards CO2 of the different ILs present in the formulations. At last, we show the possibility of 3D printing high complexity structures, which could be the base of new high complexity filters for a more efficient CO2 capture.
Collapse
Affiliation(s)
- Matteo Gillono
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (M.G.); (A.C.); (L.M.); (M.G.G.); (L.S.); (C.F.P.)
- Center for Sustainable Future Technologies @Polito, Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Torino, Italy
| | - Annalisa Chiappone
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (M.G.); (A.C.); (L.M.); (M.G.G.); (L.S.); (C.F.P.)
| | - Lorenzo Mendola
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (M.G.); (A.C.); (L.M.); (M.G.G.); (L.S.); (C.F.P.)
| | - Manuel Gomez Gomez
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (M.G.); (A.C.); (L.M.); (M.G.G.); (L.S.); (C.F.P.)
| | - Luciano Scaltrito
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (M.G.); (A.C.); (L.M.); (M.G.G.); (L.S.); (C.F.P.)
| | - Candido Fabrizio Pirri
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (M.G.); (A.C.); (L.M.); (M.G.G.); (L.S.); (C.F.P.)
- Center for Sustainable Future Technologies @Polito, Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Torino, Italy
| | - Ignazio Roppolo
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (M.G.); (A.C.); (L.M.); (M.G.G.); (L.S.); (C.F.P.)
| |
Collapse
|
24
|
Zia ul Mustafa M, bin Mukhtar H, Md Nordin NAH, Mannan HA, Nasir R, Fazil N. Recent Developments and Applications of Ionic Liquids in Gas Separation Membranes. Chem Eng Technol 2019. [DOI: 10.1002/ceat.201800519] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Muhammad Zia ul Mustafa
- Universiti Teknologi PETRONASChemical Engineering Department 32610 Bandar Seri Iskandar Perak Malaysia
| | - Hilmi bin Mukhtar
- Universiti Teknologi PETRONASChemical Engineering Department 32610 Bandar Seri Iskandar Perak Malaysia
| | - Nik Abdul Hadi Md Nordin
- Universiti Teknologi PETRONASChemical Engineering Department 32610 Bandar Seri Iskandar Perak Malaysia
| | - Hafiz Abdul Mannan
- Universiti Teknologi PETRONASChemical Engineering Department 32610 Bandar Seri Iskandar Perak Malaysia
| | - Rizwan Nasir
- University of JeddahDepartment of Chemical Engineering Jeddah Saudi Arabia
| | - Nabilah Fazil
- Universiti Teknologi PETRONASChemical Engineering Department 32610 Bandar Seri Iskandar Perak Malaysia
| |
Collapse
|
25
|
Yan X, Anguille S, Bendahan M, Moulin P. Ionic liquids combined with membrane separation processes: A review. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.03.103] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Xiong S, Yin D, Javaid MU, Li L, Pan C, Tang J, Yu G. Ionic Liquids‐Based Membranes for Carbon Dioxide Separation. Isr J Chem 2019. [DOI: 10.1002/ijch.201900062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shaohui Xiong
- College of Chemistry and Chemical Engineering, Key Laboratory of Hunan Province for Water Environment and Agriculture Product SafetyCentral South University Changsha 410083 China
| | - Deming Yin
- College of Chemistry and Chemical Engineering, Key Laboratory of Hunan Province for Water Environment and Agriculture Product SafetyCentral South University Changsha 410083 China
| | - Muhammad Umar Javaid
- College of Chemistry and Chemical Engineering, Key Laboratory of Hunan Province for Water Environment and Agriculture Product SafetyCentral South University Changsha 410083 China
| | - Liang Li
- College of Chemistry and Chemical Engineering, Key Laboratory of Hunan Province for Water Environment and Agriculture Product SafetyCentral South University Changsha 410083 China
| | - Chunyue Pan
- College of Chemistry and Chemical Engineering, Key Laboratory of Hunan Province for Water Environment and Agriculture Product SafetyCentral South University Changsha 410083 China
| | - Juntao Tang
- College of Chemistry and Chemical Engineering, Key Laboratory of Hunan Province for Water Environment and Agriculture Product SafetyCentral South University Changsha 410083 China
| | - Guipeng Yu
- College of Chemistry and Chemical Engineering, Key Laboratory of Hunan Province for Water Environment and Agriculture Product SafetyCentral South University Changsha 410083 China
| |
Collapse
|
27
|
