1
|
Li J, Lu C, Sun J, Peng H, Li Q, Hosseini SS, Zhu Y, Sun M, Ma B. Membrane recycling and resource utilization: Latest progress and prospects. J Environ Sci (China) 2025; 156:346-359. [PMID: 40412937 DOI: 10.1016/j.jes.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 05/27/2025]
Abstract
Membrane technology has thus far played an essential role in promoting environmental sustainability through improving the quality of water. Taking into account the current growth rate of membrane products along with the market capacity, a tremendous rise in the amount of end-of-life (EoL) membranes is inevitable. In 2022, the global records of EoL membranes reached 35,000 tons. Recycling and resource utilization of EoL membranes is a viable option and hold significant promises for energy conservation and carbon neutralization. The present work provides an extensive overview of the latest progress in the field in relation with the prominent application cases. Furthermore, the avenues for the contributions of membrane recycling treatment technology within the framework of "carbon neutrality" are discussed with emphasis on permeability, pollutant interception capacity, and other relevant factors associated with the recycled membranes. This review strives to summarize the recycling and efficient utilization of EoL membranes, aiming at providing technical support to reduce operational costs and promote the low-carbon development of membrane technology.
Collapse
Affiliation(s)
- Jiahao Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaojie Lu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingqiu Sun
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Hui Peng
- Road Environment Technology Co., Ltd., Hubei 430000, China
| | - Qianqian Li
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Seyed Saeid Hosseini
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Yuzhang Zhu
- College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Meng Sun
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Baiwen Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Geng H, Zhang W, Zhao X, Shao W, Wang H. Research on Reverse Osmosis (RO)/Nanofiltration (NF) Membranes Based on Thin Film Composite (TFC) Structures: Mechanism, Recent Progress and Application. MEMBRANES 2024; 14:190. [PMID: 39330531 PMCID: PMC11434543 DOI: 10.3390/membranes14090190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024]
Abstract
The global shortage of clean water is a major problem, even in water-rich regions. To solve this problem, low-cost and energy-efficient water treatment methods are needed. Membrane separation technology (MST), as a separation method with low energy consumption, low cost, and good separation effect, has been widely used to deal with seawater desalination, resource recovery, industrial wastewater treatment, and other fields. With the continuous progress of scientific and technological innovation and the increasing demand for use, NF/RO membranes based on the TFC structure are constantly being upgraded. This paper presents the recent research progress of NF and RO membranes based on TFC structures and their applications in different fields, especially the formation mechanism and regulation of selective layer structures and the modification methods of selective layers. Our summary provides fundamental insights into the understanding of NF and RO membrane processes and hopefully triggers further thinking on the development of membrane filtration process optimization.
Collapse
Affiliation(s)
- Huibin Geng
- School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Weihao Zhang
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Xiaoxu Zhao
- School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Wei Shao
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Haitao Wang
- School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
- School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| |
Collapse
|
3
|
Swain A, Adarsh S, Biswas A, Bose S, Benicewicz BC, Kumar SK, Basu JK. Enhanced efficiency of water desalination in nanostructured thin-film membranes with polymer grafted nanoparticles. NANOSCALE 2023. [PMID: 37366152 DOI: 10.1039/d3nr00777d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Polyamide composite (PA-TFC) membranes are the state-of-the-art ubiquitous platforms to desalinate water at scale. We have developed a novel, transformative platform where the performance of such membranes is significantly and controllably improved by depositing thin films of polymethylacrylate [PMA] grafted silica nanoparticles (PGNPs) through the venerable Langmuir-Blodgett method. Our key practically important finding is that these constructs can have unprecedented selectivity values (i.e., ∼250-3000 bar-1, >99.0% salt rejection) at reduced feed water pressure (i.e., reduced cost) while maintaining acceptable water permeance A (= 2-5 L m-2 h-1 Bar-1) with as little as 5-7 PGNP layers. We also observe that the transport of solvent and solute are governed by different mechanisms, unlike gas transport, leading to independent control of A and selectivity. Since these membranes can be formulated using simple and low cost self-assembly methods, our work opens a new direction towards development of affordable, scalable water desalination methods.
