1
|
Baram D, Kvetny M, Ake S, Yang R, Wang G. Anodized Aluminum Oxide Membrane Ionic Memristors. J Am Chem Soc 2025; 147:11089-11097. [PMID: 40108180 PMCID: PMC11969543 DOI: 10.1021/jacs.4c16835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
Memory effect in ion transport (IT) at the solid-solution interface is uniquely attractive in that the conductance depends on or "memorizes" the previous states. Hysteretic and rectified transport properties offer exciting potential to developing advanced iontronics and neuromorphic functions, improving the efficiency of energy conversion and electrochemical processes, and overcoming the selectivity-throughput bottleneck in the enrichment of low abundant species for environment- and energy-friendly separations, among others. Herein, memory effects are discovered in the rectified electrokinetic IT through anodized aluminum oxide (AAO) membranes containing densely packed highly ordered nanochannels (1010 per cm2). Characteristic memristor responses of pinched current-potential loops are resolved in voltammetric experiments and successfully reproduced through finite element simulation. Excitatory and inhibitory conductance states are shown to arise from the enrichment and depletion of mobile charge carriers. Structurewise, the transport symmetry is broken by the barrier oxide layer (BOL) on the one end of the cylindrical nanochannels across the AAO membranes. Charge selectivity is attributed to the gradient(s) of the space charge density across the BOL characterized by depth profiling via X-ray photoelectron spectroscopy analysis. The space charge gradient(s) overcomes the fundamental limitation of widely exploited surface charge effects to enable intense rectification and hysteresis prevailing at very high ionic concentrations up to 1-2 M. A new strategy is developed for controlling the preferential IT direction and selectivity via counterion intercalation and extraction/exchange. Mechanistic understanding is further confirmed through parameter variations such as potential scan rate and ionic strength, which also demonstrates convenient controls of the related functions.
Collapse
Affiliation(s)
| | | | - Sarah Ake
- Department of Chemistry, Georgia
State University, Atlanta, Georgia 30302, United States
| | - Ruoyu Yang
- Department of Chemistry, Georgia
State University, Atlanta, Georgia 30302, United States
| | - Gangli Wang
- Department of Chemistry, Georgia
State University, Atlanta, Georgia 30302, United States
| |
Collapse
|
2
|
Hung WH, Huang TY, Lung CA, Chu CW, Yeh LH. Engineered Ionic Rectifier with Steep Channel Gradient from Angstrom-Scale to Mesoscale Based on Ultrathin MXene-Capped Single Conical Mesochannel: A Promising Platform for Efficient Osmotic Energy Generation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2412169. [PMID: 40026060 DOI: 10.1002/smll.202412169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/18/2025] [Indexed: 03/04/2025]
Abstract
Ionic rectifier that mimics the directional ion transport in biological ion channels has been shown with potential toward boosting osmotic energy conversion performance. However, the achieved power by existing rectifying devices is still limited, because they are constructed based on tiny nanoscale channels, which experience high resistance. Here, a novel high-performance ionic rectifier (abbreviated as MXene@MC) with steep channel gradient from angstrom-scale to mesoscale is reported by capping an ultrathin 2D Ti3C2Tx MXene laminate on an asymmetric conical mesochannel (MC). The device can strongly rectify ionic current (with a high ratio of 7.3-fold) even in high 0.5 m electrolyte solution, and thus a single channel can achieve an ultra-large osmotic conductance of 0.596 µS. These features enable MXene@MC as an ultrahigh performance osmotic energy generator, achieving an unprecedented osmotic power of 343 pW under a 1000-fold salinity gradient at neutral pH. Notably, simulations are also provided to demonstrate the findings of the proposed ionic rectifier and efficient osmotic energy conversion. This study unravels the underlying physics of ion transport induced by the apparent structural asymmetry of ion-selective channels, thereby providing a promising platform for further development of high-performance osmotic energy generators.
Collapse
Grants
- 113-2124-M-011-002 National Science and Technology Council (NSTC), Taiwan
- 113-2628-E-011-002 National Science and Technology Council (NSTC), Taiwan
- 112-2923-E-011-003-MY3 National Science and Technology Council (NSTC), Taiwan
- 112-2813-C-011-036-E National Science and Technology Council (NSTC), Taiwan
- 111-2222-E-035-006-MY3 National Science and Technology Council (NSTC), Taiwan
- 112-2124-M-002-015 National Science and Technology Council (NSTC), Taiwan
- 113-2628-E-011-005-MY3 National Science and Technology Council (NSTC), Taiwan
- 110-2223-E-011-003-MY3 National Science and Technology Council (NSTC), Taiwan
- and 111-2622-E-011-003 National Science and Technology Council (NSTC), Taiwan
- The Ministry of Education of Taiwan (MOE, "Sustainable Electrochemical Energy Development Center" (SEED) project)
Collapse
Affiliation(s)
- Wen-Hsin Hung
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Ting-Yi Huang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Chia-An Lung
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Chien-Wei Chu
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Li-Hsien Yeh
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
- Advanced Manufacturing Research Center, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| |
Collapse
|
3
|
Wang S, Sun Z, Ahmad M, Miao M. Fabrication of Porous MXene/Cellulose Nanofibers Composite Membrane for Maximum Osmotic Energy Harvesting. Int J Mol Sci 2024; 25:13226. [PMID: 39684935 DOI: 10.3390/ijms252313226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Two-dimensional (2D) nanofluidic channels are emerging as potential candidates for harnessing osmotic energy from salinity gradients. However, conventional 2D nanofluidic membranes suffer from high transport resistance and low ion selectivity, leading to inefficient transport dynamics and limiting energy conversion performance. In this study, we present a novel composite membrane consisting of porous MXene (PMXene) nanosheets featuring etched nanopores, in conjunction with cellulose nanofibers (CNF), yielding enhancement in ion flux and ion selectivity. A mild H2O2 oxidant is employed to etch and perforate the MXene sheets to create a robust network of cation transportation nanochannels that effectively reduces the energy barrier for cation transport. Additionally, CNF with a unique nanosize and high charge density further enhances the charge density and mechanical stability of the nanofluidic system. Under neutral pH and room temperature, the PMXene/CNF membrane demonstrates a maximum output power density of 0.95 W·m-2 at a 50-fold KCl gradient. Notably, this represents a 43% improvement over the performance of the pristine MXene/CNF membrane. Moreover, 36 nanofluidic devices connected in series are demonstrated to achieve a stable voltage output of 5.27 V and power a calculator successfully. This work holds great promise for achieving sustainable energy harvesting with efficient osmotic energy conversion utilization.