Dong G, Zhang J, Wang Z, Wang J, Zhao P, Cao X, Zhang Y. Interfacial Property Modulation of PIM-1 through Polydopamine-Derived Submicrospheres for Enhanced CO 2/N 2 Separation Performance. ACS APPLIED MATERIALS & INTERFACES 2019; 11:19613-19622. [PMID: 31046224 DOI: 10.1021/acsami.9b02281] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Polydopamine-modified additives have been thus far widely used in the mixed matrix membranes (MMMs) for gas separation. However, very few reports focus on the polydopamine alone and investigate its contribution to the gas separation performance. Herein, the polydopamine-derived submicrospheres (PDASS) were paired with polymers of intrinsic microporosity (PIM-1) to fabricate high-performance gas separation membranes, through which the effects of PDASS on gas permeability and CO2/N2 separation performance were systematically investigated. The addition of PDASS provides a 1.6-fold enhancement in CO2/N2 selectivity together with acceptable gas permeability as compared to the original polymeric membrane. Such enhanced separation behavior is supposed to stem from the densified membrane microstructure induced by the strong intermolecular interactions between PIM-1 and PDASS (i.e., charge transfer, π-π stacking, and hydrogen bonding). Importantly, the physical aging behavior, as judged by gas permeability, is retarded for PIM/PDASS membranes after 4 months of testing.
Collapse
Affiliation(s)
- Guanying Dong
- School of Chemical Engineering and Energy , Zhengzhou University , Zhengzhou 450001 , China
| | - Jingjing Zhang
- School of Chemical Engineering and Energy , Zhengzhou University , Zhengzhou 450001 , China
| | - Zheng Wang
- School of Chemical Engineering and Energy , Zhengzhou University , Zhengzhou 450001 , China
| | - Jing Wang
- School of Chemical Engineering and Energy , Zhengzhou University , Zhengzhou 450001 , China
| | - Peixia Zhao
- School of Chemical Engineering and Energy , Zhengzhou University , Zhengzhou 450001 , China
| | - Xingzhong Cao
- Key Laboratory of Nuclear Analysis Techniques , Institute of High Energy Physics, Chinese Academy of Science , Beijing 100049 , China
| | - Yatao Zhang
- School of Chemical Engineering and Energy , Zhengzhou University , Zhengzhou 450001 , China
| |
Collapse
|
28
|
Rea R, Angelis MGD, Baschetti MG. Models for Facilitated Transport Membranes: A Review. MEMBRANES 2019; 9:E26. [PMID: 30717381 PMCID: PMC6409752 DOI: 10.3390/membranes9020026] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 11/16/2022]
Abstract
Facilitated transport membranes are particularly promising in different separations, as they are potentially able to overcome the trade-off behavior usually encountered in solution-diffusion membranes. The reaction activated transport is a process in which several mechanisms take place simultaneously, and requires a rigorous theoretical analysis, which unfortunately is often neglected in current studies more focused on material development. In this work, we selected and reviewed the main mathematical models introduced to describe mobile and fixed facilitated transport systems in steady state conditions, in order to provide the reader with an overview of the existing mathematical tools. An analytical solution to the mass transport problem cannot be achieved, even when considering simple reaction schemes such as that between oxygen (solute) and hemoglobin (carrier) (A+C⇄AC), that was thoroughly studied by the first works dealing with this type of biological facilitated transport. Therefore, modeling studies provided approximate analytical solutions and comparison against experimental observations and exact numerical calculations. The derivation, the main assumptions, and approximations of such modeling approaches is briefly presented to assess their applicability, precision, and flexibility in describing and understanding mobile and fixed site carriers facilitated transport membranes. The goal is to establish which mathematical tools are more suitable to support and guide the development and design of new facilitated transport systems and materials. Among the models presented, in particular, those from Teramoto and from Morales-Cabrera et al. seem the more flexible and general ones for the mobile carrier case, while the formalization made by Noble and coauthors appears the most complete in the case of fixed site carrier membranes.