Collapse
Affiliation(s)
- Aparna Swain
- Department of Physics, Indian Institute of Science Bangalore, 560012, India.
| | - S Adarsh
- Department of Physics, Indian Institute of Science Bangalore, 560012, India.
| | - Ashish Biswas
- Department of Physics, Indian Institute of Science Bangalore, 560012, India.
| | - Suryasarathi Bose
- Department of Materials Engineering, Indian Institute of Science Bangalore, 560012, Karnataka, India
| | - Brian C Benicewicz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, 29208, South Carolina, USA
| | - Sanat K Kumar
- Department of Chemical Engineering, Columbia University, New York, 10027, New York, USA
| | - J K Basu
- Department of Physics, Indian Institute of Science Bangalore, 560012, India.
| |
Collapse
|
4
|
Raval H, Jasani N, Srivastava A. Hydrophilic Surface Modification of TFC Reverse Osmosis Membrane Using Blends of Sodium Carboxymethyl Cellulose and Chitosan. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2101374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hiren Raval
- Membrane Science and Separation Technology Division, Council of Scientific & Industrial Research-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, India
| | - Niraj Jasani
- Membrane Science and Separation Technology Division, Council of Scientific & Industrial Research-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, India
| | - Ashish Srivastava
- Membrane Science and Separation Technology Division, Council of Scientific & Industrial Research-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, India
| |
Collapse
|
5
|
Liu Y, Wu H, Guo S, Cong C, Du J, Xin Z, Zhang H, Wang J, Wang Z. Is the solvent activation strategy before heat treatment applicable to all reverse osmosis membranes? J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Nulens I, Peters R, Verbeke R, Davenport DM, Van Goethem C, De Ketelaere B, Goos P, Agrawal KV, Vankelecom IF. MPD and TMC supply as parameters to describe the synthesis-morphology-performance relationship of polyamide thin film composite membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
7
|
Zheng D, Hua D, Cheng X, Pan J, Ibrahim A, Hua H, Zhang P, Cha X, Xu K, Zhan G. Polyamide Composite Membranes for Enhanced
OSN
Performance by Metal Ions Assisted Interfacial Polymerization Method. AIChE J 2022. [DOI: 10.1002/aic.17896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dayuan Zheng
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University 668 Jimei Avenue Xiamen Fujian P. R. China
| | - Dan Hua
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University 668 Jimei Avenue Xiamen Fujian P. R. China
| | - Xi Cheng
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University 668 Jimei Avenue Xiamen Fujian P. R. China
| | - Junyang Pan
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University 668 Jimei Avenue Xiamen Fujian P. R. China
| | - Abdul‐Rauf Ibrahim
- Department of Mechanical Engineering, Faculty of Engineering and Built Environment Tamale Technical University Education Ridge Avenue, Sagnarigu District Tamale Ghana
| | - Haiming Hua
- College of Energy & School of Energy Research Xiamen University Xiamen Fujian P. R. China
| | - Peng Zhang
- College of Energy & School of Energy Research Xiamen University Xiamen Fujian P. R. China
| | - Xingwen Cha
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University 668 Jimei Avenue Xiamen Fujian P. R. China
| | - Kaiji Xu
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University 668 Jimei Avenue Xiamen Fujian P. R. China
| | - Guowu Zhan
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University 668 Jimei Avenue Xiamen Fujian P. R. China
| |
Collapse
|
8
|
Rapid construction of cyclodextrin polyester layer on polyamide for preparing highly permeable reverse osmosis membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Gong C, Ren X, Zhang Z, Sun Y, Huang H. Electrocoagulation pretreatment of pulp and paper wastewater for low pressure reverse osmosis membrane fouling control. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:36897-36910. [PMID: 35064492 DOI: 10.1007/s11356-021-18045-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Low pressure reverse osmosis (LPRO) has been increasingly used in advanced treatment of pulp and paper wastewater (PPWW) for the purpose of water reuse. However, membrane fouling is a major problem encountered by full-scale RO systems due to the organic and inorganic contents of the feedwater. Electrocoagulation (EC) as an effective treatment for foulants removal can be applied in pre-filtration. Therefore, the LPRO membrane fouling mechanism and the membrane fouling control performance by EC treatment were investigated in this study. EC pretreatment could reduce the membrane fouling and improve the membrane flux by 31%, by effectively removing and/or decomposing the organic pollutants in PPWW. Fluorescent spectrometry analyses of the feedwater and the permeate revealed that humic acid-like and fulvic acid-like organics in PPWW were the major foulants for the LPRO membranes. Fourier transformation infrared spectrometry results confirmed that the organic foulants contained benzoic rings and carboxylic groups, which were typical for organic substances. EC effectively removed organic pollutants containing functional groups such as carboxylic acid COH out-of-plane bending, olefin (trans), and NH3+ symmetrical angle-changing. Moreover, the extended Derjaguin-Landau-Verwey-Overbeek model suggested that the membrane filtered 30-min EC-treated PPWW had the strong repulsion force to foulants due to the higher cohesion energy (12.1 mJ/m2) and the lower critical load, which theoretically explained the reason of EC pretreatment on membrane fouling control.
