1
|
Wang M, Sarma M, Lounder SJ, Mondal AN, Muthusamy L, Koley G, Asatekin A, Rodrigues DF. Organic Fouling on Zwitterionic Amphiphilic Copolymers: Implications in Biofouling. ACS APPLIED MATERIALS & INTERFACES 2025; 17:30149-30160. [PMID: 40328482 DOI: 10.1021/acsami.5c07057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Zwitterionic amphiphilic copolymers (ZACs) have shown promise in resisting the attachment of oil emulsions, proteins, and organic biomolecules, suggesting their potential to prevent microbial adhesion as well. However, there is a lack of comprehensive studies exploring the role of ZACs in regulating cell deposition and subsequent biofilm formation on surfaces. Here, we fabricated ZAC coatings including poly(trifluoroethyl methacrylate-random-sulfobetaine methacrylate) (PTFEMA-r-SBMA or PT:SBMA), poly(trifluoroethyl methacrylate-random-2-methacryloyloxyethyl phosphorylcholine) (PTFEMA-r-MPC or PT:MPC), poly(methyl methacrylate-random-sulfobetaine methacrylate) (PMMA-r-SBMA or PM:SBMA), and poly(methyl methacrylate-random-2-methacryloyloxyethyl phosphorylcholine) (PMMA-r-MPC or PM:MPC). These coatings were assessed for their resistance to conditioning with organic molecules, attachment of Gram-positive, Bacillus subtilis TR11 (B. subtilis), and Gram-negative, Escherichia coli K12 (E. coli), bacteria, and subsequent biofilm formation. Surface characterizations highlighted the role of organic molecule conditioning from the media in altering the ZAC-coated surface properties, subsequently influencing bacterial deposition and biofilm growth. Cell deposition results revealed that all ZAC coatings displayed higher resistance to B. subtilis attachment compared to E. coli, indicating that bacterial adhesion to the surfaces depends on the type of bacteria. Among the tested ZAC coatings, PT: SBMA demonstrated the highest potential for resisting adhesion by both types of bacterial cells as well as exhibiting lower surface energy and lower roughness after organic medium conditioning. These findings contribute to enhancing our fundamental understanding of how zwitterionic materials control biofouling.
Collapse
Affiliation(s)
- Meng Wang
- Department of Civil & Environmental Engineering, University of Houston, Houston, Texas 77004, United States
| | - Murchana Sarma
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, South Carolina 29634, United States
| | - Samuel J Lounder
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Abhishek Narayan Mondal
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Lavanya Muthusamy
- Holcombe Department of Electrical and Computer Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Goutam Koley
- Holcombe Department of Electrical and Computer Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Ayse Asatekin
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Debora F Rodrigues
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
2
|
Wang M, Zuo X, Jacovone RMS, O'Hara R, Mondal AN, Asatekin A, Rodrigues DF. Influence of zwitterionic amphiphilic copolymers on heterogeneous gypsum formation: A promising approach for scaling resistance. WATER RESEARCH 2024; 266:122439. [PMID: 39307081 DOI: 10.1016/j.watres.2024.122439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 11/06/2024]
Abstract
This study aims to investigate the influence of zwitterionic amphiphilic copolymers (ZACs) in the nucleation and growth of heterogeneous CaSO4 at the zwitterion-water interface, which is crucial for the prevention of mineral scaling and consequent downtime or suboptimal performance in industries like membrane desalination, heat exchangers, and pipeline transportation. In situ grazing incidence small angle X-ray Scattering (GISAXS), and quartz crystal microbalance with dissipation (QCM-D) techniques were used to analyze the evolution of CaSO4 particles on two new ZAC coatings: poly-(trifluoroethyl methacrylate-random-sulfobetaine methacrylate) (PTFEMA-r-SBMA, or PT:SBMA) and poly(trifluoroethyl methacrylate-random-2-methacryloyloxyethyl phosphorylcholine) (PTFEMA-r-MPC, or PT:MPC). The results showed that PT:MPC coatings promoted nucleation but inhibited crystal growth, resulting in slower overall reaction kinetics on PT:MPC coatings compared to PT:SBMA coatings. Interfacial interactions involving the substrates, sulfate minerals, and ions were examined, revealing that calcium ion adsorption, primarily governed by electrostatic attraction, played a crucial role in the nucleation and growth processes on both ZAC coatings. The crystal characterization revealed a phase transition from bassanite to gypsum on both ZAC coatings, suggesting that these zwitterionic materials can influence the mineral phase of heterogeneously formed CaSO4 crystals. These findings enhance our understanding of the fundamental mechanisms underlying heterogeneous CaSO4 scaling in the presence of zwitterionic materials.
Collapse
Affiliation(s)
- Meng Wang
- Department of Civil & Environmental Engineering, University of Houston, Houston, TX, 77004, USA
| | - Xiaobing Zuo
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois, 60439, USA
| | - Raynara M S Jacovone
- Department of Civil & Environmental Engineering, University of Houston, Houston, TX, 77004, USA
| | - Ryan O'Hara
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts, 02155, USA
| | - Abhishek Narayan Mondal
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts, 02155, USA
| | - Ayse Asatekin
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts, 02155, USA
| | - Debora F Rodrigues
- Department of Civil & Environmental Engineering, University of Houston, Houston, TX, 77004, USA; Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, South Carolina, 29634, USA.
