1
|
Zhang Z, Fan K, Liu Y, Xia S. A review on polyester and polyester-amide thin film composite nanofiltration membranes: Synthesis, characteristics and applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159922. [PMID: 36336064 DOI: 10.1016/j.scitotenv.2022.159922] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/12/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Nanofiltration (NF) membranes have been widely used in various fields including water treatment and other separation processes, while conventional thin film composite (TFC) membranes with polyamide (PA) selective layers suffer the problems of fouling and chlorine intolerance. Due to the abundant hydrophilic hydroxyl groups and ester bonds free from chlorine attack, the TFC membranes composed of polyester (PE) or polyester-amide (PEA) selective layers have been proven to possess enhanced anti-fouling properties and superior chlorine resistance. In this review, the research progress of PE and PEA nanofiltration membranes is systematically summarized according to the variety of hydroxyl-containing monomers for membrane fabrication by the interfacial polymerization (IP) reaction. The synthesis strategies as well as the mechanisms for tailoring properties and performance of PE and PEA membranes are analyzed, and the membrane application advantages are demonstrated. Moreover, current challenges and future perspectives of the development of PE and PEA nanofiltration membranes are proposed. This review can offer guidance for designing high-performance PE and PEA membranes, thereby further promoting the efficacy of nanofiltration.
Collapse
Affiliation(s)
- Ziyan Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, China
| | - Kaiming Fan
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, China
| | - Yanling Liu
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, China.
| | - Shengji Xia
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, China.
| |
Collapse
|
2
|
Li S, Zhang R, Yao Q, Su B, Han L, Gao C. High flux thin film composite (TFC) membrane with non-planar rigid twisted structures for organic solvent nanofiltration (OSN). Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120496] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Thin-film composite nanofiltration membrane with unprecedented stability in strong acid for highly selective dye/NaCl separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Electrosprayed polyamide nanofiltration membrane with uniform and tunable pores for sub-nm precision molecule separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120131] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Wang K, Wang X, Januszewski B, Liu Y, Li D, Fu R, Elimelech M, Huang X. Tailored design of nanofiltration membranes for water treatment based on synthesis-property-performance relationships. Chem Soc Rev 2021; 51:672-719. [PMID: 34932047 DOI: 10.1039/d0cs01599g] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tailored design of high-performance nanofiltration (NF) membranes is desirable because the requirements for membrane performance, particularly ion/salt rejection and selectivity, differ among the various applications of NF technology ranging from drinking water production to resource mining. However, this customization greatly relies on a comprehensive understanding of the influence of membrane fabrication methods and conditions on membrane properties and the relationships between the membrane structural and physicochemical properties and membrane performance. Since the inception of NF, much progress has been made in forming the foundation of tailored design of NF membranes and the underlying governing principles. This progress includes theories regarding NF mass transfer and solute rejection, further exploitation of the classical interfacial polymerization technique, and development of novel materials and membrane fabrication methods. In this critical review, we first summarize the progress made in controllable design of NF membrane properties in recent years from the perspective of optimizing interfacial polymerization techniques and adopting new manufacturing processes and materials. We then discuss the property-performance relationships based on solvent/solute mass transfer theories and mathematical models, and draw conclusions on membrane structural and physicochemical parameter regulation by modifying the fabrication process to improve membrane separation performance. Next, existing and potential applications of these NF membranes in water treatment processes are systematically discussed according to the different separation requirements. Finally, we point out the prospects and challenges of tailored design of NF membranes for water treatment applications. This review bridges the long-existing gaps between the pressing demand for suitable NF membranes from the industrial community and the surge of publications by the scientific community in recent years.
Collapse
Affiliation(s)
- Kunpeng Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China.
| | - Xiaomao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China.
| | - Brielle Januszewski
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
| | - Yanling Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China. .,State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Danyang Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China.
| | - Ruoyu Fu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China.