Collapse
Affiliation(s)
- Chenhao Gong
- Environmental Protection Research Institute of Light Industry, Beijing Academy of Science and Technology, No. 1 Gao Li Zhang Road, Beijing, 100095, China.
- School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing, 100875, China.
| | - Xiaojing Ren
- Environmental Protection Research Institute of Light Industry, Beijing Academy of Science and Technology, No. 1 Gao Li Zhang Road, Beijing, 100095, China
| | - Zhongguo Zhang
- Environmental Protection Research Institute of Light Industry, Beijing Academy of Science and Technology, No. 1 Gao Li Zhang Road, Beijing, 100095, China
| | - Yuwei Sun
- Environmental Protection Research Institute of Light Industry, Beijing Academy of Science and Technology, No. 1 Gao Li Zhang Road, Beijing, 100095, China
| | - Haiou Huang
- School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing, 100875, China
| |
Collapse
|
10
|
3D Printed and Conventional Membranes—A Review. Polymers (Basel) 2022; 14:polym14051023. [PMID: 35267846 PMCID: PMC8914971 DOI: 10.3390/polym14051023] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 12/15/2022] Open
Abstract
Polymer membranes are central to the proper operation of several processes used in a wide range of applications. The production of these membranes relies on processes such as phase inversion, stretching, track etching, sintering, or electrospinning. A novel and competitive strategy in membrane production is the use of additive manufacturing that enables the easier manufacture of tailored membranes. To achieve the future development of better membranes, it is necessary to compare this novel production process to that of more conventional techniques, and clarify the advantages and disadvantages. This review article compares a conventional method of manufacturing polymer membranes to additive manufacturing. A review of 3D printed membranes is also done to give researchers a reference guide. Membranes from these two approaches were compared in terms of cost, materials, structures, properties, performance. and environmental impact. Results show that very few membrane materials are used as 3D-printed membranes. Such membranes showed acceptable performance, better structures, and less environmental impact compared with those of conventional membranes.
Collapse
|
11
|
Li J, Xiao P, Xu Y, Dong L, Wang Z, Liu F, Shen J, Van der Bruggen B. Collagen Fibril-Assembled Skin-Simulated Membrane for Continuous Molecular Separation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7358-7368. [PMID: 35025208 DOI: 10.1021/acsami.1c23811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A skin-simulated thin-film-composite membrane was fabricated using a vacuum-assisted interfacial polymerization method. A negatively charged surface-selective layer on a polyacrylonitrile (PAN) substrate was cross-linked using trimesoyl chloride to form polyamide and polyester with a three-layer structure that was similar to skin. The loading of collagen fibrils assembled on the membrane surface was varied, and a selective layer was obtained, of which the thickness, morphology, and hydrophilicity can be manipulated. The optimal membrane decorated with 0.5 mg of collagen fibril had a selective layer thickness of around 130 nm with pure water permeability up to 84.7 LMH bar-1. Furthermore, the membrane exhibited impressive rejections toward dyes (Congo red with a molecular weight of 696.68 Da: 99.6%, reactive blue 19 with a molecular weight of 626.54 Da: 99.8%, and Coomassie blueG-250 with a molecular weight of 854.02 Da: 98.6%) while high permeations of Na2SO4 and NaCl were achieved. This facile strategy provides a useful guideline for constructing bionic membranes through biomaterials.