Collapse
Affiliation(s)
- Sha Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Zhe Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Mehraj Ahmad
- Department of Food Science and Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
- Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Mengyu Miao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
4
|
Baldelli M, Di Muccio G, Viola F, Giacomello A, Cecconi F, Balme S, Chinappi M. Performance of Single Nanopore and Multi-Pore Membranes for Blue Energy. Chemphyschem 2024:e202400395. [PMID: 39161129 DOI: 10.1002/cphc.202400395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/12/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024]
Abstract
The salinity gradient power extracted from the mixing of electrolyte solutions at different concentrations through selective nanoporous membranes is a promising route to renewable energy. However, several challenges need to be addressed to make this technology profitable, one of the most relevant being the increase of the extractable power per membrane area. Here, the performance of asymmetric conical and bullet-shaped nanopores in a 50 nm thick membrane are studied via electrohydrodynamic simulations, varying the pore radius, curvature, and surface charge. The output power reaches ~60 pW per pore for positively charged membranes (surface charge σw=160 mC/m2) and ~30 pW for negatively charges ones, σw=-160 mC/m2 and it is robust to minor variations of nanopore shape and radius. A theoretical argument that takes into account the interaction among neighbour pores allows to extrapolate the single-pore performance to multi-pore membranes showing that power densities from tens to hundreds of W/m2 can be reached by proper tuning of the nanopore number density and the boundary layer thickness. Our model for scaling single-pore performance to multi-pore membrane can be applied also to experimental data providing a simple tool to effectively compare different nanopore membranes in blue energy applications.
Collapse
Affiliation(s)
- Matteo Baldelli
- Department of Industrial Engeenering, University of Rome Tor Vergata, Roma, Italy
| | - Giovanni Di Muccio
- Department of Mechanical and Aerospace Engineering, University of Rome Sapienza, Roma, Italy
| | | | - Alberto Giacomello
- Department of Mechanical and Aerospace Engineering, University of Rome Sapienza, Roma, Italy
| | - Fabio Cecconi
- Istituto Sistemi Complessi, CNR, Via dei Taurini 19, Roma, Italy
- INFN, Sezione Roma 1, Piazzale Aldo Moro, 2, Roma, Italy
| | - Sébastien Balme
- Institut Européen des Membranes, IEM UMR 5635, Univ. Montpellier, France
| | - Mauro Chinappi
- Department of Industrial Engeenering, University of Rome Tor Vergata, Roma, Italy
| |
Collapse
|
5
|
Ma X, Neek-Amal M, Sun C. Advances in Two-Dimensional Ion-Selective Membranes: Bridging Nanoscale Insights to Industrial-Scale Salinity Gradient Energy Harvesting. ACS NANO 2024; 18:12610-12638. [PMID: 38733357 DOI: 10.1021/acsnano.3c11646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
Salinity gradient energy, often referred to as the Gibbs free energy difference between saltwater and freshwater, is recognized as "blue energy" due to its inherent cleanliness, renewability, and continuous availability. Reverse electrodialysis (RED), relying on ion-selective membranes, stands as one of the most prevalent and promising methods for harnessing salinity gradient energy to generate electricity. Nevertheless, conventional RED membranes face challenges such as insufficient ion selectivity and transport rates and the difficulty of achieving the minimum commercial energy density threshold of 5 W/m2. In contrast, two-dimensional nanostructured materials, featuring nanoscale channels and abundant functional groups, offer a breakthrough by facilitating rapid ion transport and heightened selectivity. This comprehensive review delves into the mechanisms of osmotic power generation within a single nanopore and nanochannel, exploring optimal nanopore dimensions and nanochannel lengths. We subsequently examine the current landscape of power generation using two-dimensional nanostructured materials in laboratory-scale settings across various test areas. Furthermore, we address the notable decline in power density observed as test areas expand and propose essential criteria for the industrialization of two-dimensional ion-selective membranes. The review concludes with a forward-looking perspective, outlining future research directions, including scalable membrane fabrication, enhanced environmental adaptability, and integration into multiple industries. This review aims to bridge the gap between previous laboratory-scale investigations of two-dimensional ion-selective membranes in salinity gradient energy conversion and their potential large-scale industrial applications.