Collapse
Affiliation(s)
- Riccardo Rea
- Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali (DICAM), Università di Bologna, Via Terracini 28, 40131 Bologna, Italy.
| | | | | |
Collapse
|
29
|
Aliyev EM, Khan MM, Nabiyev AM, Alosmanov RM, Bunyad-zadeh IA, Shishatskiy S, Filiz V. Covalently Modified Graphene Oxide and Polymer of Intrinsic Microporosity (PIM-1) in Mixed Matrix Thin-Film Composite Membranes. NANOSCALE RESEARCH LETTERS 2018; 13:359. [PMID: 30421344 PMCID: PMC6232192 DOI: 10.1186/s11671-018-2771-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/24/2018] [Indexed: 05/15/2023]
Abstract
In this study, mixed matrix membranes (MMMs) consisting of graphene oxide (GO) and functionalized graphene oxide (FGO) incorporated in a polymer of intrinsic microporosity (PIM-1) serving as a polymer matrix have been fabricated by dip-coating method, and their single gas transport properties were investigated. Successfully surface-modified GOs were characterized by Fourier transform infrared spectroscopy (FTIR), UV-Vis spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The effect of FGO loading on MMM morphology and performance was investigated by varying the FGO content in polymer matrix from 9 to 84 wt.%. Use of high FGO content in the polymer matrix helped to reveal difference in interaction of functionalized fillers with PIM-1 and even to discuss the change of FGO stiffness and filler alignment to the membrane surface depending on functional group nature.
Collapse
Affiliation(s)
- Elvin M. Aliyev
- Helmholtz-Zentrum Geesthacht, Institute of Polymer Research, Max-Planck-Str. 1, 21502 Geesthacht, Germany
- Baku State University, Z. Khalilov str. 23, AZ 1148 Baku, Azerbaijan
| | - Muntazim Munir Khan
- Helmholtz-Zentrum Geesthacht, Institute of Polymer Research, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Afig M. Nabiyev
- Baku State University, Z. Khalilov str. 23, AZ 1148 Baku, Azerbaijan
| | | | | | - Sergey Shishatskiy
- Helmholtz-Zentrum Geesthacht, Institute of Polymer Research, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Volkan Filiz
- Helmholtz-Zentrum Geesthacht, Institute of Polymer Research, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| |
Collapse
|
30
|
Halder K, Neumann S, Bengtson G, Khan MM, Filiz V, Abetz V. Polymers of Intrinsic Microporosity Postmodified by Vinyl Groups for Membrane Applications. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01252] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Karabi Halder
- Institute of Polymer Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Strasse 1, 21502 Geesthacht, Germany
| | - Silvio Neumann
- Institute of Polymer Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Strasse 1, 21502 Geesthacht, Germany
| | - Gisela Bengtson
- Institute of Polymer Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Strasse 1, 21502 Geesthacht, Germany
| | - Muntazim Munir Khan
- Institute of Polymer Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Strasse 1, 21502 Geesthacht, Germany
| | - Volkan Filiz
- Institute of Polymer Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Strasse 1, 21502 Geesthacht, Germany
| | - Volker Abetz
- Institute of Polymer Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Strasse 1, 21502 Geesthacht, Germany
- Institute of Physical Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| |
Collapse
|
31
|
Partially pyrolized gas-separation membranes made from blends of copolyetherimides and polyimides. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.04.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Sato H, Nakajo S, Oishi Y, Shibasaki Y. Synthesis of linear polymer of intrinsic microporosity from 5,5′,6,6′-tetrahydroxy-3,3,3′,3′-tetramethylspirobisindane and decafluorobiphenyl. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Synthesis and Crosslinking of Polyether-Based Main Chain Benzoxazine Polymers and Their Gas Separation Performance. Polymers (Basel) 2018; 10:polym10020221. [PMID: 30966255 PMCID: PMC6415054 DOI: 10.3390/polym10020221] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/07/2018] [Accepted: 02/22/2018] [Indexed: 11/16/2022] Open
