1
|
Xue B, Zhu MZ, Fu SQ, Huang PP, Qian H, Liu PN. Facile synthesis of sulfonated poly(phenyl-alkane)s for proton exchange membrane fuel cells. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
2
|
Xu J, Chen X, Ju M, Ren J, Zhao P, Meng L, Lei J, Shi Q, Wang Z. Sulfonated poly (ether ketone sulfone) composite membranes containing ZIF-67 coordinate graphene oxide showing high proton conductivity and improved physicochemical properties. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
3
|
Chen X, Xiao L, Qiu XS, Chen KC. Properties of Multiblock Sulfonated Poly(arylene ether sulfone)s Synthesized by Precise Controllable Post-sulfonation for Proton Exchange Membranes. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2713-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Liu Q, Li X, Zhang S, Wang Z, Chen Y, Zhou S, Wang C, Wu K, Liu J, Mao Q, Jian X. Novel sulfonated N-heterocyclic poly(aryl ether ketone ketone)s with pendant phenyl groups for proton exchange membrane performing enhanced oxidative stability and excellent fuel cell properties. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119926] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Ahn SM, Kim TH, Yuk J, Jeong HY, Yu DM, Hong SK, Hong YT, Lee JC, Kim TH. Perfluorocyclobutyl-containing multiblock copolymers to induce enhanced hydrophilic/hydrophobic phase separation and high proton conductivity at low humidity. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Highly porous single ion conducting membrane via a facile combined “structural self-assembly” and in-situ polymerization process for high performance lithium metal batteries. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Ryu SK, Kim AR, Vinothkannan M, Lee KH, Chu JY, Yoo DJ. Enhancing Physicochemical Properties and Single Cell Performance of Sulfonated Poly(arylene ether) (SPAE) Membrane by Incorporation of Phosphotungstic Acid and Graphene Oxide: A Potential Electrolyte for Proton Exchange Membrane Fuel Cells. Polymers (Basel) 2021; 13:polym13142364. [PMID: 34301122 PMCID: PMC8309513 DOI: 10.3390/polym13142364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022] Open
Abstract
The development of potential and novel proton exchange membranes (PEMs) is imperative for the further commercialization of PEM fuel cells (PEMFCs). In this work, phosphotungstic acid (PWA) and graphene oxide (GO) were integrated into sulfonated poly(arylene ether) (SPAE) through a solution casting approach to create a potential composite membrane for PEMFC applications. Thermal stability of membranes was observed using thermogravimetric analysis (TGA), and the SPAE/GO/PWA membranes exhibited high thermal stability compared to pristine SPAE membranes, owing to the interaction between SPAEK, GO, and PWA. By using a scanning electron microscope (SEM) and atomic force microscope (AFM), we observed that GO and PWA were evenly distributed throughout the SPAE matrix. The SPAE/GO/PWA composite membrane comprising 0.7 wt% GO and 36 wt% PWA exhibited a maximum proton conductivity of 186.3 mS cm-1 at 90 °C under 100% relative humidity (RH). As a result, SPAE/GO/PWA composite membrane exhibited 193.3 mW cm-2 of the maximum power density at 70 °C under 100% RH in PEMFCs.
Collapse
Affiliation(s)
- Sung Kwan Ryu
- Department of Energy Storage/Conversion Engineering of Graduate School (BK21 FOUR), Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju 54896, Jeollabuk-do, Korea;
| | - Ae Rhan Kim
- Department of Energy Storage/Conversion Engineering of Graduate School (BK21 FOUR), Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju 54896, Jeollabuk-do, Korea;
- Department of Life Science, Jeonbuk National University, Jeonju 54896, Jeollabuk-do, Korea; (K.H.L.); (J.Y.C.)
- Correspondence: (A.R.K.); (D.J.Y.)
| | - Mohanraj Vinothkannan
- R&D Education Center for Whole Life Cycle R&D of Fuel Cell Systems, Jeonbuk National University, Jeonju 54896, Jeollabuk-do, Korea;
| | - Kyu Ha Lee
- Department of Life Science, Jeonbuk National University, Jeonju 54896, Jeollabuk-do, Korea; (K.H.L.); (J.Y.C.)
| | - Ji Young Chu
- Department of Life Science, Jeonbuk National University, Jeonju 54896, Jeollabuk-do, Korea; (K.H.L.); (J.Y.C.)
| | - Dong Jin Yoo
- Department of Energy Storage/Conversion Engineering of Graduate School (BK21 FOUR), Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju 54896, Jeollabuk-do, Korea;
- Department of Life Science, Jeonbuk National University, Jeonju 54896, Jeollabuk-do, Korea; (K.H.L.); (J.Y.C.)