Collapse
Affiliation(s)
- Xinyi Ma
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Mehdi Neek-Amal
- Department of Physics, Shahid Rajaee Teacher Training University, Tehran 1678815811, Iran
- Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium
| | - Chengzhen Sun
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| |
Collapse
|
6
|
Liu TR, Fung MYT, Yeh LH, Chiang CH, Yang JS, Kuo PC, Shiue J, Chen CC, Chen CW. Single-Layer Hexagonal Boron Nitride Nanopores as High-Performance Ionic Gradient Power Generators. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306018. [PMID: 38041449 DOI: 10.1002/smll.202306018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/14/2023] [Indexed: 12/03/2023]
Abstract
Atomically thin two-dimensional (2D) materials have emerged as promising candidates for efficient energy harvesting from ionic gradients. However, the exploration of robust 2D atomically thin nanopore membranes, which hold sufficient ionic selectivity and high ion permeability, remains challenging. Here, the single-layer hexagonal boron nitride (hBN) nanopores are demonstrated as various high-performance ion-gradient nanopower harvesters. Benefiting from the ultrathin atomic thickness and large surface charge (also a large Dukhin number), the hBN nanopore can realize fast proton transport while maintaining excellent cation selectivity even in highly acidic environments. Therefore, a single hBN nanopore achieves the pure osmosis-driven proton-gradient power up to ≈3 nW under 1000-fold ionic gradient. In addition, the robustness of hBN membranes in extreme pH conditions allows the ionic gradient power generation from acid-base neutralization. Utilizing 1 m HCl/KOH, the generated power can be promoted to an extraordinarily high level of ≈4.5 nW, over one magnitude higher than all existing ionic gradient power generators. The synergistic effects of ultrathin thickness, large surface charge, and excellent chemical inertness of 2D single-layer hBN render it a promising membrane candidate for harvesting ionic gradient powers, even under extreme pH conditions.
Collapse
Affiliation(s)
- Ting-Ran Liu
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Man Yui Thomas Fung
- Department of Chemical Engineering, National Taiwan University, of Science and Technology, Taipei, 10607, Taiwan
| | - Li-Hsien Yeh
- Department of Chemical Engineering, National Taiwan University, of Science and Technology, Taipei, 10607, Taiwan
- Advanced Manufacturing Research Center, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Chun-Hao Chiang
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Jhih-Sian Yang
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan
| | - Pai-Chia Kuo
- Institute of Atomic and Molecular Science, Academia Sinica, Taipei, 10617, Taiwan
| | - Jessie Shiue
- Institute of Atomic and Molecular Science, Academia Sinica, Taipei, 10617, Taiwan
| | - Chia-Chun Chen
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan
- Institute of Atomic and Molecular Science, Academia Sinica, Taipei, 10617, Taiwan
| | - Chun-Wei Chen
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
- Center of Condensed Matter Science, National Taiwan University, Taipei, 10617, Taiwan
- Center of Atomic Initiative for New Materials (AI-MAT), National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
7
|
Xiong M, Athreya N, Chakraborty R, Leburton JP. Ion Trapping and Thermionic Emission across Sub-nm Pores. NANO LETTERS 2023; 23:11719-11726. [PMID: 38078825 DOI: 10.1021/acs.nanolett.3c03592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Ionic transport through a graphene biomimetic subnanometer (sub-nm) pore of arbitrary shape and realistically decorated by intrinsic negatively charged sites is investigated by all-atom molecular dynamics (MD) simulations. In the presence of external electric fields, cation trapping-assisted translocation occurs in the vicinity of the 2D subnanometer pore, while the anion current is blocked by the negative charges. The adsorbed cations in such asymmetrically charged nanopores are located on the top of the nanopore instead of blocking the pore, as suggested previously in highly symmetric pores such as crown ethers. Our analysis of the different types of energy involved in ion translocations indicates that electrostatics is the dominant factor controlling ion transfer across these sub-nm pores. A physical model based on the thermionic emission formalism to account for the free energy barriers to ion flow reproduces the I-V characteristics.
Collapse
|
8
|
Jiang Y, Hu R, Yang C, Zhou Z, Yuan G, Zhou H, Hu S. Surface diffusion enhanced ion transport through two-dimensional nanochannels. SCIENCE ADVANCES 2023; 9:eadi8493. [PMID: 37922345 PMCID: PMC10624347 DOI: 10.1126/sciadv.adi8493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/05/2023] [Indexed: 11/05/2023]
Abstract
Fast ion permeation in nanofluidic channels has been intensively investigated in the past few decades because of their potential uses in separation technologies and osmotic energy harvesting. Mechanisms governing ion transport at this ultimately small spatial regime remain to be understood, which can only be achieved in nanochannels that are controllably fabricated. Here, we report the fabrication of two-dimensional nanochannels with their top and bottom walls consisting of atomically flat graphite and mica crystals, respectively. The distinct wall structures and properties enable us to investigate interactions between ions and interior surfaces. We find an enhanced ion transport within the channels that is orders of magnitude faster than that in the bulk solutions. The result is attributed to the highly dense packing of adsorbed cations at mica surfaces, where they diffuse in-plane. Our work provides insights into surface effects on ion transport at the nanoscale.