Abstract
The poly(ethylene glycol)-based benzoxazine polymers were synthesized via a polycondensation reaction between Bisphenol-A, paraformaldehyde, and poly(ether diamine)/(Jeffamine®). The structures of the polymers were confirmed by proton nuclear magnetic resonance spectroscopy (¹H-NMR), indicating the presence of a cyclic benzoxazine ring. The polymer solutions were casted on the glass plate and cross-linked via thermal treatment to produce tough and flexible films without using any external additives. Thermal properties and the crosslinking behaviour of these polymers were studied by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Single gas (H₂, O₂, N₂, CO₂, and CH₄) transport properties of the crosslinked polymeric membranes were measured by the time-lag method. The crosslinked PEG-based polybenzoxazine membranes show improved selectivities for CO₂/N₂ and CO₂/CH₄ gas pairs. The good separation selectivities of these PEG-based polybenzoxazine materials suggest their utility as efficient thin film composite membranes for gas and liquid membrane separation technology.
Collapse
|
34
|
Ma C, Urban JJ. Polymers of Intrinsic Microporosity (PIMs) Gas Separation Membranes: A mini Review. ACTA ACUST UNITED AC 2018. [DOI: 10.11605/j.pnrs.201802002] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
35
|
Gao H, Bai L, Han J, Yang B, Zhang S, Zhang X. Functionalized ionic liquid membranes for CO2 separation. Chem Commun (Camb) 2018; 54:12671-12685. [DOI: 10.1039/c8cc07348a] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
It is imperative to develop efficient, reversible and economic technologies for separating CO2 which mainly comes from flue gas, natural gas and syngas.
Collapse
Affiliation(s)
- Hongshuai Gao
- Beijing Key Laboratory of Ionic Liquids Clean Process
- State Key Laboratory of Multiphase Complex System
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
| | - Lu Bai
- Beijing Key Laboratory of Ionic Liquids Clean Process
- State Key Laboratory of Multiphase Complex System
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
| | - Jiuli Han
- Beijing Key Laboratory of Ionic Liquids Clean Process
- State Key Laboratory of Multiphase Complex System
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
| | - Bingbing Yang
- Beijing Key Laboratory of Ionic Liquids Clean Process
- State Key Laboratory of Multiphase Complex System
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
| | - Suojiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process
- State Key Laboratory of Multiphase Complex System
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
| | - Xiangping Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process
- State Key Laboratory of Multiphase Complex System
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|
36
|
Lasseuguette E, McClements J, Koutsos V, Schäfer T, Ferrari MC. Ionic liquid mediated surface micropatterning of polymer blends. J Appl Polym Sci 2017. [DOI: 10.1002/app.46109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Elsa Lasseuguette
- School of Engineering; Institute for Materials and Processes, The University of Edinburgh; Robert Stevenson Road, Edinburgh EH9 3FB UK
| | - Jake McClements
- School of Engineering; Institute for Materials and Processes, The University of Edinburgh; Robert Stevenson Road, Edinburgh EH9 3FB UK
| | - Vasileios Koutsos
- School of Engineering; Institute for Materials and Processes, The University of Edinburgh; Robert Stevenson Road, Edinburgh EH9 3FB UK
| | - Thomas Schäfer
- Polymat University of the Basque Country; Av. Tolosa 72, Donostia-San Sebastián 20018 Spain
- Ikerbasque, Basque Foundation for Science; Bilbao Spain
| | - Maria-Chiara Ferrari
- School of Engineering; Institute for Materials and Processes, The University of Edinburgh; Robert Stevenson Road, Edinburgh EH9 3FB UK
| |
Collapse
|