- R&D Education Center for Whole Life Cycle R&D of Fuel Cell Systems, Jeonbuk National University, Jeonju 54896, Jeollabuk-do, Korea;
- Correspondence: (A.R.K.); (D.J.Y.)
| |
Collapse
|
8
|
Rowlett JR, Shaver AT, Mecham S, Riffle JS, McGrath JE. Membrane properties of trisulfonated hydrophilic and partially fluorinated hydrophobic multiblock copolymer. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Yuan D, Qin Y, Li S, Du S, Xu Y, Weng Q, Chen P, Chen X, An Z. Enhanced performance of proton-conducting poly(arylene ether sulfone)s via multiple alkylsulfonated side-chains and block copolymer structures. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118932] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Ureña N, Pérez-Prior MT, Levenfeld B, García-Salaberri PA. On the Conductivity of Proton-Exchange Membranes Based on Multiblock Copolymers of Sulfonated Polysulfone and Polyphenylsulfone: An Experimental and Modeling Study. Polymers (Basel) 2021; 13:363. [PMID: 33498770 PMCID: PMC7865426 DOI: 10.3390/polym13030363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 12/26/2022] Open
Abstract
The effect of relative humidity (RH) and degree of sulfonation (DS) on the ionic conductivity and water uptake of proton-exchange membranes based on sulfonated multiblock copolymers composed of polysulfone (PSU) and polyphenylsulfone (PPSU) is examined experimentally and numerically. Three membranes with a different DS and ion-exchange capacity are analyzed. The heterogeneous structure of the membranes shows a random distribution of sulfonated (hydrophilic) and non-sulfonated (hydrophobic) domains, whose proton conductivity is modeled based on percolation theory. The mesoscopic model solves simplified Nernst-Planck and charge conservation equations on a random cubic network. Good agreement is found between the measured ionic conductivity and water uptake and the model predictions. The ionic conductivity increases with RH due to both the growth of the hydrated volume available for conduction and the decrease of the tortuosity of ionic transport pathways. Moreover, the results show that the ionic conductivity increases nonlinearly with DS, experiencing a strong rise when the DS is varied from 0.45 to 0.70, even though the water uptake of the membranes remains nearly the same. In contrast, the increase of the ionic conductivity between DS=0.70 and DS=0.79 is significantly lower, but the water uptake increases sharply. This is explained by the lack of microphase separation of both copolymer blocks when the DS is exceedingly high. Encouragingly, the copolymer membranes demonstrate a similar performance to Nafion under well hydrated conditions, which can be further optimized by a combination of numerical modeling and experimental characterization to develop new-generation membranes with better properties.
Collapse
Affiliation(s)
- Nieves Ureña
- Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Química, IAAB, Universidad Carlos III de Madrid, 28911 Leganés, Spain; (N.U.); (M.T.P.-P.); (B.L.)
| | - M. Teresa Pérez-Prior
- Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Química, IAAB, Universidad Carlos III de Madrid, 28911 Leganés, Spain; (N.U.); (M.T.P.-P.); (B.L.)
| | - Belén Levenfeld
- Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Química, IAAB, Universidad Carlos III de Madrid, 28911 Leganés, Spain; (N.U.); (M.T.P.-P.); (B.L.)
| | - Pablo A. García-Salaberri
- Departamento de Ingeniería Térmica y de Fluidos, Universidad Carlos III de Madrid, 28911 Leganés, Spain
| |
Collapse
|
11
|
Hoshikawa N, Shinohara A, Hosokawa Y, Hasegawa N, Kawasumi M. Synthesis and Properties of Fluorocarbon-Hydrocarbon Hybrid Block Copolymers with Perfluorosulfonimide Acid. ACS OMEGA 2020; 5:27766-27773. [PMID: 33163759 PMCID: PMC7643075 DOI: 10.1021/acsomega.0c01972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
Novel fluorocarbon-hydrocarbon hybrid block copolymer electrolytes were synthesized. The block copolymer electrolytes consist of poly(perfluoropropyl sulfonimide) (PC3SI) as a perfluorinated hydrophilic segment and poly(ether ether sulfone) as a hydrocarbon hydrophobic segment. The sulfonimide group of poly(perfluoropropyl sulfonimide) has superacidity, very low equivalent weight (EW = 293 g/equiv), and a proton conductivity of 1.2 × 10-2 S/cm under dry conditions and 25 °C, although soluble in water. The proton conductivity of the block copolymer was 1.7 × 10-3 S/cm at 20% relative humidity and 25 °C, which is three times as high as that of Nafion 112.