Collapse
Affiliation(s)
- Yu Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Rong Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Chongyang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Zhihua Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Gang Yuan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Han Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Sheng Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, P. R. China
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
9
|
Lin CY, Chang SF, Kuo KT, Garner S, Pollard SC, Chen SH, Hsu JP. Essence of the Giant Reduction of Power Density in Osmotic Energy Conversion in Porous Membranes: Importance of Testing Area. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43094-43101. [PMID: 37650485 DOI: 10.1021/acsami.3c05831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Harvesting osmotic energy through nanofluidic devices with diverse materials has received considerable attention in recent years. Often, a small testing area on a membrane was chosen to assess its power performance by calculating power density as output power per effective area. Since the choice of this testing area is arbitrary, and it is usually quite small, the result obtained can be too optimistic. There is a need to come up with a common standard so that the performance of a device/membrane can be assessed reasonably. In this study, we systematically investigate the power density as a function of testing area in nanoporous anodic-aluminum-oxide membranes. Through changing the aperture size of substrates, we clearly show that the obtained power density decreases drastically with increasing testing area. For instance, the power density acquired from the testing area of μm2-scale can be five orders of magnitude larger than that from the pristine membrane of cm2-scale. We also advance simulations by building a 3D model to simulate osmotic-driven ion transport in the multichannel system. The result of modeling agrees with our experimental observation that the power density decreases with increasing number of channels, and the ionic concentration profile reveals that the concentration polarization becomes serious as the number of channels increases. Our result highlights the importance of effective area on testing the power performance in nanofluidic devices.
Collapse
Affiliation(s)
- Chih-Yuan Lin
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Shao-Fu Chang
- Department of Mechanical Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Kuan-Ting Kuo
- Corning Research and Development Corporation, One River Front Plaza, Corning, New York, 14831, United States
| | - Sean Garner
- Corning Research and Development Corporation, One River Front Plaza, Corning, New York, 14831, United States
| | - Scott C Pollard
- Corning Research and Development Corporation, One River Front Plaza, Corning, New York, 14831, United States
| | - Shih-Hsun Chen
- Department of Mechanical Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Jyh-Ping Hsu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
10
|
Cheng B, Zhong Y, Qiu Y, Vaikuntanathan S, Park J. Giant Gateable Osmotic Power Generation from a Goldilocks Two-Dimensional Polymer. J Am Chem Soc 2023; 145:5261-5269. [PMID: 36848619 DOI: 10.1021/jacs.2c12853] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Generating electricity from a salinity gradient, known as osmotic power, provides a sustainable energy source, but it requires precise nanoscale control of membranes for maximum performance. Here, we report an ultrathin membrane, where molecule-specific short-range interactions enable giant gateable osmotic power with a record high power density (2 kW/m2 for 1 M∥1 mM KCl). Our membranes are charge-neutral two-dimensional polymers synthesized from molecular building blocks and operate in a Goldilocks regime that simultaneously maintains high ionic conductivity and permselectivity. Molecular dynamics simulations quantitatively confirm that the functionalized nanopores are small enough for high selectivity through short-range ion-membrane interactions and large enough for fast cross-membrane transport. The short-range mechanism further enables reversible gateable operation, as demonstrated by polarity switching of osmotic power with additional gating ions.
Collapse
Affiliation(s)
- Baorui Cheng
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Yu Zhong
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Yuqing Qiu
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Suriyanarayanan Vaikuntanathan
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States.,James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Jiwoong Park
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States.,James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States.,Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
11
|
Zheng DC, Hsu JP. Enhancing the osmotic energy conversion of a nanoporous membrane: influence of pore density, pH, and temperature. Phys Chem Chem Phys 2023; 25:6089-6101. [PMID: 36752071 DOI: 10.1039/d2cp05831f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Salinity gradient power, which converts Gibbs free energy of mixing to electric energy through an ion-selective pore, has great potential. Towards practical use, developing membrane-scaled nanoporous materials is desirable and necessary. Unfortunately, the presence of a significant ion concentration polarization (ICP) lowers appreciably the power harvested, especially at a high pore density. To alleviate this problem, we suggest applying an extra pressure difference ΔP across a membrane containing multiple nanopores, taking account of the associated power consumption. The results gathered reveal that the application of a negative pressure difference can improve the power harvested due to the enhanced selectivity. In addition, if the pore density of a membrane is high, raising its pore length is necessary to make the energy harvested economic. For example, if the pore length is 2000 nm and the pore density is 2.5 × 109 pores per cm2, an increment in the power density of 213 mW m-2 can be obtained by applying ΔP = -1 bar at pH 11 and 323 K, where a net positive power density can be retrieved. The performance of the system considered under various conditions is examined in detail, along with associated mechanisms.
Collapse
Affiliation(s)
- Ding-Cheng Zheng
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| | - Jyh-Ping Hsu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
12
|
Rahman MM. Membranes for Osmotic Power Generation by Reverse Electrodialysis. MEMBRANES 2023; 13:164. [PMID: 36837667 PMCID: PMC9963266 DOI: 10.3390/membranes13020164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
In recent years, the utilization of the selective ion transport through porous membranes for osmotic power generation (blue energy) has received a lot of attention. The principal of power generation using the porous membranes is same as that of conventional reverse electrodialysis (RED), but nonporous ion exchange membranes are conventionally used for RED. The ion transport mechanisms through the porous and nonporous membranes are considerably different. Unlike the conventional nonporous membranes, the ion transport through the porous membranes is largely dictated by the principles of nanofluidics. This owes to the fact that the osmotic power generation via selective ion transport through porous membranes is often referred to as nanofluidic reverse electrodialysis (NRED) or nanopore-based power generation (NPG). While RED using nonporous membranes has already been implemented on a pilot-plant scale, the progress of NRED/NPG has so far been limited in the development of small-scale, novel, porous membrane materials. The aim of this review is to provide an overview of the membrane design concepts of nanofluidic porous membranes for NPG/NRED. A brief description of material design concepts of conventional nonporous membranes for RED is provided as well.