| |
Collapse
|
3
|
Mazzaferro L, Grasseschi TM, Like BD, Panzer MJ, Asatekin A. Amphiphilic Polyelectrolyte Complexes for Fouling-Resistant and Easily Tunable Membranes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37952-37962. [PMID: 38990338 DOI: 10.1021/acsami.4c05723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Commercial membranes today are manufactured from a handful of membrane materials. While these systems are well-optimized, their capabilities remain constrained by limited chemistries and manufacturing methods available. As a result, membranes cannot address many relevant separations where precise selectivity is needed, especially with complex feeds. This constraint requires the development of novel membrane materials that offer customizable features to provide specific selectivity and durability requirements for each application, enabled by incorporating different functional chemistries into confined nanopores in a scalable process. This study introduces a new class of membrane materials, amphiphilic polyelectrolyte complexes (APECs), comprised of a blend two distinct amphiphilic polyelectrolytes of opposite charge that self-assemble to form a polymer selective layer. When coated on a porous support from a mixture in a nonaqueous solvent, APECs self-assemble to create ionic nanodomains acting as water-conducting nanochannels, enveloped within hydrophobic nanodomains, ensuring structural integrity of the layer in water. Notably, this approach allows precise control over selectivity without compromising pore size, permeability, or fouling resistance. For example, using only one pair of amphiphilic copolymers, sodium sulfate rejections can be varied from >95% to <10% with no change in effective pore size and fouling resistance. Given the wide range of amphiphilic polyelectrolytes (i.e., combinations of different hydrophobic, anionic, and cationic monomers), APECs can create membranes with many diverse chemistries and selectivities. Resultant membranes can potentially address precision separations in many applications, from wastewater treatment to chemical and biological manufacturing.
Collapse
Affiliation(s)
- Luca Mazzaferro
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Teresa M Grasseschi
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Bricker D Like
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Matthew J Panzer
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Ayse Asatekin
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| |
Collapse
|
4
|
Xing W, Wang Y, Mao X, Gao Z, Yan X, Yuan Y, Huang L, Tang J. Improvement strategies for oil/water separation based on electrospun SiO 2 nanofibers. J Colloid Interface Sci 2024; 653:1600-1619. [PMID: 37812837 DOI: 10.1016/j.jcis.2023.09.196] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/07/2023] [Accepted: 09/30/2023] [Indexed: 10/11/2023]
Abstract
Oil spills and oily effluents from industry and daily life pose a great threat to all organisms in the ecosystem, while aggravating the problem of water scarcity, which has developed into a global challenge. Therefore, the development of advanced materials and technologies for oil/water separation has become a focus of attention. One-dimensional (1D) SiO2 nanofibers (SNFs) have become one of the most widely used inorganic nanomaterials in the past due to their stable chemical properties, excellent biocompatibility, and high temperature resistance etc. Meanwhile, electrospinning technique, as an emerging technology for treating oil/water emulsions, electrospun SNFs on this basis also has a number of advantages such as adjustable wettability, diverse structure and good connectivity. This review provides a systematic overview of the research progress of electrospun SNFs in different aspects. In this review, we first introduce the basic principles of electrospun SNFs, then focus on the design structures of various SNFs, propose corresponding strategies for the property improvement of SNFs, also analyze and consider the applications of SNFs. Finally, the challenges faced by electrospun SNFs in the field of oil/water separation are analyzed, and the future directions of electrospun SNFs are summarized and prospected.
Collapse
Affiliation(s)
- Wei Xing
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yanxin Wang
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Xinhui Mao
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Zhiyuan Gao
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Xianhang Yan
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yanru Yuan
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Linjun Huang
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Jianguo Tang
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
5
|
Mazzaferro L, Lounder SJ, Asatekin A. Amphiphilic Polyampholytes for Fouling-Resistant and Easily Tunable Membranes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42557-42567. [PMID: 37656014 DOI: 10.1021/acsami.3c07745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The versatility of membranes is limited by the narrow range of material chemistries on the market, which cannot address many relevant separations. Expanding their use requires new membrane materials that can be tuned to address separations by providing the desired selectivity and robustness. Self-assembly is a versatile and scalable approach to create tunable membranes with a narrow pore size distribution. This study reports the first examples of a new class of membrane materials that derives state-of-the-art permeability, selectivity, and fouling resistance from the self-assembly of random polyampholyte amphiphilic copolymers. These membranes feature a network of ionic nanodomains that serve as nanochannels for water permeation, framed by hydrophobic nanodomains that preserve their structural integrity. This copolymer design approach enables precise selectivity control. For example, sodium sulfate rejections can be tuned from 5% to 93% with no significant change in the pore size or fouling resistance. Membranes developed here have potential applications in wastewater treatment and chemical separations.
Collapse
Affiliation(s)
- Luca Mazzaferro
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Samuel J Lounder
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Ayse Asatekin
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| |
Collapse
|
6
|
Diwan T, Abudi ZN, Al-Furaiji MH, Nijmeijer A. A Competitive Study Using Electrospinning and Phase Inversion to Prepare Polymeric Membranes for Oil Removal. MEMBRANES 2023; 13:membranes13050474. [PMID: 37233535 DOI: 10.3390/membranes13050474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023]
Abstract
Polyacrylonitrile (PAN) is a popular polymer that can be made into membranes using various techniques, such as electrospinning and phase inversion. Electrospinning is a novel technique that produces nonwoven nanofiber-based membranes with highly tunable properties. In this research, electrospun PAN nanofiber membranes with various concentrations (10, 12, and 14% PAN/dimethylformamide (DMF)) were prepared and compared to PAN cast membranes prepared by the phase inversion technique. All of the prepared membranes were tested for oil removal in a cross-flow filtration system. A comparison between these membranes' surface morphology, topography, wettability, and porosity was presented and analyzed. The results showed that increasing the concentration of the PAN precursor solution increases surface roughness, hydrophilicity, and porosity and, consequently, enhances the membrane performance. However, the PAN cast membranes showed a lower water flux when the precursor solution concentration increased. In general, the electrospun PAN membranes performed better in terms of water flux and oil rejection than the cast PAN membranes. The electrospun 14% PAN/DMF membrane gave a water flux of 250 LMH and a rejection of 97% compared to the cast 14% PAN/DMF membrane, which showed a water flux of 117 LMH and 94% oil rejection. This is mainly because the nanofibrous membrane showed higher porosity, higher hydrophilicity, and higher surface roughness compared to the cast PAN membranes at the same polymer concentration. The porosity of the electrospun PAN membrane was 96%, while it was 58% for the cast 14% PAN/DMF membrane.