Collapse
Affiliation(s)
- Jian Li
- Laboratory of Environmental Biotechnology, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Pei Xiao
- Laboratory of Environmental Biotechnology, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Yilin Xu
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Liangliang Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zhenyu Wang
- Laboratory of Environmental Biotechnology, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Fei Liu
- State Key Laboratory of Food Science and Technology, Science Center for Future Foods, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Jiangnan Shen
- Chemical Engineering College, Zhejiang University of Technology, Hangzhou 310014, China
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven 3001, Belgium
- Faculty of Engineering and the Built Environment, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
| |
Collapse
|
12
|
Peng LE, Yang Z, Long L, Zhou S, Guo H, Tang CY. A critical review on porous substrates of TFC polyamide membranes: Mechanisms, membrane performances, and future perspectives. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119871] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Chen Y, Li Y, Li Y, Guo J, Li S, Zhang S. Nano-Interlayers Fabricated via Interfacial Azo-Coupling Polymerization: Effect of Pore Properties of Interlayers on Overall Performance of Thin-Film Composite for Nanofiltration. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59329-59340. [PMID: 34855350 DOI: 10.1021/acsami.1c19525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The supporting layer of nanofiltration membranes is critical to the overall nanofiltration performance. However, conventional supports lack efficient surface porosity, which leads to the limited utilization rate of the polyamide (PA) layer. Herein a double-skin-layer nanofiltration membrane with porous organic polymer nanointerlayers prepared via a two-step interfacial polymerization technique is presented to investigate the effect of the interlayers' pore properties on the performance of the thin-film composite. Nanometer interlayers with different pore sizes are fabricated via interfacial azo-coupling polymerization. The pore properties of the nanointerlayer extremely influence the permeance, where a suitable pore size of 4.22 nm promotes pure water permeance of up to 32.2 L m-2 h-1 bar-1, which is ∼3.8-fold greater than the membrane without an interlayer. However, an interlayer with 0.54 nm pores limits the performance (4.7 L m-2 h-1 bar-1), which is even lower than the unmodified membrane (7.5 L m-2 h-1 bar-1), because of the narrow pores and confined transport mode. However, the confined diffusion rate of amino monomers from the support to interface leads to a thinner PA layer of ∼45 nm and results in high flux. This work provides a facial route for the fabrication of interlayers and facilitate the design of high-performance membrane materials with interlayers.
Collapse
Affiliation(s)
- Yaohan Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yonggang Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Yunqi Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jing Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Shenghai Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Suobo Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
14
|
Li X, Wang Z, Han X, Liu Y, Wang C, Yan F, Wang J. Regulating the interfacial polymerization process toward high-performance polyamide thin-film composite reverse osmosis and nanofiltration membranes: A review. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119765] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
15
|
Liu Y, Wu H, Wang Z, Wang J. Regulating solvent activation by the mechanical force for the fabrication of reverse osmosis membranes with high permeability and selectivity. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Understanding the role of substrates on thin film composite membranes: A green solvent approach with TamiSolve® NxG. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119530] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Lim YJ, Goh K, Lai GS, Ng CY, Torres J, Wang R. Fast water transport through biomimetic reverse osmosis membranes embedded with peptide-attached (pR)-pillar[5]arenes water channels. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119276] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Kim SM, Hong S, Duy Nguyen BT, Nguyen Thi HY, Park SH, Kim JF. Effect of Additives during Interfacial Polymerization Reaction for Fabrication of Organic Solvent Nanofiltration (OSN) Membranes. Polymers (Basel) 2021; 13:polym13111716. [PMID: 34073893 PMCID: PMC8197207 DOI: 10.3390/polym13111716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 11/20/2022] Open
Abstract
Thin film composite (TFC) membranes is the dominant type of desalination in the field of membrane technology. Most of the TFC membranes are fabricated via interfacial polymerization (IP) technique. The ingenious chemistry of reacting acyl chlorides with diamines at the interface between two immiscible phases was first suggested by Cadotte back in the 1980s, and is still the main chemistry employed now. Researchers have made incremental improvements by incorporating various organic and inorganic additives. However, most of the TFC membrane literature are focused on improving the water desalination performance. Recently, the application spectrum of membrane technology has been expanding from the aqueous environment to harsh solvent environments, now commonly known as Organic Solvent Nanofiltration (OSN) technology. In this work, some of the main additives widely used in the desalination TFC membranes were applied to OSN TFC membranes. It was found that tributyl phosphate (TBP) can improve the solubility of diamine monomer in the organic phase, and sodium dodecyl sulfate (SDS) surfactant can effectively stabilize the IP reaction interface. Employing both TBP and SDS exhibited synergistic effect that improved the membrane permeance and rejection in solvent environments.