Collapse
|
12
|
Xiao L, Chen X, Xu J, Chen K, Fang J. Synthesis and Properties of Novel Side‐Chain Sulfonated Poly(Arylene Ether Sulfone)s for Proton Exchange Membranes. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/pola.29533] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Lei Xiao
- School of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 China
| | - Xing Chen
- School of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 China
| | - Jingjing Xu
- School of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 China
| | - Kangcheng Chen
- School of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 China
| | - Jianhua Fang
- School of Chemistry and Chemical EngineeringShanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
13
|
Chu JY, Lee KH, Kim AR, Yoo DJ. Improved Physicochemical Stability and High Ion Transportation of Poly(Arylene Ether Sulfone) Blocks Containing a Fluorinated Hydrophobic Part for Anion Exchange Membrane Applications. Polymers (Basel) 2018; 10:E1400. [PMID: 30961325 PMCID: PMC6401760 DOI: 10.3390/polym10121400] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/13/2018] [Accepted: 12/15/2018] [Indexed: 12/01/2022] Open
Abstract
A series of anion exchange membranes composed of partially fluorinated poly(arylene ether sulfone)s (PAESs) multiblock copolymers bearing quaternary ammonium groups were synthesized with controlled lengths of the hydrophilic precursor and hydrophobic oligomer via direct polycondensation. The chloromethylation and quaternization proceeded well by optimizing the reaction conditions to improve hydroxide conductivity and physical stability, and the fabricated membranes were very flexible and transparent. Atomic force microscope images of quaternized PAES (QN-PAES) membranes showed excellent hydrophilic/hydrophobic phase separation and distinct ion transition channels. An extended architecture of phase separation was observed by increasing the hydrophilic oligomer length, which resulted in significant improvements in the water uptake, ion exchange capacity, and hydroxide conductivity. Furthermore, the open circuit voltage (OCV) of QN-PAES X10Y23 and X10Y13 was found to be above 0.9 V, and the maximum power density of QN-PAES X10Y13 was 131.7 mW cm-2 at 60 °C under 100% RH.
Collapse
Affiliation(s)
- Ji Young Chu
- Department of Energy Storage/Conversion Engineering of Graduate School, Hydrogen and Fuel Cell Research Center, Chonbuk National University, Jeonju 54896, Korea.
| | - Kyu Ha Lee
- Department of Energy Storage/Conversion Engineering of Graduate School, Hydrogen and Fuel Cell Research Center, Chonbuk National University, Jeonju 54896, Korea.
| | - Ae Rhan Kim
- R&D Center for CANUTECH, Business Incubation Center and Department of Bioenvironmental Chemistry, Chonbuk National University, Jeonju 54896, Korea.
| | - Dong Jin Yoo
- Department of Energy Storage/Conversion Engineering of Graduate School, Hydrogen and Fuel Cell Research Center, Chonbuk National University, Jeonju 54896, Korea.
- Department of Life Science, Chonbuk National University, Jeonju 54896, Korea.
| |
Collapse
|
14
|
Hu H, Sui Y, Ueda M, Qian J, Wang L, Zhang X. Multi-block sulfonated poly(arylene ether nitrile) polymers bearing oligomeric benzotriazole pendants with exceptionally high H2/O2 fuel cell performance. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.07.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Lee KH, Chu JY, Kim AR, Yoo DJ. Enhanced Performance of a Sulfonated Poly(arylene ether ketone) Block Copolymer Bearing Pendant Sulfonic Acid Groups for Polymer Electrolyte Membrane Fuel Cells Operating at 80% Relative Humidity. ACS APPLIED MATERIALS & INTERFACES 2018; 10:20835-20844. [PMID: 29808664 DOI: 10.1021/acsami.8b03790] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The series of sulfonated poly(arylene ether ketone) (SPAEK) block copolymers with controlled F-oligomer length bearing pendant diphenyl unit were synthesized via a polycondensation reaction. Sulfonation was verified by 1H NMR analysis to introduce sulfonic acid group selectively and intensively on the pendant diphenyl unit of polymer backbones. The SPAEK membranes fabricated by the solution casting approach were very transparent and flexible with the thickness of ∼50 μm. These membranes with different F-oligomer lengths were investigated to the physiochemical properties such as water absorption, dimensional stability, ion exchange capacity, and proton conductivity. As a result, the SPAEK membranes (X4.8Y8.8, X7.5Y8.8, and X9.1Y8.8) in accordance to increasing the length of hydrophilic oligomer showed excellent proton conductivity in range of 131-154 mS cm-1 compared to Nafion-115 (131 mS cm-1) at 90 °C under 100% relative humidity (RH). Among the SPAEK membranes, proton conductivity of SPAEK X9.1Y8.8 (140.7 mS cm-1) is higher than that of Nafion-115 (102 mS cm-1) at 90 °C under 80% RH. The atomic force microscopy image demonstrated that number of ion transport channels is increased with increase in the length of hydrophilic oligomer in the main chains, and the morphology is proved to be related to the proton conductivity. The synthesized SPAEK membrane exhibited a maximum power density of 324 mW cm-2, which is higher than that of Nafion-115 (291 mW cm-2) at 60 °C under 100% RH.
Collapse
Affiliation(s)
- Kyu Ha Lee
- Department of Energy Storage/Conversion Engineering of Graduate School, Hydrogen and Fuel Cell Research Center, and Education Center for Whole Life Cycle R&D of Fuel Cell Systems , Chonbuk National University , Jeonju 54896 , Republic of Korea
| | - Ji Young Chu
- Department of Energy Storage/Conversion Engineering of Graduate School, Hydrogen and Fuel Cell Research Center, and Education Center for Whole Life Cycle R&D of Fuel Cell Systems , Chonbuk National University , Jeonju 54896 , Republic of Korea
| | | | - Dong Jin Yoo
- Department of Energy Storage/Conversion Engineering of Graduate School, Hydrogen and Fuel Cell Research Center, and Education Center for Whole Life Cycle R&D of Fuel Cell Systems , Chonbuk National University , Jeonju 54896 , Republic of Korea
| |
Collapse
|