Collapse
Affiliation(s)
- Thamer Diwan
- Environmental Engineering Department, College of Engineering, Mustansiriyah University, Baghdad 10052, Iraq
- Technical Directorate, Ministry of Environment, Baghdad 10066, Iraq
| | - Zaidun N Abudi
- Environmental Engineering Department, College of Engineering, Mustansiriyah University, Baghdad 10052, Iraq
| | - Mustafa H Al-Furaiji
- Environment and Water Directorate, Ministry of Science and Technology, Baghdad 10066, Iraq
| | - Arian Nijmeijer
- Inorganic Membranes, Department of Science and Technology, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
7
|
Aguiar AO, Yi H, Asatekin A. Fouling-resistant membranes with zwitterion-containing ultra-thin hydrogel selective layers. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
Ilyas A, Vankelecom IFJ. Designing sustainable membrane-based water treatment via fouling control through membrane interface engineering and process developments. Adv Colloid Interface Sci 2023; 312:102834. [PMID: 36634445 DOI: 10.1016/j.cis.2023.102834] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 12/05/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Membrane-based water treatment processes have been established as a powerful approach for clean water production. However, despite the significant advances made in terms of rejection and flux, provision of sustainable and energy-efficient water production is restricted by the inevitable issue of membrane fouling, known to be the major contributor to the elevated operating costs due to frequent chemical cleaning, increased transmembrane resistance, and deterioration of permeate flux. This review provides an overview of fouling control strategies in different membrane processes, such as microfiltration, ultrafiltration, membrane bioreactors, and desalination via reverse osmosis and forward osmosis. Insights into the recent advancements are discussed and efforts made in terms of membrane development, modules arrangement, process optimization, feed pretreatment, and fouling monitoring are highlighted to evaluate their overall impact in energy- and cost-effective water treatment. Major findings in four key aspects are presented, including membrane surface modification, modules design, process integration, and fouling monitoring. Among the above mentioned anti-fouling strategies, a large part of research has been focused on membrane surface modifications using a number of anti-fouling materials whereas much less research has been devoted to membrane module advancements and in-situ fouling monitoring and control. At the end, a critical analysis is provided for each anti-fouling strategy and a rationale framework is provided for design of efficient membranes and process for water treatment.
Collapse
Affiliation(s)
- Ayesha Ilyas
- Membrane Technology Group (MTG), Division cMACS, Faculty of Bioscience Engineering, KU Leuven, Celestijnenlaan 200F, Box 2454, 3001 Leuven, Belgium
| | - Ivo F J Vankelecom
- Membrane Technology Group (MTG), Division cMACS, Faculty of Bioscience Engineering, KU Leuven, Celestijnenlaan 200F, Box 2454, 3001 Leuven, Belgium.
| |
Collapse
|
9
|
Zhang J, Wang C, Xing H, Fu Q, Niu C, Lu L. Advances in Asymmetric Wettable Janus Materials for Oil-Water Separation. Molecules 2022; 27:7470. [PMID: 36364297 PMCID: PMC9656448 DOI: 10.3390/molecules27217470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/18/2022] [Accepted: 10/28/2022] [Indexed: 04/06/2025] Open
Abstract
The frequent occurrence of crude oil spills and the indiscriminate discharge of oily wastewater have caused serious environmental pollution. The existing separation methods have some defects and are not suitable for complex oil-water emulsions. Therefore, the efficient separation of complex oil-water emulsions has been of great interest to researchers. Asymmetric wettable Janus materials, which can efficiently separate complex oil-water emulsions, have attracted widespread attention. This comprehensive review systematically summarizes the research progress of asymmetric wettable Janus materials for oil-water separation in the last decade, and introduces, in detail, the preparation methods of them. Specifically, the latest research results of two-dimensional Janus materials, three-dimensional Janus materials, smart responsive Janus materials, and environmentally friendly Janus materials for oil-water separation are elaborated. Finally, ongoing challenges and outlook for the future research of asymmetric wettable Janus materials are presented.
Collapse
Affiliation(s)
| | | | | | | | | | - Lingbin Lu
- Special Glass Key Lab of Hainan Province (Hainan University) & State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
10
|
Tuning charge density in tethered electrolyte active-layer membranes for enhanced ion-ion selectivity. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Abstract
Oil–water emulsions are widely generated in industries, which may facilitate some processes (e.g., transportation of heavy oil, storage of milk, synthesis of chemicals or materials, etc.) or lead to serious upgrading or environmental issues (e.g., pipeline plugging, corrosions to equipment, water pollution, soil pollution, etc.). Herein, the sources, classification, formation, stabilization, and separation of oil–water emulsions are systematically summarized. The roles of different interfacially active materials–especially the fine particles–in stabilizing the emulsions have been discussed. The advanced development of micro force measurement technologies for oil–water emulsion investigation has also been presented. To provide insights for future industrial application, the separation of oil–water emulsions by different methods are summarized, as well as the introduction of some industrial equipment and advanced combined processes. The gaps between some demulsification processes and industrial applications are also touched upon. Finally, the development perspectives of oil–water treatment technology are discussed for the purpose of achieving high-efficiency, energy-saving, and multi-functional treatment. We hope this review could bring forward the challenges and opportunities for future research in the fields of petroleum production, coal production, iron making, and environmental protection, etc.