Collapse
Affiliation(s)
- Su-Min Kim
- Department of Energy and Chemical Engineering, Incheon National University, Incheon 22012, Korea; (S.-M.K.); (S.H.); (B.-T.D.N.); (H.-Y.N.T.)
| | - Sena Hong
- Department of Energy and Chemical Engineering, Incheon National University, Incheon 22012, Korea; (S.-M.K.); (S.H.); (B.-T.D.N.); (H.-Y.N.T.)
| | - Bao-Tran Duy Nguyen
- Department of Energy and Chemical Engineering, Incheon National University, Incheon 22012, Korea; (S.-M.K.); (S.H.); (B.-T.D.N.); (H.-Y.N.T.)
| | - Hai-Yen Nguyen Thi
- Department of Energy and Chemical Engineering, Incheon National University, Incheon 22012, Korea; (S.-M.K.); (S.H.); (B.-T.D.N.); (H.-Y.N.T.)
| | - Sang-Hee Park
- Department of Chemical Engineering, Changwon National University (CNU), Changwon 51140, Korea
- Correspondence: (S.-H.P.); (J.-F.K.)
| | - Jeong-F. Kim
- Department of Energy and Chemical Engineering, Incheon National University, Incheon 22012, Korea; (S.-M.K.); (S.H.); (B.-T.D.N.); (H.-Y.N.T.)
- Correspondence: (S.-H.P.); (J.-F.K.)
| |
Collapse
|
19
|
Liu H, Xia J, Cui K, Meng J, Zhang R, Cao B, Li P. Fabrication of high-performance pervaporation membrane for sulfuric acid recovery via interfacial polymerization. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
20
|
Lee J, Zhou F, Baek K, Kim W, Su H, Kim K, Wang R, Bae TH. Use of rigid cucurbit[6]uril mediating selective water transport as a potential remedy to improve the permselectivity and durability of reverse osmosis membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.119017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
21
|
Zhao P, Xue Y, Zhang R, Cao B, Li P. Fabrication of pervaporation desalination membranes with excellent chemical resistance for chemical washing. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118367] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
22
|
Lim YJ, Lee J, Bae TH, Torres J, Wang R. Feasibility and performance of a thin-film composite seawater reverse osmosis membrane fabricated on a highly porous microstructured support. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118407] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
Aghajani M, Greenberg AR, Ding Y. Thin film composite membranes: Does the porous support truly have negligible resistance? J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Liu Y, Yan W, Wang Z, Wang H, Zhao S, Wang J, Zhang P, Cao X. 1-methylimidazole as a novel additive for reverse osmosis membrane with high flux-rejection combinations and good stability. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117830] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Tailoring the internal void structure of polyamide films to achieve highly permeable reverse osmosis membranes for water desalination. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117518] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
|
27
|
Shi M, Yan W, Zhou Y, Wang Z, Liu L, Zhao S, Ji Y, Wang J, Gao C, Zhang P, Cao X. Combining tannic acid-modified support and a green co-solvent for high performance reverse osmosis membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117474] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Performance improvement for thin-film composite nanofiltration membranes prepared on PSf/PSf-g-PEG blended substrates. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.115855] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Yang Z, Guo H, Tang CY. The upper bound of thin-film composite (TFC) polyamide membranes for desalination. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117297] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
30
|
|
31
|
Lee J, Wang R, Bae TH. A comprehensive understanding of co-solvent effects on interfacial polymerization: Interaction with trimesoyl chloride. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.038] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Confined nanobubbles shape the surface roughness structures of thin film composite polyamide desalination membranes. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.027] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
33
|
Amino-modified hollow mesoporous silica nanospheres-incorporated reverse osmosis membrane with high performance. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.03.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
34
|
Li X, Li Q, Fang W, Wang R, Krantz WB. Effects of the support on the characteristics and permselectivity of thin film composite membranes. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.03.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
35
|
Jalali S, Mehrabadi AR, Shayegan J, Mirabi M, Madaeni SS. Flux enhancement of thin-film composite membrane by graphene oxide incorporation. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2019; 17:377-382. [PMID: 31321052 PMCID: PMC6582036 DOI: 10.1007/s40201-019-00355-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/08/2019] [Indexed: 06/10/2023]
