1
|
Ma L, Song H, Gong X, Chen L, Gong J, Chen Z, Shen J, Gu M. A High-Methanol-Permeation Resistivity Polyamide-Based Proton Exchange Membrane Fabricated via a Hyperbranching Design. Polymers (Basel) 2024; 16:2480. [PMID: 39274112 PMCID: PMC11397882 DOI: 10.3390/polym16172480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
Four non-fluorinated sulfonimide polyamides (s-PAs) were successfully synthesized and a series of membranes were prepared by blending s-PA with polyvinylidene fluoride (PVDF) to achieve high-methanol-permeation resistivity for direct methanol fuel cell (DMFC) applications. Four membranes were fabricated by blending 50 wt% PVDF with s-PA, named BPD-101, BPD-102, BPD-111 and BPD-211, respectively. The s-PA/PVDF membranes exhibit high methanol resistivity, especially for the BPD-111 membrane with methanol resistivity of 8.13 × 10-7 cm2/s, which is one order of magnitude smaller than that of the Nafion 117 membrane. The tensile strength of the BPD-111 membrane is 15 MPa, comparable to that of the Nafion 117 membrane. Moreover, the four membranes also show good thermal stability up to 230 °C. The BPD-x membrane exhibits good oxidative stability, and the measured residual weights of the BPD-111 membrane are 97% and 93% after treating in Fenton's reagent (80 °C) for 1 h and 24 h, respectively. By considering the mechanical, thermal and dimensional properties, the polyamide proton-exchange membrane exhibits promising application potential for direct methanol fuel cells.
Collapse
Affiliation(s)
- Liying Ma
- School of Chemistry and Materials Science, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China
| | - Hongxia Song
- School of Chemistry and Materials Science, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China
| | - Xiaofei Gong
- Kaili No. 8 Middle School, 70 Qingjiang Road, Kaili 556000, China
| | - Lu Chen
- School of Chemistry and Materials Science, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China
| | - Jiangning Gong
- School of Chemistry and Materials Science, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China
| | - Zhijiao Chen
- School of Chemistry and Materials Science, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China
| | - Jing Shen
- School of Chemistry and Materials Science, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China
| | - Manqi Gu
- School of Chemistry and Materials Science, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China
| |
Collapse
|
2
|
Awad S, Abdel‐Hady EE, Mohamed HFM, Elsharkawy YS, Gomaa MM. Evaluation of transport mechanism and nanostructure of nonperfluorinated
PVA
/
sPTA
proton exchange membrane for fuel cell application. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Somia Awad
- Physics Department, Faculty of Science Minia University Minia Egypt
- Physics Department, Al‐Qunfudah University College Umm Al‐Qura University Mecca Kingdom of Saudi Arabia
| | | | | | | | - Mahmoud M. Gomaa
- Physics Department, Faculty of Science Minia University Minia Egypt
| |
Collapse
|
3
|
Beydaghi H, Bellani S, Najafi L, Oropesa-Nuñez R, Bianca G, Bagheri A, Conticello I, Martín-García B, Kashefi S, Serri M, Liao L, Sofer Z, Pellegrini V, Bonaccorso F. Sulfonated NbS 2-based proton-exchange membranes for vanadium redox flow batteries. NANOSCALE 2022; 14:6152-6161. [PMID: 35389414 DOI: 10.1039/d1nr07872k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this work, novel proton-exchange membranes (PEMs) based on sulfonated poly(ether ether ketone) (SPEEK) and two-dimensional (2D) sulfonated niobium disulphide (S-NbS2) nanoflakes are synthesized by a solution-casting method and used in vanadium redox flow batteries (VRFBs). The NbS2 nanoflakes are produced by liquid-phase exfoliation of their bulk counterpart and chemically functionalized with terminal sulfonate groups to improve dimensional and chemical stabilities, proton conductivity (σ) and fuel barrier properties of the as-produced membranes. The addition of S-NbS2 nanoflakes to SPEEK decreases the vanadium ion permeability from 5.42 × 10-7 to 2.34 × 10-7 cm2 min-1. Meanwhile, it increases the membrane σ and selectivity up to 94.35 mS cm-2 and 40.32 × 104 S min cm-3, respectively. The cell assembled with the optimized membrane incorporating 2.5 wt% of S-NbS2 nanoflakes (SPEEK:2.5% S-NbS2) exhibits high efficiency metrics, i.e., coulombic efficiency between 98.7 and 99.0%, voltage efficiency between 90.2 and 73.2% and energy efficiency between 89.3 and 72.8% within the current density range of 100-300 mA cm-2, delivering a maximum power density of 0.83 W cm-2 at a current density of 870 mA cm-2. The SPEEK:2.5% S-NbS2 membrane-based VRFBs show a stable behavior over 200 cycles at 200 mA cm-2. This study opens up an effective avenue for the production of advanced SPEEK-based membranes for VRFBs.