Collapse
|
12
|
Bui VT, Abdelrasoul A, McMartin DW. Influence of zwitterionic structure design on mixed matrix membrane stability, hydrophilicity, and fouling resistance: A computational study. J Mol Graph Model 2022; 114:108187. [DOI: 10.1016/j.jmgm.2022.108187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/14/2022] [Accepted: 04/01/2022] [Indexed: 10/18/2022]
|
13
|
Ang MBMY, Wu YL, Chu MY, Wu PH, Chiao YH, Millare JC, Huang SH, Tsai HA, Lee KR. Nanofiltration Membranes Formed through Interfacial Polymerization Involving Cycloalkane Amine Monomer and Trimesoyl Chloride Showing Some Tolerance to Chlorine during Dye Desalination. MEMBRANES 2022; 12:333. [PMID: 35323809 PMCID: PMC8954597 DOI: 10.3390/membranes12030333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/06/2022] [Accepted: 03/14/2022] [Indexed: 12/16/2022]
Abstract
Wastewater effluents containing high concentrations of dyes are highly toxic to the environment and aquatic organisms. Recycle and reuse of both water and dye in textile industries can save energy and costs. Thus, new materials are being explored to fabricate highly efficient nanofiltration membranes for fulfilling industrial needs. In this work, three diamines, 1,4-cyclohexanediamine (CHD), ethylenediamine (EDA), and p-phenylenediamine (PPD), are reacted with TMC separately to fabricate a thin film composite polyamide membrane for dye desalination. Their chemical structures are different, with the difference located in the middle of two terminal amines. The surface morphology, roughness, and thickness of the polyamide layer are dependent on the reactivity of the diamines with TMC. EDA has a short linear alkane chain, which can easily react with TMC, forming a very dense selective layer. CHD has a cyclohexane ring, making it more sterically hindered than EDA. As such, CHD's reaction with TMC is slower than EDA's, leading to a thinner polyamide layer. PPD has a benzene ring, which should make it the most sterically hindered structure; however, its benzene ring has a pi-pi interaction with TMC that can facilitate a faster reaction between PPD and TMC, leading to a thicker polyamide layer. Among the TFC membranes, TFCCHD exhibited the highest separation efficiency (pure water flux = 192.13 ± 7.11 L∙m-2∙h-1, dye rejection = 99.92 ± 0.10%, and NaCl rejection = 15.46 ± 1.68% at 6 bar and 1000 ppm salt or 50 ppm of dye solution). After exposure at 12,000 ppm∙h of active chlorine, the flux of TFCCHD was enhanced with maintained high dye rejection. Therefore, the TFCCHD membrane has a potential application for dye desalination process.
Collapse
Affiliation(s)
- Micah Belle Marie Yap Ang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (Y.-L.W.); (M.-Y.C.); (P.-H.W.); (Y.-H.C.); (H.-A.T.)
| | - Yi-Ling Wu
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (Y.-L.W.); (M.-Y.C.); (P.-H.W.); (Y.-H.C.); (H.-A.T.)
| | - Min-Yi Chu
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (Y.-L.W.); (M.-Y.C.); (P.-H.W.); (Y.-H.C.); (H.-A.T.)
| | - Ping-Han Wu
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (Y.-L.W.); (M.-Y.C.); (P.-H.W.); (Y.-H.C.); (H.-A.T.)
| | - Yu-Hsuan Chiao
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (Y.-L.W.); (M.-Y.C.); (P.-H.W.); (Y.-H.C.); (H.-A.T.)
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Rokkodaicho 1-1, Nada, Kobe 657-8501, Japan
| | - Jeremiah C. Millare
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines;
| | - Shu-Hsien Huang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (Y.-L.W.); (M.-Y.C.); (P.-H.W.); (Y.-H.C.); (H.-A.T.)
- Department of Chemical and Materials Engineering, National Ilan University, Yilan 26047, Taiwan
| | - Hui-An Tsai
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (Y.-L.W.); (M.-Y.C.); (P.-H.W.); (Y.-H.C.); (H.-A.T.)
| | - Kueir-Rarn Lee
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (Y.-L.W.); (M.-Y.C.); (P.-H.W.); (Y.-H.C.); (H.-A.T.)
- Research Center for Circular Economy, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| |
Collapse
|
14
|
Zwitterionic analog structured ultrafiltration membranes for high permeate flux and improved anti-fouling performance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120060] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
15
|
Lang C, Kumar M, Hickey RJ. Current status and future directions of self-assembled block copolymer membranes for molecular separations. SOFT MATTER 2021; 17:10405-10415. [PMID: 34768280 DOI: 10.1039/d1sm01368h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
One of the most efficient and promising separation alternatives to thermal methods such as distillation is the use of polymeric membranes that separate mixtures based on molecular size or chemical affinity. Self-assembled block copolymer membranes have gained considerable attention within the membrane field due to precise control over nanoscale structure, pore size, and chemical versatility. Despite the rapid progress and excitement, a significant hurdle in using block copolymer membranes for nanometer and sub-nanometer separations such as nanofiltration and reverse osmosis is the lower limit on domain size features. Strategies such as polymer post-functionalization, self-assembly of oligomers, liquid crystals, and random copolymers, or incorporation of artificial/natural channels within block copolymer materials are future directions with the potential to overcome current limitations with respect to separation size.