Abstract
Reverse Osmosis (RO) is a rapid-developing desalination technology; however, it suffers from inefficient energy consumption. To reduce energy consumption, in this study, reverse osmosis thin-film composite membrane (TFC) module was prepared and composed of m-phenylenediamine (MPD), graphene oxide, and 1,3,5-benzenetricarbonyl chloride (TMC) by interfacial polymerization on the surface of a polysulfone substrate. The graphene oxide was embedded in the mentioned thin-film composite by adding it to MPD aqueous solution to enhance permeation flux and, thus, reduce energy consumption. This study assessed the performance of the membrane using a lab-scale RO setup and evaluated permeability and salt rejection. The chemical properties of TFC were also analyzed using ATR-FTIR. Incorporating various concentrations (0, 20, 40, 60, and 80 ppm) of graphene oxide into the TFC was shown to improve water flux. Flux improvement of 50% was achieved by using graphene (80 ppm), while 10% of salt rejection was lost. These flux increases resulted from the changes in surface charge, surface roughness, and hydrophilicity due to the embedment of GO nanosheets. The simplicity of the method, compatibility of GO with polyamide membrane, and quite short-time reaction are the highlights of this technique for developing novel TFC membranes for water treatment.
Collapse
Affiliation(s)
- Sajjad Jalali
- Department of Civil, Water and Environmental Engineering, Shahid Beheshti University, Tehran, Iran
| | | | - Jalal Shayegan
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Maryam Mirabi
- Department of Civil, Water and Environmental Engineering, Shahid Beheshti University, Tehran, Iran
| | | |
Collapse
|
36
|
Yan W, Wang Z, Zhao S, Wang J, Zhang P, Cao X. Combining co-solvent-optimized interfacial polymerization and protective coating-controlled chlorination for highly permeable reverse osmosis membranes with high rejection. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.10.084] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Xiang J, Hua X, Dong X, Cheng P, Zhang L, Du W, Tang N. Effect of nonsolvent additives on PES ultrafiltration membrane pore structure. J Appl Polym Sci 2019. [DOI: 10.1002/app.47525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Jun Xiang
- College of Chemical Engineering and Materials Science; Tianjin University of Science & Technology; Tianjin 300457 People's Republic of China
- Tianjin Key Laboratory of Marine Resources and Chemistry; Tianjin University of Science & Technology; Tianjin 300457 People's Republic of China
| | - Xinxin Hua
- College of Chemical Engineering and Materials Science; Tianjin University of Science & Technology; Tianjin 300457 People's Republic of China
- Tianjin Key Laboratory of Marine Resources and Chemistry; Tianjin University of Science & Technology; Tianjin 300457 People's Republic of China
| | - Xingfeng Dong
- College of Chemical Engineering and Materials Science; Tianjin University of Science & Technology; Tianjin 300457 People's Republic of China
- Tianjin Key Laboratory of Marine Resources and Chemistry; Tianjin University of Science & Technology; Tianjin 300457 People's Republic of China
| | - Penggao Cheng
- College of Chemical Engineering and Materials Science; Tianjin University of Science & Technology; Tianjin 300457 People's Republic of China
- Tianjin Key Laboratory of Marine Resources and Chemistry; Tianjin University of Science & Technology; Tianjin 300457 People's Republic of China
| | - Lei Zhang
- College of Chemical Engineering and Materials Science; Tianjin University of Science & Technology; Tianjin 300457 People's Republic of China
- Tianjin Key Laboratory of Marine Resources and Chemistry; Tianjin University of Science & Technology; Tianjin 300457 People's Republic of China
| | - Wei Du
- College of Chemical Engineering and Materials Science; Tianjin University of Science & Technology; Tianjin 300457 People's Republic of China
- Tianjin Key Laboratory of Marine Resources and Chemistry; Tianjin University of Science & Technology; Tianjin 300457 People's Republic of China
| | - Na Tang
- College of Chemical Engineering and Materials Science; Tianjin University of Science & Technology; Tianjin 300457 People's Republic of China
- Tianjin Key Laboratory of Marine Resources and Chemistry; Tianjin University of Science & Technology; Tianjin 300457 People's Republic of China
| |
Collapse
|
38
|
Otitoju T, Saari R, Ahmad A. Progress in the modification of reverse osmosis (RO) membranes for enhanced performance. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.07.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