Collapse
Affiliation(s)
- Hossein Beydaghi
- Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy.
- BeDimensional SpA, via Lungotorrente Secca 30R, 16163 Genova, Italy
| | | | - Leyla Najafi
- BeDimensional SpA, via Lungotorrente Secca 30R, 16163 Genova, Italy
| | - Reinier Oropesa-Nuñez
- Department of Material Science and Engineering, Uppsala University, Box 534, 75103 Uppsala, Sweden
| | - Gabriele Bianca
- Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy.
- Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, via Dodecaneso 31, 16146 Genoa, Italy
| | - Ahmad Bagheri
- Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy.
| | - Irene Conticello
- BeDimensional SpA, via Lungotorrente Secca 30R, 16163 Genova, Italy
| | | | - Sepideh Kashefi
- Department of Chemical Engineering, Semnan University, Semnan, 3513119111, Iran
| | - Michele Serri
- Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy.
| | - Liping Liao
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Vittorio Pellegrini
- Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy.
- BeDimensional SpA, via Lungotorrente Secca 30R, 16163 Genova, Italy
| | - Francesco Bonaccorso
- Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy.
- BeDimensional SpA, via Lungotorrente Secca 30R, 16163 Genova, Italy
| |
Collapse
|
4
|
Wang Z, Ren J, Sun Y, Wang L, Fan Y, Zheng J, Qian H, Li S, Xu J, Zhang S. Fluorinated strategy of node structure of Zr-based MOF for construction of high-performance composite polymer electrolyte membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
5
|
Pham TA, Koo S, Park H, Luong QT, Kwon OJ, Jang S, Kim SM, Kim K. Investigation on the Microscopic/Macroscopic Mechanical Properties of a Thermally Annealed Nafion ® Membrane. Polymers (Basel) 2021; 13:4018. [PMID: 34833318 PMCID: PMC8620802 DOI: 10.3390/polym13224018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022] Open
Abstract
The Nafion® electrolyte membrane, which provides a proton pathway, is an essential element in fuel cell systems. Thermal treatment without additional additives is widely used to modify the mechanical properties of the membrane, to construct reliable and durable electrolyte membranes in the fuel cell. We measured the microscopic mechanical properties of thermally annealed membranes using atomic force microscopy with the two-point method. Furthermore, the macroscopic property was investigated through tensile tests. The microscopic modulus exceeded the macroscopic modulus over all annealing temperature ranges. Additionally, the measured microscopic modulus increased rapidly near 150 °C and was saturated over that temperature, whereas the macroscopic modulus continuously increased until 250 °C. This mismatched micro/macroscopic reinforcement trend indicates that the internal reinforcement of the clusters is induced first until 150 °C. In contrast, the reinforcement among the clusters, which requires more thermal energy, probably progresses even at a temperature of 250 °C. The results showed that the annealing process is effective for the surface smoothing and leveling of the Nafion® membrane until 200 °C.
Collapse
Affiliation(s)
- Tuyet Anh Pham
- Department of Mechanical Engineering, Incheon National University, Incheon 22012, Korea; (T.A.P.); (S.K.); (H.P.)
| | - Seunghoe Koo
- Department of Mechanical Engineering, Incheon National University, Incheon 22012, Korea; (T.A.P.); (S.K.); (H.P.)
| | - Hyunseok Park
- Department of Mechanical Engineering, Incheon National University, Incheon 22012, Korea; (T.A.P.); (S.K.); (H.P.)
| | - Quang Thien Luong
- Department of Energy and Chemical Engineering, Incheon National University, Incheon 22012, Korea; (Q.T.L.); (O.J.K.)
| | - Oh Joong Kwon
- Department of Energy and Chemical Engineering, Incheon National University, Incheon 22012, Korea; (Q.T.L.); (O.J.K.)
| | - Segeun Jang
- School of Mechanical Engineering, Kookmin University, Seoul 02707, Korea;
| | - Sang Moon Kim
- Department of Mechanical Engineering, Incheon National University, Incheon 22012, Korea; (T.A.P.); (S.K.); (H.P.)
| | - Kyeongtae Kim
- Department of Mechanical Engineering, Incheon National University, Incheon 22012, Korea; (T.A.P.); (S.K.); (H.P.)