Collapse
Affiliation(s)
- Md Mushfequr Rahman
- Helmholtz-Zentrum Hereon, Institute of Membrane Research, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| |
Collapse
|
13
|
Yadav SK, D M, Singh C, Kumar M, G A, Ramaprabhu S, Nandigana VVR, Nayak PK. Laser-Assisted Scalable Pore Fabrication in Graphene Membranes for Blue-Energy Generation. Chemphyschem 2022; 24:e202200598. [PMID: 36510477 DOI: 10.1002/cphc.202200598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
The osmotic energy from a salinity gradient (i. e. blue energy) is identified as a promising non-intermittent renewable energy source for a sustainable technology. However, this membrane-based technology is facing major limitations for large-scale viability, primarily due to the poor membrane performance. An atomically thin 2D nanoporous material with high surface charge density resolves the bottleneck and leads to a new class of membrane material the salinity gradient energy. Although 2D nanoporous membranes show extremely high performance in terms of energy generation through the single pore, the fabrication and technical challenges such as ion concentration polarization make the nanoporous membrane a non-viable solution. On the other hand, the mesoporous and micro porous structures in the 2D membrane result in improved energy generation with very low fabrication complexity. In the present work, we report femtosecond (fs) laser-assisted scalable fabrication of μm to mm size pores on Graphene membrane for blue energy generation for the first time. A remarkable osmotic power in the order of μW has been achieved using mm size pores, which is about six orders of magnitudes higher compared to nanoporous membranes, which is mainly due to the diffusion-osmosis driven large ionic flux. Our work paves the way towards fs laser-assisted scalable pore creation in the 2D membrane for large-scale osmotic power generation.
Collapse
Affiliation(s)
- Sharad Kumar Yadav
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, 600036, India.,Department of Physics, Indian Institute of Technology Madras, Chennai, 600 036, India.,Micro Nano and Bio-Fluidics Group, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Manikandan D
- Department of Physics, Indian Institute of Technology Madras, Chennai, 600 036, India
| | - Chob Singh
- Department of Physics, Indian Institute of Technology Madras, Chennai, 600 036, India
| | - Mukesh Kumar
- Department of Physics, Indian Institute of Technology Madras, Chennai, 600 036, India
| | - Aswathy G
- Department of Physics, Indian Institute of Technology Madras, Chennai, 600 036, India
| | - Sundara Ramaprabhu
- Department of Physics, Indian Institute of Technology Madras, Chennai, 600 036, India.,Alternative Energy and Nanotechnology Laboratory (AENL), Nano Functional Materials Technology Centre (NFMTC), Indian Institute of Technology Madras, Chennai, India
| | - Vishal V R Nandigana
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Pramoda K Nayak
- Department of Physics, Indian Institute of Technology Madras, Chennai, 600 036, India.,Micro Nano and Bio-Fluidics Group, Indian Institute of Technology Madras, Chennai, 600036, India.,2D Materials Research and Innovation Group, Indian Institute of Technology Madras, Chennai, 600036, India.,Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, 562112, India
| |
Collapse
|
14
|
Zhuang J, Ma L, Qiu Y. Characterization of the surface charge property and porosity of track-etched polymer membranes. Electrophoresis 2022; 43:2428-2435. [PMID: 36193776 DOI: 10.1002/elps.202200198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/20/2022] [Accepted: 09/25/2022] [Indexed: 12/13/2022]
Abstract
As an important property of porous membranes, the surface charge property determines many ionic behaviors of nanopores, such as ionic conductance and selectivity. Based on the dependence of electric double layers on bulk concentrations, ionic conductance through nanopores at high and low concentrations is governed by the bulk conductance and surface charge density, respectively. Here, through the investigation of ionic conductance inside track-etched single polyethylene terephthalate (PET) nanopores under various concentrations, the surface charge density of PET membranes is extracted as ∼-0.021 C/m2 at pH 10 over measurements with 40 PET nanopores. Simulations show that surface roughness can cause underestimation in surface charge density due to the inhibited electroosmotic flow. Then, the averaged pore size and porosity of track-etched multipore PET membranes are characterized by the developed ionic conductance method. Through coupled theoretical predictions in ionic conductance under high and low concentrations, the averaged pore size and porosity of porous membranes can be obtained simultaneously. Our method provides a simple and precise way to characterize the pore size and porosity of multipore membranes, especially for those with sub-100 nm pores and low porosities.
Collapse
Affiliation(s)
- Jiakun Zhuang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, P. R. China.,Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong, P. R. China
| | - Long Ma
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, P. R. China.,Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong, P. R. China
| | - Yinghua Qiu
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, P. R. China.,Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong, P. R. China.,Suzhou Research Institute, Shandong University, Suzhou, Jiangsu, P. R. China.,Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian, Liaoning, P. R. China
| |
Collapse
|
15
|
Laucirica G, Allegretto JA, Wagner MF, Toimil-Molares ME, Trautmann C, Rafti M, Marmisollé W, Azzaroni O. Switchable Ion Current Saturation Regimes Enabled via Heterostructured Nanofluidic Devices Based on Metal-Organic Frameworks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2207339. [PMID: 36239253 DOI: 10.1002/adma.202207339] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/27/2022] [Indexed: 06/16/2023]
Abstract
The use of track-etched membranes allows further fine-tuning of transport regimes and thus enables their use in (bio)sensing and energy-harvesting applications, among others. Recently, metal-organic frameworks (MOFs) have been combined with such membranes to further increase their potential. Herein, the creation of a single track-etched nanochannel modified with the UiO-66 MOF is proposed. By the interfacial growth method, UiO-66-confined synthesis fills the nanochannel completely and smoothly, yet its constructional porosity renders a heterostructure along the axial coordinate of the channel. The MOF heterostructure confers notorious changes in the transport regime of the nanofluidic device. In particular, the tortuosity provided by the micro- and mesostructure of UiO-66 added to its charged state leads to iontronic outputs characterized by an asymmetric ion current saturation for transmembrane voltages exceeding 0.3 V. Remarkably, this behavior can be easily and reversibly modulated by changing the pH of the media and it can also be maintained for a wide range of KCl concentrations. In addition, it is found that the modified-nanochannel functionality cannot be explained by considering just the intrinsic microporosity of UiO-66, but rather the constructional porosity that arises during the MOF growth process plays a central and dominant role.