39
|
Rezania J, Vatanpour V, Shockravi A, Ehsani M. Preparation of novel carboxylated thin-film composite polyamide-polyester nanofiltration membranes with enhanced antifouling property and water flux. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.07.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Wang J, Xu R, Yang F, Kang J, Cao Y, Xiang M. Probing influences of support layer on the morphology of polyamide selective layer of thin film composite membrane. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.04.011] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
41
|
Shi M, Wang Z, Zhao S, Wang J, Zhang P, Cao X. A novel pathway for high performance RO membrane: Preparing active layer with decreased thickness and enhanced compactness by incorporating tannic acid into the support. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.03.025] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
42
|
Bi R, Zhang Q, Zhang R, Su Y, Jiang Z. Thin film nanocomposite membranes incorporated with graphene quantum dots for high flux and antifouling property. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.02.010] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Aghajani M, Wang M, Cox LM, Killgore JP, Greenberg AR, Ding Y. Influence of support-layer deformation on the intrinsic resistance of thin film composite membranes. J Memb Sci 2018; 567:10.1016/j.memsci.2018.09.031. [PMID: 30983687 PMCID: PMC6459622 DOI: 10.1016/j.memsci.2018.09.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
It is commonly believed that the overall permeation resistance of thin film composite (TFC) membranes is dictated by the crosslinked, ultrathin polyamide barrier layer, while the porous support merely serves as the mechanical support. Although this assumption might be the case under low transmembrane pressure, it becomes questionable under high transmembrane pressure. A highly porous support normally yields under a pressure of a few MPa, which can result in a significant level of compressive strain that may significantly increase the resistance to permeation. However, quantifying the influence of porous support deformation on the overall resistance of the TFC membrane is challenging. In particular, it is difficult to determine the deformation/strain of the membrane during active separation. In this study, we use nanoimprint lithography (NIL) to achieve precise compressive deformation in commercial TFC membranes. By adjusting the NIL conditions, membranes were compressed to strain levels up to 60%. SEM and AFM measurements showed that the compression had minimal impact on the barrier-layer surface morphology and total surface area with most of the deformation occurring in the support layer. DI water permeation measurements revealed that the water flux reduction decreases with an increase of strain level. Most significantly, the intrinsic membrane resistance showed negligible changes at strain levels lower than 30%-40%, but increased exponentially at higher strain levels, reaching 250%-500% of pristine (unstrained) membrane values. Using a resistance-in-series model, the strain dependency of the TFC membrane resistance can be described.
Collapse
Affiliation(s)
- Masoud Aghajani
- Membrane Science, Engineering and Technology Center, Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309-0427, USA
| | - Mengyuan Wang
- Materials Science and Engineering Program, University of Colorado, Boulder, CO 80309-0596, USA
| | - Lewis M. Cox
- Applied Chemicals and Materials Division, National Institute of Standards and Technology (NIST), Boulder, CO 80305, USA
| | - Jason P. Killgore
- Applied Chemicals and Materials Division, National Institute of Standards and Technology (NIST), Boulder, CO 80305, USA
| | - Alan R. Greenberg
- Membrane Science, Engineering and Technology Center, Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309-0427, USA
| | - Yifu Ding
- Membrane Science, Engineering and Technology Center, Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309-0427, USA
- Materials Science and Engineering Program, University of Colorado, Boulder, CO 80309-0596, USA
| |
Collapse
|
44
|
Ma D, Han G, Peh SB, Chen SB. Water-Stable Metal–Organic Framework UiO-66 for Performance Enhancement of Forward Osmosis Membranes. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b03278] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dangchen Ma
- Department of Chemical and
Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Gang Han
- Department of Chemical and
Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Shing Bo Peh
- Department of Chemical and
Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Shing Bor Chen
- Department of Chemical and
Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| |
Collapse
|