Collapse
Affiliation(s)
- Chao Lang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16801, USA.
| | - Manish Kumar
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Robert J Hickey
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16801, USA.
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania, 16801, USA
| |
Collapse
|
16
|
Xu Q, Ji X, Tian J, Jin X, Wu L. Inner Surface Hydrophilic Modification of PVDF Membrane with Tea Polyphenols/Silica Composite Coating. Polymers (Basel) 2021; 13:polym13234186. [PMID: 34883689 PMCID: PMC8659430 DOI: 10.3390/polym13234186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 11/21/2022] Open
Abstract
The use of Polyvinylidene fluoride (PVDF) membranes is constrained in wastewater treatment because of their hydrophobic nature. Therefore, a large number of researchers have been working on the hydrophilic modification of their surfaces. In this work, a superhydrophilic tea polyphenols/silica composite coating was developed by a one-step process. The composite coating can achieve not only superhydrophilic modification of the surface, but also the inner surface of the porous PVDF membrane, which endows the modified membrane with excellent water permeability. The modified membrane possesses ultrahigh water flux (15,353 L·m−2·h−1). Besides this, the modified membrane can realize a highly efficient separation of oil/water emulsions (above 96%).
Collapse
Affiliation(s)
- Qiang Xu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (Q.X.); (X.J.); (J.T.)
| | - Xiaoli Ji
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (Q.X.); (X.J.); (J.T.)
| | - Jiaying Tian
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (Q.X.); (X.J.); (J.T.)
| | - Xiaogang Jin
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (Q.X.); (X.J.); (J.T.)
- Correspondence: (X.J.); (L.W.)
| | - Lili Wu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (Q.X.); (X.J.); (J.T.)
- Advanced Engineering Technology Research Institute of Zhongshan City, Wuhan University of Technology, Xiangxing Road 6, Zhongshan 528400, China
- Correspondence: (X.J.); (L.W.)
| |
Collapse
|
17
|
Qian X, Ravindran T, Lounder SJ, Asatekin A, McCutcheon JR. Printing zwitterionic self-assembled thin film composite membranes: Tuning thickness leads to remarkable permeability for nanofiltration. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119428] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Li X, Nayak K, Stamm M, Tripathi BP. Zwitterionic silica nanogel-modified polysulfone nanoporous membranes formed by in-situ method for water treatment. CHEMOSPHERE 2021; 280:130615. [PMID: 33965864 DOI: 10.1016/j.chemosphere.2021.130615] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/04/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
We report a simple methodology to prepare nano-porous polysulfone membranes using zwitterionic functionalized silica nanogels with high BSA protein rejection and antifouling properties. The zwitterionic silica precursor was prepared by reacting 1,3-propane sultone with 3-aminopropyl triethoxysilane under an inert atmosphere. The precursor was in situ hydrolyzed and condensed in the polysulfone nanoporous membrane network by one-pot acidic phase inversion. The prepared membranes were characterized to establish their physicochemical nature, morphology, and basic membrane properties such as permeation, rejection, and recovery. The zwitterionic membranes showed improved hydrophilicity, membrane water uptake (∼83.5%), water permeation, BSA protein rejection (>95%), and dye rejection (congo red: >52% (∼6-fold increase); methylene blue: ∼15% (∼2-fold increase)) were improved without compromising the membrane flux and fouling resistance. Overall, we report an easy fabrication method of efficient nanocomposite zwitterionic ultrafilter membranes for water treatment with excellent flux, protein separation, filtration efficiency, and antifouling behavior.
Collapse
Affiliation(s)
- Xiaojiao Li
- Department of Nanostructured Materials, Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, 01069, Dresden, Germany; Technische Universität Dresden, Department of Chemistry, 01069, Dresden, Germany
| | - Kanupriya Nayak
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Manfred Stamm
- Department of Nanostructured Materials, Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, 01069, Dresden, Germany; Technische Universität Dresden, Department of Chemistry, 01069, Dresden, Germany
| | - Bijay P Tripathi
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| |
Collapse
|
19
|
Interaction-based ion selectivity exhibited by self-assembled, cross-linked zwitterionic copolymer membranes. Proc Natl Acad Sci U S A 2021; 118:2022198118. [PMID: 34493652 DOI: 10.1073/pnas.2022198118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Water filtration membranes with advanced ion selectivity are urgently needed for resource recovery and the production of clean drinking water. This work investigates the separation capabilities of cross-linked zwitterionic copolymer membranes, a self-assembled membrane system featuring subnanometer zwitterionic nanochannels. We demonstrate that selective zwitterion-anion interactions simultaneously control salt partitioning and diffusivity, with the permeabilities of NaClO4, NaI, NaBr, NaCl, NaF, and Na2SO4 spanning roughly three orders of magnitude over a wide range of feed concentrations. We model salt flux using a one-dimensional transport model based on the Maxwell-Stefan equations and show that diffusion is the dominant mode of transport for 1:1 sodium salts. Differences in zwitterion-Cl- and zwitterion-F- interactions granted these membranes with the ultrahigh Cl-/F- permselectivity (P Cl- /P F- = 24), enabling high fluoride retention and high chloride passage even from saline mixtures of NaCl and NaF.