Collapse
Affiliation(s)
- Gregorio Laucirica
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata, B1904DPI, Argentina
| | - Juan A Allegretto
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata, B1904DPI, Argentina
| | - Michael F Wagner
- GSI Helmholtzzentrum für Schwerionenforschung, 64291, Darmstadt, Germany
| | | | - Christina Trautmann
- GSI Helmholtzzentrum für Schwerionenforschung, 64291, Darmstadt, Germany
- Technische Universität Darmstadt, Materialwissenschaft, 64287, Darmstadt, Germany
| | - Matías Rafti
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata, B1904DPI, Argentina
| | - Waldemar Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata, B1904DPI, Argentina
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata, B1904DPI, Argentina
| |
Collapse
|
16
|
Trivedi M, Gupta R, Nirmalkar N. Electroosmotic transport and current rectification of viscoelastic electrolyte in a conical pore nanomembrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Lo HY, Tsou TY, Hsu JP. Ion transport in a non-isothermal electrokinetic energy conversion system. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Dong Y, Zhao Z, Zhao J, Guo Z, Du G, Sun Y, He D, Duan J, Liu J, Yao H. High-Performance Osmotic Power Generators Based on the 1D/2D Hybrid Nanochannel System. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29197-29212. [PMID: 35704847 DOI: 10.1021/acsami.2c05247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Extracting clean energy by converting the salinity gradient between river and sea into energy is an effective way to reduce the global pollution and carbon emissions. Reverse electrodialysis (RED) is of great importance to realize the energy conversion assisting the ion-selective membrane. However, its higher ion resistance and lower conversion efficiency results in the undesirable power conversion performance. Here, we demonstrate a 1D/2D hybrid nanochannel system to achieve high osmotic energy conversion and output power. This heterogeneous structure is composed of two structures, in which the subnanometer nanochannels in graphene oxide membrane (GOM) can serve as a selective layer and reduce the ion diffusion energy barrier, while the nanochannel in the polymer can introduce asymmetry to enhance ionic rectification and conversion efficiency. This heterogeneous membrane exhibits excellent cation selectivity and enhanced ionic current rectification (ICR) performance. The application of the GOM/PET hybrid nanochannel system in osmotic energy harvesting is evaluated, and the output power can reach up to 118.2 pW with the energy conversion efficiency of 40.3%. Theoretical calculation indicates that the 1D/2D hybrid system can effectively take the advantage of excellent cation selectivity of 2D lamellar nanochannels to improve its RED performance significantly.
Collapse
Affiliation(s)
- Yuhua Dong
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou730000, PR China
- Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou730000, PR China
- University of Chinese Academy of Sciences, Beijing100049, PR China
| | - Zhuo Zhao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou730000, PR China
- University of Chinese Academy of Sciences, Beijing100049, PR China
| | - Jing Zhao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou730000, PR China
- University of Chinese Academy of Sciences, Beijing100049, PR China
| | - Zaichao Guo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou730000, PR China
- University of Chinese Academy of Sciences, Beijing100049, PR China
| | - Guanghua Du
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou730000, PR China
- University of Chinese Academy of Sciences, Beijing100049, PR China
| | - Youmei Sun
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou730000, PR China
- University of Chinese Academy of Sciences, Beijing100049, PR China
| | - Deyan He
- Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou730000, PR China
| | - Jinglai Duan
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou730000, PR China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou516000, PR China
- University of Chinese Academy of Sciences, Beijing100049, PR China
| | - Jie Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou730000, PR China
- University of Chinese Academy of Sciences, Beijing100049, PR China
| | - Huijun Yao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou730000, PR China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou516000, PR China
- University of Chinese Academy of Sciences, Beijing100049, PR China
| |
Collapse
|
19
|
Yadav SK, Kumar M, Ramaprabhu S, Nandigana VVR, Nayak PK. Design and development of an automated experimental setup for ion transport measurements. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:064104. [PMID: 35778037 DOI: 10.1063/5.0086296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
The ion transport measurements using various ion-exchange membranes (IEMs) face several challenges, including controllability, reproducibility, reliability, and accuracy. This is due to the manual filling of the solutions in two different reservoirs in a typical diffusion cell experiment with a random flow rate, which results in the diffusion through the IEM even before turning on the data acquisition system as reported so far. Here, we report the design and development of an automated experimental setup for ion transport measurements using IEMs. The experimental setup has been calibrated and validated by performing ion transport measurements using a standard nanoporous polycarbonate membrane. We hope that the present work will provide a standard tool for realizing reliable ion transport measurements using ion-exchange membranes and can be extended to study other membranes of various pore densities, shapes, and sizes.