| |
Collapse
|
6
|
Zare A, Montané X, Reina JA, Giamberini M. Membranes for Cation Transport Based on Dendronized Poly(Epichlorohydrin-Co-Ethylene Oxide). Part 2: Membrane Characterization and Transport Properties. Polymers (Basel) 2021; 13:polym13223915. [PMID: 34833217 PMCID: PMC8619552 DOI: 10.3390/polym13223915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/14/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
In this paper, we report on the preparation and characterization of membranes out of two side-chain liquid crystalline copolymers, dendronized at two different extents (20 and 40%, CP20 and CP40, respectively). The membranes were characterized by atomic force microscopy (AFM), field-emission scanning electron microscopy (FESEM), contact angle (CA) analysis, and water uptake. Moreover, transport properties were studied by methanol and proton conductivity experiment and by linear sweep voltammetry (LSV). For the sake of comparison, the behavior of the grafted copolymers was compared with the unmodified copolyether CP0 and with Nafion 117. Results demonstrated that in CP20 and CP40, cation transport depends on the presence of defined cationic channels, not affected by water presence; the comparison between LSV experiments performed with different alkaline cations suggests that CP40 possesses channels with larger diameters and better-defined inner structures.
Collapse
Affiliation(s)
- Alireza Zare
- Department of Chemical Engineering, Universitat Rovira i Virgili (URV), Av. Països Catalans, 26, 43007 Tarragona, Spain
| | - Xavier Montané
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili (URV), C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - José Antonio Reina
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili (URV), C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Marta Giamberini
- Department of Chemical Engineering, Universitat Rovira i Virgili (URV), Av. Països Catalans, 26, 43007 Tarragona, Spain
| |
Collapse
|
7
|
Zhou S, Cai Y, Zhang Q, Zheng J, Li S, Li Y, Zhang S, Ding YH. High flexible ether-free semi-crystalline fuel cell membranes: Molecular-level design, assembly structure and properties. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Vinothkannan M, Kim AR, Yoo DJ. Potential carbon nanomaterials as additives for state-of-the-art Nafion electrolyte in proton-exchange membrane fuel cells: a concise review. RSC Adv 2021; 11:18351-18370. [PMID: 35480954 PMCID: PMC9033471 DOI: 10.1039/d1ra00685a] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/05/2021] [Indexed: 01/21/2023] Open
Abstract
Proton-exchange membrane fuel cells (PEMFCs) have received great attention as a potential alternative energy device for internal combustion engines due to their high conversion efficiency compared to other fuel cells. The main hindrance for the wide commercial adoption of PEMFCs is the high cost, low proton conductivity, and high fuel permeability of the state-of-the-art Nafion membrane. Typically, to improve the Nafion membrane, a wide range of strategies have been developed, in which efforts on the incorporation of carbon nanomaterial (CN)-based fillers are highly imperative. Even though many research endeavors have been achieved in relation to CN-based fillers applicable for Nafion, still their collective summary has rarely been reported. This review aims to outline the mechanisms involved in proton conduction in proton-exchange membranes (PEMs) and the significant requirements of PEMs for PEMFCs. This review also emphasizes the improvements achieved in the proton conductivity, fuel barrier properties, and PEMFC performance of Nafion membranes by incorporating carbon nanotubes, graphene oxide, and fullerene as additives.
Collapse
Affiliation(s)
- Mohanraj Vinothkannan
- R&D Education Center for Whole Life Cycle R&D of Fuel Cell Systems, Jeonbuk National University Jeonju Jeollabuk-do 54896 Republic of Korea
| | - Ae Rhan Kim
- Department of Life Science, Graduate School of Department of Energy Storage/Conversion Engineering, Hydrogen and Fuel Cell Research Center, Jeonbuk National University Jeonju Jeollabuk-do 54896 Republic of Korea
| | - Dong Jin Yoo
- R&D Education Center for Whole Life Cycle R&D of Fuel Cell Systems, Jeonbuk National University Jeonju Jeollabuk-do 54896 Republic of Korea
- Department of Life Science, Graduate School of Department of Energy Storage/Conversion Engineering, Hydrogen and Fuel Cell Research Center, Jeonbuk National University Jeonju Jeollabuk-do 54896 Republic of Korea
| |
Collapse
|
9
|
Ramanujam AS, Kaleekkal NJ, Kumar PS. Preparation and characterization of proton exchange polyvinylidene fluoride membranes incorporated with sulfonated mesoporous carbon/SPEEK nanocomposite. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2464-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
10
|
Junoh H, Jaafar J, Nordin NAHM, Ismail AF, Othman MHD, Rahman MA, Aziz F, Yusof N. Performance of Polymer Electrolyte Membrane for Direct Methanol Fuel Cell Application: Perspective on Morphological Structure. MEMBRANES 2020; 10:E34. [PMID: 32106509 PMCID: PMC7142913 DOI: 10.3390/membranes10030034] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/24/2020] [Accepted: 02/10/2020] [Indexed: 01/01/2023]
Abstract
Membrane morphology plays a great role in determining the performance of polymer electrolyte membranes (PEMs), especially for direct methanol fuel cell (DMFC) applications. Membrane morphology can be divided into two types, which are dense and porous structures. Membrane fabrication methods have different configurations, including dense, thin and thick, layered, sandwiched and pore-filling membranes. All these types of membranes possess the same densely packed structural morphology, which limits the transportation of protons, even at a low methanol crossover. This paper summarizes our work on the development of PEMs with various structures and architecture that can affect the membrane's performance, in terms of microstructures and morphologies, for potential applications in DMFCs. An understanding of the transport behavior of protons and methanol within the pores' limits could give some perspective in the delivery of new porous electrolyte membranes for DMFC applications.