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China.
| |
Collapse
|
6
|
Yang S, Tian H, Hill MR, Zhang K. Effect and regulation mechanism of oxidation degrees on the O–MoS2 structure and separation performance of nanofiltration membrane. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Zhan ZM, Zhang X, Fang YX, Tang YJ, Zhu KK, Ma XH, Xu ZL. Polyamide Nanofiltration Membranes with Enhanced Desalination and Antifouling Performance Enabled by Surface Grafting Polyquaternium-7. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Zi-Ming Zhan
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xin Zhang
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yin-Xin Fang
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yong-Jian Tang
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ka-Ke Zhu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiao-Hua Ma
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhen-Liang Xu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
8
|
Farahbakhsh J, Vatanpour V, Khoshnam M, Zargar M. Recent advancements in the application of new monomers and membrane modification techniques for the fabrication of thin film composite membranes: A review. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.105015] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Alginate Hydrogel Assisted Controllable Interfacial Polymerization for High-Performance Nanofiltration Membranes. MEMBRANES 2021; 11:membranes11060435. [PMID: 34200579 PMCID: PMC8228237 DOI: 10.3390/membranes11060435] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 11/20/2022]
Abstract
The deepening crisis of freshwater resources has been driving the further development of new types of membrane-based desalination technologies represented by nanofiltration membranes. Solving the existing trade-off limitation on enhancing the water permeance and the rejection of salts is currently one of the most concerned research interests. Here, a facile and scalable approach is proposed to tune the interfacial polymerization by constructing a calcium alginate hydrogel layer on the porous substrates. The evenly coated thin hydrogel layer can not only store amine monomers like the aqueous phase but also suppress the diffusion of amine monomers inside, as well as provide a flat and stable interface to implement the interfacial polymerization. The resultant polyamide nanofilms have a relatively smooth morphology, negatively charged surface, and reduced thickness which facilitate a fast water permeation while maintaining rejection efficiency. As a result, the as-prepared composite membranes show improved water permeance (~30 Lm−2h−1bar−1) and comparable rejection of Na2SO4 (>97%) in practical applications. It is proved to be a feasible approach to manufacturing high-performance nanofiltration membranes with the assist of alginate hydrogel regulating interfacial polymerization.
Collapse
|
10
|
Mu T, Zhang HZ, Sun JY, Xu ZL. Three-channel capillary nanofiltration membrane with quaternary ammonium incorporated for efficient heavy metals removal. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117133] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Zhao C, Zhang T, Hu G, Ma J, Song R, Li J. Efficient removal of perfluorooctane sulphonate by nanofiltration: Insights into the effect and mechanism of coexisting inorganic ions and humic acid. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118176] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Polyethyleneimine modified carbohydrate doped thin film composite nanofiltration membrane for purification of drinking water. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118220] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
13
|
Binaphthalene-based polymer membranes with enhanced performance for solvent-resistant nanofiltration. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118066] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Yang S, Jiang Q, Zhang K. Few-layers 2D O–MoS2 TFN nanofiltration membranes for future desalination. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118052] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
15
|
Song X, Wang Y, Jiao C, Huang M, Wang GH, Jiang H. Microstructure regulation of polyamide nanocomposite membrane by functional mesoporous polymer for high-efficiency desalination. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117783] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Ren D, Jin YT, Liu TY, Wang X. Phenanthroline-Based Polyarylate Porous Membranes with Rapid Water Transport for Metal Cation Separation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:7605-7616. [PMID: 31968159 DOI: 10.1021/acsami.9b22086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The selective separation of ions in terms of extremely similar size and properties remains an important challenge in water purification. We innovated a kind of porous nanofilm via interfacial polymerization using rigid heterocyclic ligands to achieve high valent cation selectivity and rapid water/ion transport. The interconnected microporosity and uniformly distributed cation-affinitive sites of the ultrathin membranes enabled water permeation (7.5 L m-2 h-1 bar-1), ion permeance of Na+ (1.5 mol m-2 h-1 bar-1), and Mg2+/Na+ permselectivity (2.1) during nanofiltration. The forward osmosis exhibited a prominent water flux of 95 LMH at 1 M NaCl draw solution, which expanded various applications. The polyarylate membranes comprising 4,7-diphenyl-1,10-phenanthroline showed a higher water permeation and ion selectivity than the planar monomers, e.g., resorcinol. A distinct fluorescence responsiveness existed between membranes and cations for the interaction characterization. Host-guest nuclear magnetic resonance (NMR) spectroscopy and solid-state nuclear magnetic resonance spectroscopy characterized the preferential affinitive of divalent/high-valent cations in the interconnected microporous powders; an ultraviolet spectrophotometer characterized the light responsiveness of the porous nanofilms. Such an active membrane has potential applications in selective separation and adsorption of cations, photocatalytic materials, photosensors, and other fields.