Collapse
|
20
|
Waldman RZ, Gao F, Phillip WA, Darling SB. Maximizing selectivity: An analysis of isoporous membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119389] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
21
|
Embedding low–cost 1D and 2D iron pillared nanoclay to enhance the stability of polyethersulfone membranes for the removal of bisphenol A from water. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118560] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
22
|
Léniz-Pizarro F, Liu C, Colburn A, Escobar IC, Bhattacharyya D. Positively charged nanofiltration membrane synthesis, transport models, and lanthanides separation. J Memb Sci 2021; 620:118973. [PMID: 35002049 PMCID: PMC8740894 DOI: 10.1016/j.memsci.2020.118973] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The design and understanding of rejection mechanisms for both positively and negatively charged nanofiltration (NF) membranes are needed for the development of highly selective separation of multivalent ions. In this study, positively charged nanofiltration membranes were created via an addition of commercially available polyallylamine hydrochloride (PAH) by conventional interfacial polymerization technique. Demonstration of real increase in surface zeta potential, along with other characterization methods, confirmed the addition of weak basic functional groups from PAH. Both positively and negatively charged NF membranes were tested for evaluating their potential as a technology for the recovery or separation of lanthanide cations (neodymium and lanthanum chloride as model salts) from aqueous sources. Particularly, the NF membranes with added PAH performed high and stable lanthanides retentions, with values around 99.3% in mixtures with high ionic strength (100 mM, equivalent to ~6,000 ppm), 99.3% rejection at 85% water recovery (and high Na+/La3+ selectivity, with 0% Na+ rejection starting at 65% recovery), and both constant lanthanum rejection and permeate flux at even pH 2.7. Donnan steric pore model with dielectric exclusion elucidated the transport mechanism of lanthanides and sodium, proving the potential of high selective separation at low permeate fluxes using positively charged NF membranes.
Collapse
Affiliation(s)
- Francisco Léniz-Pizarro
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Chunqing Liu
- Membranes R&D Group, Honeywell UOP, 50 E. Algonquin Road, Des Plaines, IL 60016, USA
| | - Andrew Colburn
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Isabel C. Escobar
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Dibakar Bhattacharyya
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
23
|
Ionic strength-responsive poly(sulfobetaine methacrylate) microgels for fouling removal during ultrafiltration. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104738] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Zang L, Zheng S, Wang L, Ma J, Sun L. Zwitterionic nanogels modified nanofibrous membrane for efficient oil/water separation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118379] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
25
|
Tran T, Chen X, Doshi S, Stafford CM, Lin H. Grafting polysiloxane onto ultrafiltration membranes to optimize surface energy and mitigate fouling. SOFT MATTER 2020; 16:5044-5053. [PMID: 32452496 PMCID: PMC7679028 DOI: 10.1039/d0sm00551g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Conventional approaches to mitigate fouling of membrane surfaces impart hydrophilicity to the membrane surface, which increases the water of hydration and fluidity near the surface. By contrast, we demonstrate here that tuning the membrane surface energy close to that of the dispersive component of water surface tension (21.8 mN m-1) can also improve the antifouling properties of the membrane. Specifically, ultrafiltration (UF) membranes were first modified using polydopamine (PDA) followed by grafting of amine-terminated polysiloxane (PSi-NH2). For example, with 2 g L-1 PSi-NH2 coating solution, the obtained coating layer contains 53% by mass fraction PSi-NH2 and exhibits a total surface energy of 21 mN m-1, decreasing the adsorption of bovine serum albumin by 44% compared to the unmodified membrane. When challenged with 1 g L-1 sodium alginate in a constant-flux crossflow system, the PSi-NH2-grafted membrane exhibits a 70% lower fouling rate than the pristine membrane at a water flux of 110 L (m2 h)-1 and good stability when cleaned with NaOH solutions.
Collapse
Affiliation(s)
- Thien Tran
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA.
| | | | | | | | | |
Collapse
|
26
|
|
27
|
Paiman SH, Rahman MA, Uchikoshi T, Md Nordin NAH, Alias NH, Abdullah N, Abas KH, Othman MHD, Jaafar J, Ismail AF. In situ growth of α-Fe2O3 on Al2O3/YSZ hollow fiber membrane for oily wastewater. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116250] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
28
|
Li D, Wei Q, Wu C, Zhang X, Xue Q, Zheng T, Cao M. Superhydrophilicity and strong salt-affinity: Zwitterionic polymer grafted surfaces with significant potentials particularly in biological systems. Adv Colloid Interface Sci 2020; 278:102141. [PMID: 32213350 DOI: 10.1016/j.cis.2020.102141] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/21/2022]
Abstract
In recent years, zwitterionic polymers have been frequently reported to modify various surfaces to enhance hydrophilicity, antifouling and antibacterial properties, which show significant potentials particularly in biological systems. This review focuses on the fabrication, properties and various applications of zwitterionic polymer grafted surfaces. The "graft-from" and "graft-to" strategies, surface grafting copolymerization and post zwitterionization methods were adopted to graft lots type of the zwitterionic polymers on different inorganic/organic surfaces. The inherent hydrophilicity and salt affinity of the zwitterionic polymers endow the modified surfaces with antifouling, antibacterial and lubricating properties, thus the obtained zwitterionic surfaces show potential applications in biosystems. The zwitterionic polymer grafted membranes or stationary phases can effectively separate plasma, water/oil, ions, biomolecules and polar substrates. The nanomedicines with zwitterionic polymer shells have "stealth" effect in the delivery of encapsulated drugs, siRNA or therapeutic proteins. Moreover, the zwitterionic surfaces can be utilized as wound dressing, self-healing or oil extraction materials. The zwitterionic surfaces are expected as excellent support materials for biosensors, they are facing the severe challenges in the surface protection of marine facilities, and the dense ion pair layers may take unexpected role in shielding the grafted surfaces from strong electromagnetic field.