Collapse
Affiliation(s)
- Hazlina Junoh
- School of Chemical and Energy Engineering, Faculty of Engineering, Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, UTM Skudai 81310, Johor Bahru, Malaysia; (H.J.); (A.F.I.); (M.H.D.O.); (M.A.R.); (F.A.); (N.Y.)
| | - Juhana Jaafar
- School of Chemical and Energy Engineering, Faculty of Engineering, Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, UTM Skudai 81310, Johor Bahru, Malaysia; (H.J.); (A.F.I.); (M.H.D.O.); (M.A.R.); (F.A.); (N.Y.)
| | - Nik Abdul Hadi Md Nordin
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia;
| | - Ahmad Fauzi Ismail
- School of Chemical and Energy Engineering, Faculty of Engineering, Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, UTM Skudai 81310, Johor Bahru, Malaysia; (H.J.); (A.F.I.); (M.H.D.O.); (M.A.R.); (F.A.); (N.Y.)
| | - Mohd Hafiz Dzarfan Othman
- School of Chemical and Energy Engineering, Faculty of Engineering, Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, UTM Skudai 81310, Johor Bahru, Malaysia; (H.J.); (A.F.I.); (M.H.D.O.); (M.A.R.); (F.A.); (N.Y.)
| | - Mukhlis A. Rahman
- School of Chemical and Energy Engineering, Faculty of Engineering, Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, UTM Skudai 81310, Johor Bahru, Malaysia; (H.J.); (A.F.I.); (M.H.D.O.); (M.A.R.); (F.A.); (N.Y.)
| | - Farhana Aziz
- School of Chemical and Energy Engineering, Faculty of Engineering, Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, UTM Skudai 81310, Johor Bahru, Malaysia; (H.J.); (A.F.I.); (M.H.D.O.); (M.A.R.); (F.A.); (N.Y.)
| | - Norhaniza Yusof
- School of Chemical and Energy Engineering, Faculty of Engineering, Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, UTM Skudai 81310, Johor Bahru, Malaysia; (H.J.); (A.F.I.); (M.H.D.O.); (M.A.R.); (F.A.); (N.Y.)
| |
Collapse
|
11
|
Parthiban V, Sahu AK. Performance enhancement of direct methanol fuel cells using a methanol barrier boron nitride–Nafion hybrid membrane. NEW J CHEM 2020. [DOI: 10.1039/d0nj00433b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Sulfonated hexagonal boron nitride is explored as a potential filler to prepare Nafion hybrid membranes for direct methanol fuel cell (DMFC) applications.
Collapse
Affiliation(s)
- V. Parthiban
- CSIR-Central Electrochemical Research Institute-Madras Unit
- CSIR Madras Complex
- Taramani
- Chennai 600113
- India
| | - A. K. Sahu
- CSIR-Central Electrochemical Research Institute-Madras Unit
- CSIR Madras Complex
- Taramani
- Chennai 600113
- India
| |
Collapse
|
12
|
Sharma M, Das B, Baruah MJ, Bhattacharyya PK, Saikia L, Bania KK. Pd–NiO-Y/CNT nanofoam: a zeolite-carbon nanotube conjugate exhibiting high durability in methanol oxidation. Chem Commun (Camb) 2020; 56:375-378. [DOI: 10.1039/c9cc07211j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Pd–NiO hybridized with zeolite and multiwalled carbon nanotube appeared as highly effective electrocatalyst in methanol oxidation reaction.