Collapse
Affiliation(s)
- Sharad Kumar Yadav
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Mukesh Kumar
- Department of Physics, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Sundara Ramaprabhu
- Department of Physics, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Vishal V R Nandigana
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Pramoda K Nayak
- Department of Physics, Indian Institute of Technology Madras, Chennai 600 036, India
| |
Collapse
|
20
|
Abrao-Nemeir I, Zaki O, Meyer N, Lepoitevin M, Torrent J, Janot JM, Balme S. Combining ionic diode, resistive pulse and membrane for detection and separation of anti-CD44 antibody. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Zhang H, Li X, Hou J, Jiang L, Wang H. Angstrom-scale ion channels towards single-ion selectivity. Chem Soc Rev 2022; 51:2224-2254. [PMID: 35225300 DOI: 10.1039/d1cs00582k] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Artificial ion channels with ion permeability and selectivity comparable to their biological counterparts are highly desired for efficient separation, biosensing, and energy conversion technologies. In the past two decades, both nanoscale and sub-nanoscale ion channels have been successfully fabricated to mimic biological ion channels. Although nanoscale ion channels have achieved intelligent gating and rectification properties, they cannot realize high ion selectivity, especially single-ion selectivity. Artificial angstrom-sized ion channels with narrow pore sizes <1 nm and well-defined pore structures mimicking biological channels have accomplished high ion conductivity and single-ion selectivity. This review comprehensively summarizes the research progress in the rational design and synthesis of artificial subnanometer-sized ion channels with zero-dimensional to three-dimensional pore structures. Then we discuss cation/anion, mono-/di-valent cation, mono-/di-valent anion, and single-ion selectivities of the synthetic ion channels and highlight their potential applications in high-efficiency ion separation, energy conversion, and biological therapeutics. The gaps of single-ion selectivity between artificial and natural channels and the connections between ion selectivity and permeability of synthetic ion channels are covered. Finally, the challenges that need to be addressed in this research field and the perspective of angstrom-scale ion channels are discussed.
Collapse
Affiliation(s)
- Huacheng Zhang
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Xingya Li
- Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China.
| | - Jue Hou
- Manufacturing, CSIRO, Clayton, Victoria 3168, Australia
| | - Lei Jiang
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Huanting Wang
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
22
|
Lo HY, Tsou TY, Hsu JP. Improving the osmotic energy conversion efficiency of multiple nanopores by a cross flow. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Liu TJ, Ma T, Lin CY, Balme S, Hsu JP. Origin of Ultrahigh Rectification in Polyelectrolyte Bilayers Modified Conical Nanopores. J Phys Chem Lett 2021; 12:11858-11864. [PMID: 34874161 DOI: 10.1021/acs.jpclett.1c03513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The switching of "ON" and "OFF" states of an ionic diode is investigated by considering a conical nanopore partially functionalized two polyelectrolyte (PE) layers via layer-by-layer deposition. Through observing the inversion of its rectification behavior, we demonstrate the function of the PE bilayers in ionic transport regulation. The ionic diode exhibits an ultrahigh ion rectification at a low level of pH. In an aqueous NaCl solution at pH 2, for example, the ratio of the current at "ON" state and that at "OFF" state can be about 800 and 200 for 1 and 100 mM, respectively. This remarkable gating behavior can be explained by the anion-pump-induced ion accumulation in the neutral region as well as the depletion zone at the interface. Our results further demonstrate the possibility of achieving an ultrahigh rectification in an ionic diode having a unipolar-like configuration.
Collapse
Affiliation(s)
- Tien-Juin Liu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Tianji Ma
- Institut Européen des Membranes, UMR5635 UM ENSM CNRS, Place Eugène Bataillon, 34095 CEDEX 5 Montpellier, France
| | - Chih-Yuan Lin
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Sébastien Balme
- Institut Européen des Membranes, UMR5635 UM ENSM CNRS, Place Eugène Bataillon, 34095 CEDEX 5 Montpellier, France
| | - Jyh-Ping Hsu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
24
|
Meyer N, Abrao-Nemeir I, Janot JM, Torrent J, Lepoitevin M, Balme S. Solid-state and polymer nanopores for protein sensing: A review. Adv Colloid Interface Sci 2021; 298:102561. [PMID: 34768135 DOI: 10.1016/j.cis.2021.102561] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/29/2021] [Accepted: 10/31/2021] [Indexed: 01/15/2023]
Abstract
In two decades, the solid state and polymer nanopores became attractive method for the protein sensing with high specificity and sensitivity. They also allow the characterization of conformational changes, unfolding, assembly and aggregation as well the following of enzymatic reaction. This review aims to provide an overview of the protein sensing regarding the technique of detection: the resistive pulse and ionic diodes. For each strategy, we report the most significant achievement regarding the detection of peptides and protein as well as the conformational change, protein-protein assembly and aggregation process. We discuss the limitations and the recent strategies to improve the nanopore resolution and accuracy. A focus is done about concomitant problematic such as protein adsorption and nanopore lifetime.