Collapse
|
29
|
Kong S, Lim MY, Shin H, Baik JH, Lee JC. High-flux and antifouling polyethersulfone nanocomposite membranes incorporated with zwitterion-functionalized graphene oxide for ultrafiltration applications. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.12.028] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
30
|
Shahkaramipour N, Jafari A, Tran T, Stafford CM, Cheng C, Lin H. Maximizing the grafting of zwitterions onto the surface of ultrafiltration membranes to improve antifouling properties. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117909] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
31
|
|
32
|
Yi H, Li M, Huo X, Zeng G, Lai C, Huang D, An Z, Qin L, Liu X, Li B, Liu S, Fu Y, Zhang M. Recent development of advanced biotechnology for wastewater treatment. Crit Rev Biotechnol 2019; 40:99-118. [PMID: 31690134 DOI: 10.1080/07388551.2019.1682964] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The importance of highly efficient wastewater treatment is evident from aggravated water crises. With the development of green technology, wastewater treatment is required in an eco-friendly manner. Biotechnology is a promising solution to address this problem, including treatment and monitoring processes. The main directions and differences in biotreatment process are related to the surrounding environmental conditions, biological processes, and the type of microorganisms. It is significant to find suitable biotreatment methods to meet the specific requirements for practical situations. In this review, we first provide a comprehensive overview of optimized biotreatment processes for treating wastewater during different conditions. Both the advantages and disadvantages of these biotechnologies are discussed at length, along with their application scope. Then, we elaborated on recent developments of advanced biosensors (i.e. optical, electrochemical, and other biosensors) for monitoring processes. Finally, we discuss the limitations and perspectives of biological methods and biosensors applied in wastewater treatment. Overall, this review aims to project a rapid developmental path showing a broad vision of recent biotechnologies, applications, challenges, and opportunities for scholars in biotechnological fields for "green" wastewater treatment.
Collapse
Affiliation(s)
- Huan Yi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, China
| | - Minfang Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, China
| | - Xiuqin Huo
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, China
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, China
| | - Ziwen An
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, China
| | - Lei Qin
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, China
| | - Xigui Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, China
| | - Bisheng Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, China
| | - Shiyu Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, China
| | - Yukui Fu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, China
| | - Mingming Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, China
| |
Collapse
|
33
|
Liu ZY, Jiang Q, Jin Z, Sun Z, Ma W, Wang Y. Understanding the Antifouling Mechanism of Zwitterionic Monomer-Grafted Polyvinylidene Difluoride Membranes: A Comparative Experimental and Molecular Dynamics Simulation Study. ACS APPLIED MATERIALS & INTERFACES 2019; 11:14408-14417. [PMID: 30895780 DOI: 10.1021/acsami.8b22059] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The antifouling process of the membrane is very vital for the highly efficient treatment of industrial wastewater, especially high salinity wastewater containing oil and other pollutants. In the present work, the dynamical antifouling mechanism is explored via molecular dynamics simulations, while the corresponding experiments about surface properties of the zwitterionic monomer-grafted polyvinylidene difluoride membrane are designed to verify the simulated mechanism. Water can form a stable hydration layer at the grafted membrane surface, where all the simulated radial distribution function of water/membrane, hydrogen bond number, water diffusivity, and experimental oil contact angles are stable. However, the water flux across the membrane will increase first and then decrease as the grafting ratio increases, which not only depends on the reduced pore size of the zwitterionic monomer-grafted membrane but also results from water diffusion. Furthermore, the dynamical fouling processes of pollutants (taking sodium alginate as an example) on the grafted membrane in water and brine solution are investigated, where both the high grafting ratio and electrolyte CaCl2 can enhance the fouling energy barrier of the pollutant. The results show that both the enhanced hydrophilic property and the electrostatic repulsion can affect the antifouling capability of the grafted membrane. Finally, the ternary synergistic antifouling mechanisms among the zwitterionic membrane, electrolyte, and pollutant sodium alginates are discussed, which could be helpful for the rational design and preparation of new and highly efficient zwitterionic antifouling membranes.
Collapse
Affiliation(s)
- Zi-Yu Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
| | - Qin Jiang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
| | - Zhiqiang Jin
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
| | - Zhenyu Sun
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering , Beijing University of Chemical Technology , Beijing 100029 , People's Republic of China
| | - Wangjing Ma
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
| | - Yanlei Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems , Institute of Process Engineering , Beijing 100190 , People's Republic of China
| |
Collapse
|
34
|
Chen Q, Ma X, Zhang X, Liu Y, Yu M. Extraction of rare earth ions from phosphate leach solution using emulsion liquid membrane in concentrated nitric acid medium. J RARE EARTH 2018. [DOI: 10.1016/j.jre.2018.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
35
|
Ozcan S, Kaner P, Thomas D, Cebe P, Asatekin A. Hydrophobic Antifouling Electrospun Mats from Zwitterionic Amphiphilic Copolymers. ACS APPLIED MATERIALS & INTERFACES 2018; 10:18300-18309. [PMID: 29658698 DOI: 10.1021/acsami.8b03268] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A porous material that is both hydrophobic and fouling-resistant is needed in many applications, such as water purification by membrane distillation. In this work, we take a novel approach to fabricating such membranes. Using the zwitterionic amphiphilic copolymer poly(trifluoroethyl methacrylate- random-sulfobetaine methacrylate), we electrospin nonwoven, porous membranes that combine high hydrophobicity with resistance to protein adsorption. By changing the electrospinning parameters and the solution composition, membranes can be prepared with a wide range of fiber morphologies including beaded, bead-free, wrinkly, and ribbonlike fibers, with diameters ranging between ∼150 nm and 1.5 μm. The addition of LiCl to the spinning solution not only helps control the fiber morphology but also increases the segregation of zwitterionic groups on the membrane surface. The resultant electrospun membranes are highly porous and very hydrophobic, yet resist the adsorption of proteins and retain a high contact angle (∼140°) even after exposure to a protein solution. This makes these materials promising candidates for the membrane distillation of contaminated wastewater streams and as self-cleaning materials.