Collapse
Affiliation(s)
- Mukesh Sharma
- Department of Chemical Sciences
- Tezpur University
- India
| | - Biraj Das
- Department of Chemical Sciences
- Tezpur University
- India
| | | | | | - Lakshi Saikia
- Materials Science Division
- CSIR-North East Institute of Science and Technology
- Jorhat 785006
- India
| | - Kusum K Bania
- Department of Chemical Sciences
- Tezpur University
- India
| |
Collapse
|
13
|
Shabanpanah S, Omrani A. Improved proton conductivity and methanol permeability of PVA-based proton exchange membranes using diphenylamine-4-sulfonic acid sodium salt and silica nanoparticles. POLYM-PLAST TECH MAT 2019. [DOI: 10.1080/25740881.2018.1563139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
| | - Abdollah Omrani
- Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
14
|
Rambabu G, D Bhat S, Figueiredo FML. Carbon Nanocomposite Membrane Electrolytes for Direct Methanol Fuel Cells-A Concise Review. NANOMATERIALS 2019; 9:nano9091292. [PMID: 31510023 PMCID: PMC6781041 DOI: 10.3390/nano9091292] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/31/2019] [Accepted: 09/04/2019] [Indexed: 11/16/2022]
Abstract
A membrane electrolyte that restricts the methanol cross-over while retaining proton conductivity is essential for better electrochemical selectivity in direct methanol fuel cells (DMFCs). Extensive research carried out to explore numerous blends and composites for application as polymer electrolyte membranes (PEMs) revealed promising electrochemical selectivity in DMFCs of carbon nanomaterial-based polymer composites. The present review covers important literature on different carbon nanomaterial-based PEMs reported during the last decade. The review emphasises the proton conductivity and methanol permeability of nanocomposite membranes with carbon nanotubes, graphene oxide and fullerene as additives, assessing critically the impact of each type of filler on those properties.
Collapse
Affiliation(s)
- Gutru Rambabu
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Santoshkumar D Bhat
- CSIR-Central Electrochemical Research Institute-Madras Unit, CSIR Madras Complex, Chennai 600 113, India.
| | - Filipe M L Figueiredo
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
15
|
Stenina IA, Yaroslavtsev AB. Interfaces in Materials for Hydrogen Power Engineering. MEMBRANES AND MEMBRANE TECHNOLOGIES 2019. [DOI: 10.1134/s2517751619030065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
The effect of adding sulfonated SiO2 nanoparticles and polymer blending on properties and performance of sulfonated poly ether sulfone membrane: Fabrication and optimization. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.10.197] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Shi B, Zhang J, Wu W, Wang J, Huang J. Controlling conduction environments of anion exchange membrane by functionalized SiO2 for enhanced hydroxide conductivity. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.10.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Zhang H, Hu Q, Zheng X, Yin Y, Wu H, Jiang Z. Incorporating phosphoric acid-functionalized polydopamine into Nafion polymer by in situ sol-gel method for enhanced proton conductivity. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.10.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
19
|
Nor Fadzil NFE, Abouzari-Lotf E, Jacob MV, Che Jusoh NW, Ahmad A. Surface-modified fibrous membranes for fuel cell application. E3S WEB OF CONFERENCES 2019; 90:01005. [DOI: 10.1051/e3sconf/20199001005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Low permeability layers of poly(1-vinylimidazole) were polymerised and deposited onto both sides of electrospun polyethersulfone (PES) nanofibrous sheet radiofrequency plasma. The layers not only act as an efficient fuel barrier layer but also impart high and stable proton conductivity, as well as better chemical and dimensional stabilities. Typically, the composite membrane exhibited methanol permeability as low as 33.20 x 10-8 cm2 s-1 and high through-plane proton conductivity of 52.4 mS cm-1 at 95% RH, indicating membrane selectivity of 0.675 x 108 mS.s cm-3, which is approximately 33 times greater than the selectivity of N115 under similar conditions.
Collapse
|
20
|
Parthiban V, Panda SK, Sahu AK. Highly fluorescent carbon quantum dots-Nafion as proton selective hybrid membrane for direct methanol fuel cells. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.09.193] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Che Q, Fan H, Duan X, Feng F, Mao W, Han X. Layer by layer self-assembly fabrication of high temperature proton exchange membrane based on ionic liquids and polymers. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.08.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
22
|
Molla-Abbasi P, Janghorban K, Asgari MS. A novel heteropolyacid-doped carbon nanotubes/Nafion nanocomposite membrane for high performance proton-exchange methanol fuel cell applications. IRANIAN POLYMER JOURNAL 2017. [DOI: 10.1007/s13726-017-0587-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|