Collapse
Affiliation(s)
- Dan Ren
- Department of Chemical Engineering , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Yu-Tao Jin
- Department of Chemical Engineering , Tsinghua University , Beijing 100084 , People's Republic of China
- Beijing Scinor Membrane Technology Co., Ltd. , Beijing 100083 , People's Republic of China
| | - Tian-Yin Liu
- Department of Chemical Engineering , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Xiaolin Wang
- Department of Chemical Engineering , Tsinghua University , Beijing 100084 , People's Republic of China
| |
Collapse
|
17
|
Wu D, Zhang X, Chen Y, Yu S, Zhao H. Thin film composite polyesteramide nanofiltration membranes fabricated from carboxylated chitosan and trimesoyl chloride. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-019-0426-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Yang Z, Guo H, Tang CY. The upper bound of thin-film composite (TFC) polyamide membranes for desalination. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117297] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Tang YJ, Shen BJ, Huang BQ, Zhan ZM, Xu ZL. High permselectivity thin-film composite nanofiltration membranes with 3D microstructure fabricated by incorporation of beta cyclodextrin. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.115718] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Amino-functionalized graphene quantum dots (aGQDs)-embedded thin film nanocomposites for solvent resistant nanofiltration (SRNF) membranes based on covalence interactions. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117212] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
High-performance polyamide/ceramic hollow fiber TFC membranes with TiO2 interlayer for pervaporation dehydration of isopropanol solution. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.01.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Huang B, Ding H, Xu Z, Tang Y. Novel thin‐film composite nanofiltration membranes fabricated via the incorporation of ssDNA for highly efficient desalination. J Appl Polym Sci 2018. [DOI: 10.1002/app.47102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- B.‐Q. Huang
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research CenterEast China University of Science and Technology, 130 Meilong Road Shanghai 200237 China
| | - H. Ding
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research CenterEast China University of Science and Technology, 130 Meilong Road Shanghai 200237 China
| | - Z.‐L. Xu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research CenterEast China University of Science and Technology, 130 Meilong Road Shanghai 200237 China
| | - Y.‐J. Tang
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research CenterEast China University of Science and Technology, 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
23
|
Yang Z, Zhou ZW, Guo H, Yao Z, Ma XH, Song X, Feng SP, Tang CY. Tannic Acid/Fe 3+ Nanoscaffold for Interfacial Polymerization: Toward Enhanced Nanofiltration Performance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:9341-9349. [PMID: 30043615 DOI: 10.1021/acs.est.8b02425] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Conventional thin-film composite (TFC) membranes suffer from the trade-off relationship between permeability and selectivity, known as the "upper bound". In this work, we report a high performance thin-film composite membrane prepared on a tannic acid (TA)-Fe nanoscaffold (TFCn) to overcome such upper bound. Specifically, a TA-Fe nanoscaffold was first coated onto a polysulfone substrate, followed by performing an interfacial polymerization reaction between trimesoyl chloride (TMC) and piperazine (PIP). The TA-Fe nanoscaffold enhanced the uptake of amine monomers and provided a platform for their controlled release. The smaller surface pore size of the TA-Fe coated substrate further eliminated the intrusion of polyamide into the substrate pores. The resulting membrane TFCn showed a water permeability of 19.6 ± 0.5 L m2- h-1 bar-1, which was an order of magnitude higher than that of control TFC membrane (2.2 ± 0.3 L m-2 h-1 bar-1). The formation of a more order polyamide rejection layer also significantly enhanced salt rejection (e.g., NaCl, MgCl2, Na2SO4, and MgSO4) and divalent to monovalent ion selectivity (e.g., NaCl/MgSO4). Compared to conventional TFC nanofiltration membranes, the novel TFCn membrane successfully overcame the longstanding permeability and selectivity trade-off. The current work paves a new avenue for fabricating high performance TFC membranes.