Collapse
Affiliation(s)
- Sefika Ozcan
- Department of Chemical and Biological Engineering , Tufts University , 4 Colby Street , Medford , Massachusetts 02155 , United States
- Department of Polymer Science and Technology , Middle East Technical University , 06800 Ankara , Turkey
| | - Papatya Kaner
- Department of Chemical and Biological Engineering , Tufts University , 4 Colby Street , Medford , Massachusetts 02155 , United States
| | - David Thomas
- Department of Physics and Astronomy , Tufts University , 574 Boston Avenue , Medford , Massachusetts 02155 , United States
| | - Peggy Cebe
- Department of Physics and Astronomy , Tufts University , 574 Boston Avenue , Medford , Massachusetts 02155 , United States
| | - Ayse Asatekin
- Department of Chemical and Biological Engineering , Tufts University , 4 Colby Street , Medford , Massachusetts 02155 , United States
| |
Collapse
|
36
|
Govinna N, Kaner P, Ceasar D, Dhungana A, Moers C, Son K, Asatekin A, Cebe P. Electrospun fiber membranes from blends of poly(vinylidene fluoride) with fouling‐resistant zwitterionic copolymers. POLYM INT 2018. [DOI: 10.1002/pi.5578] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Nelaka Govinna
- Department of Physics and Astronomy Tufts University Medford MA USA
| | - Papatya Kaner
- Department of Chemical and Biological Engineering Tufts University Medford MA USA
| | - Davette Ceasar
- Department of Physics and Astronomy Tufts University Medford MA USA
- Temple University Philadelphia PA USA
| | - Anita Dhungana
- Department of Physics and Astronomy Tufts University Medford MA USA
- Rochester Institute of Technology Rochester NY USA
| | - Cody Moers
- Department of Physics and Astronomy Tufts University Medford MA USA
- Gallaudet University Washington DC USA
| | - Katherine Son
- Department of Physics and Astronomy Tufts University Medford MA USA
- Rochester Institute of Technology Rochester NY USA
| | - Ayse Asatekin
- Department of Chemical and Biological Engineering Tufts University Medford MA USA
| | - Peggy Cebe
- Department of Physics and Astronomy Tufts University Medford MA USA
| |
Collapse
|
37
|
Gao Y, Liang L, Zhao S, Qi Y, Zhang W, Sun X, Wang Z, Wang J, Song B. Hydrophilic and antimicrobial core–shell nanoparticles containing guanidine groups for ultrafiltration membrane modification. RSC Adv 2018; 8:24690-24700. [PMID: 35542134 PMCID: PMC9082451 DOI: 10.1039/c8ra03934h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/03/2018] [Indexed: 11/21/2022] Open
Abstract
Physical blending is a common technique to improve the water flux and antifouling performance of ultrafiltration (UF) membranes. In the present work, a novel hydrophilic and antimicrobial core–shell nanoparticle was synthesized through the chemical grafting of poly(guanidine-hexamethylenediamine-PEI) (poly(GHPEI)) on the surface of silica nanoparticles (SNP). The synthesized core–shell nanoparticles, poly(GHPEI) functionalized silica nanoparticles (SNP@PG), were incorporated into polyethersulfone (PES) to fabricate hybrid UF membranes by a phase inversion process. The chemical composition, surface and cross section morphologies, hydrophilicity, water flux and protein rejection of the membranes were evaluated by a series of characterizations. Results show that the prepared PES/SNP@PG hybrid membrane exhibits not only improved water flux, which is around 2.6 times that of the pristine PES membrane, but also excellent resistance to organic fouling and biofouling. Hydrophilic and antimicrobial core–shell nanoparticles containing guanidine groups (SNP@PG) were applied to fabricate membranes with improved water flux and fouling resistance.![]()
Collapse
Affiliation(s)
- Yongqiang Gao
- Chemical Engineering Research Center
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- PR China
| | - Lei Liang
- Spine Center Department of Orthopaedics
- Changzheng Hospital
- Second Military Medical University
- Shanghai
- PR China
| | - Song Zhao
- Chemical Engineering Research Center
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- PR China
| | - Yunlong Qi
- Chemical Engineering Research Center
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- PR China
| | - Wen Zhang
- Chemical Engineering Research Center
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- PR China
| | - Xuefei Sun
- Chemical Engineering Research Center
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- PR China
| | - Zhi Wang
- Chemical Engineering Research Center
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- PR China
| | - Jixiao Wang
- Chemical Engineering Research Center
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- PR China
| | - Baodong Song
- Chemical Engineering Research Center
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- PR China
| |
Collapse
|