Collapse
Affiliation(s)
- Zhe Yang
- Department of Civil Engineering , The University of Hong Kong , Pokfulam , Hong Kong
| | - Zhi-Wen Zhou
- Department of Mechanical Engineering , The University of Hong Kong , Pokfulam , Hong Kong
| | - Hao Guo
- Department of Civil Engineering , The University of Hong Kong , Pokfulam , Hong Kong
| | - Zhikan Yao
- Department of Civil Engineering , The University of Hong Kong , Pokfulam , Hong Kong
| | - Xiao-Hua Ma
- Department of Civil Engineering , The University of Hong Kong , Pokfulam , Hong Kong
- School of Chemical Engineering , East China University of Science and Technology , Mei Long Road 130 , Shanghai 200237 , P. R. China
| | - Xiaoxiao Song
- Centre for Membrane and Water Science & Technology, Ocean College , Zhejiang University of Technology , Hangzhou 310014 , P. R. China
| | - Shien-Ping Feng
- Department of Mechanical Engineering , The University of Hong Kong , Pokfulam , Hong Kong
| | - Chuyang Y Tang
- Department of Civil Engineering , The University of Hong Kong , Pokfulam , Hong Kong
| |
Collapse
|
24
|
Tang YJ, Ding H, Xu ZL, Huang BQ. High-performance composite nanofiltration membranes fabricated via ternary mixture: Complementary preponderance of the fluorine-containing monomer 2,2′-bis(1-hydroxyl-1-trifluoromethyl-2,2,2-triflutoethyl)-4,4′-methylene dianiline and the rigid monomer bi. J Appl Polym Sci 2018. [DOI: 10.1002/app.46482] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yong-Jian Tang
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Laboratory, Chemical Engineering Research Center; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 China
| | - Hao Ding
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Laboratory, Chemical Engineering Research Center; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 China
| | - Zhen-Liang Xu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Laboratory, Chemical Engineering Research Center; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 China
| | - Ben-Qing Huang
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Laboratory, Chemical Engineering Research Center; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
25
|
Huang BQ, Xu ZL, Ding H, Miao MC, Tang YJ. Antifouling sulfonated polyamide nanofiltration hollow fiber membrane prepared with mixed diamine monomers of BDSA and PIP. RSC Adv 2017. [DOI: 10.1039/c7ra11632b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel high-flux sulfonated polyamide nanofiltration (NF) hollow fiber membrane was made from the mixed monomers of 2,2′-benzidinedisulfonic acid (BDSA) and piperazine (PIP).
Collapse
Affiliation(s)
- Ben-Qing Huang
- State Key Laboratory of Chemical Engineering
- Membrane Science and Engineering R&D Lab
- Chemical Engineering Research Center
- East China University of Science and Technology
- Shanghai 200237
| | - Zhen-Liang Xu
- State Key Laboratory of Chemical Engineering
- Membrane Science and Engineering R&D Lab
- Chemical Engineering Research Center
- East China University of Science and Technology
- Shanghai 200237
| | - Hao Ding
- State Key Laboratory of Chemical Engineering
- Membrane Science and Engineering R&D Lab
- Chemical Engineering Research Center
- East China University of Science and Technology
- Shanghai 200237
| | - Ming-Che Miao
- Jiangsu Zhenjiang Research Institute of Building Science Group CO., LTD
- ZhenJiang 212000
- China
| | - Yong-Jian Tang
- State Key Laboratory of Chemical Engineering
- Membrane Science and Engineering R&D Lab
- Chemical Engineering Research Center
- East China University of Science and Technology
- Shanghai 200237
| |
Collapse
|