Collapse
|
25
|
Renewable Power Generation by Reverse Electrodialysis Using an Ion Exchange Membrane. MEMBRANES 2021; 11:membranes11110830. [PMID: 34832059 PMCID: PMC8619607 DOI: 10.3390/membranes11110830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/24/2022]
Abstract
Reverse electrodialysis (RED) is a promising technology to extract sustainable salinity gradient energy. However, the RED technology has not reached its full potential due to membrane efficiency and fouling and the complex interplay between ionic flows and fluidic configurations. We investigate renewable power generation by harnessing salinity gradient energy during reverse electrodialysis using a lab-scaled fluidic cell, consisting of two reservoirs separated by a nanoporous ion exchange membrane, under various flow rates (qf) and salt-concentration difference (Δc). The current-voltage (I-V) characteristics of the single RED unit reveals a linear dependence, similar to an electrochemical cell. The experimental results show that the change of inflow velocity has an insignificant impact on the I-V data for a wide range of flow rates explored (0.01–1 mL/min), corresponding to a low-Peclet number regime. Both the maximum RED power density (Pc,m) and open-circuit voltage (ϕ0) increase with increasing Δc. On the one hand, the RED cell’s internal resistance (Rc) empirically reveals a power-law dependence of Rc∝Δc−α. On the other hand, the open-circuit voltage shows a logarithmic relationship of ϕ0=BlnΔc+β. These experimental results are consistent with those by a nonlinear numerical simulation considering a single charged nanochannel, suggesting that parallelization of charged nano-capillaries might be a good upscaling model for a nanoporous membrane for RED applications.
Collapse
|
26
|
Laucirica G, Toimil-Molares ME, Trautmann C, Marmisollé W, Azzaroni O. Nanofluidic osmotic power generators - advanced nanoporous membranes and nanochannels for blue energy harvesting. Chem Sci 2021; 12:12874-12910. [PMID: 34745520 PMCID: PMC8513907 DOI: 10.1039/d1sc03581a] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/25/2021] [Indexed: 01/10/2023] Open
Abstract
The increase of energy demand added to the concern for environmental pollution linked to energy generation based on the combustion of fossil fuels has motivated the study and development of new sustainable ways for energy harvesting. Among the different alternatives, the opportunity to generate energy by exploiting the osmotic pressure difference between water sources of different salinities has attracted considerable attention. It is well-known that this objective can be accomplished by employing ion-selective dense membranes. However, so far, the current state of this technology has shown limited performance which hinders its real application. In this context, advanced nanostructured membranes (nanoporous membranes) with high ion flux and selectivity enabling the enhancement of the output power are perceived as a promising strategy to overcome the existing barriers in this technology. While the utilization of nanoporous membranes for osmotic power generation is a relatively new field and therefore, its application for large-scale production is still uncertain, there have been major developments at the laboratory scale in recent years that demonstrate its huge potential. In this review, we introduce a comprehensive analysis of the main fundamental concepts behind osmotic energy generation and how the utilization of nanoporous membranes with tailored ion transport can be a key to the development of high-efficiency blue energy harvesting systems. Also, the document discusses experimental issues related to the different ways to fabricate this new generation of membranes and the different experimental set-ups for the energy-conversion measurements. We highlight the importance of optimizing the experimental variables through the detailed analysis of the influence on the energy capability of geometrical features related to the nanoporous membranes, surface charge density, concentration gradient, temperature, building block integration, and others. Finally, we summarize some representative studies in up-scaled membranes and discuss the main challenges and perspectives of this emerging field.
Collapse
Affiliation(s)
- Gregorio Laucirica
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET CC 16 Suc. 4 1900 La Plata Argentina http://softmatter.quimica.unlp.edu.ar www.twitter.com/softmatterlab
| | | | - Christina Trautmann
- GSI Helmholtzzentrum für Schwerionenforschung 64291 Darmstadt Germany
- Technische Universität Darmstadt, Materialwissenschaft 64287 Darmstadt Germany
| | - Waldemar Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET CC 16 Suc. 4 1900 La Plata Argentina http://softmatter.quimica.unlp.edu.ar www.twitter.com/softmatterlab
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET CC 16 Suc. 4 1900 La Plata Argentina http://softmatter.quimica.unlp.edu.ar www.twitter.com/softmatterlab
| |
Collapse
|
27
|
Ionic conduction through single-pore and multipore polymer membranes in aprotic organic electrolytes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119505] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Chung CY, Hsu JP. Nanopore-based desalination subject to simultaneously applied pressure gradient and gating potential. J Colloid Interface Sci 2021; 594:737-744. [PMID: 33789185 DOI: 10.1016/j.jcis.2021.03.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
The performance of a dielectric membrane in desalting is assessed by considering a cylindrical nanopore, surface modified by a dielectric layer, subject to simultaneously applied pressure gradient and gating potential. The charged conditions of the nanopore can be tuned by modulating the applied gating potential so that it can be used for rejecting different types of salt. In general, the thinner the dielectric layer and/or the larger its dielectric constant the better the salt rejection performance. For example, if the thickness of the dielectric layer is 10 nm with a relative dielectric constant of 25, applying a pressure difference of 5 MPa and gating potential of 1 V yields 49% rejection. However, it declines to 9% if the relative dielectric constant is lowered to 5 with other parameters fixed, and 23% if that thickness is 50 nm with other parameters fixed. The results of numerical simulation based on various types of single salt and mixture salts with ions of different valences reveal that the type of ions which need be filtrated can be selected effectively through regulating the gating potential.
Collapse
Affiliation(s)
- Chia-Yang Chung
- Department of Chemical Engineering, National Taiwan University, Taiwan
| | - Jyh-Ping Hsu
- Department of Chemical Engineering, National Taiwan University, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| |
Collapse
|
29
|
Fujinami Tanimoto IM, Cressiot B, Jarroux N, Roman J, Patriarche G, Le Pioufle B, Pelta J, Bacri L. Selective target protein detection using a decorated nanopore into a microfluidic device. Biosens Bioelectron 2021; 183:113195. [PMID: 33857755 DOI: 10.1016/j.bios.2021.113195] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 10/21/2022]
Abstract
Solid-state nanopores provide a powerful tool to electrically analyze nanoparticles and biomolecules at single-molecule resolution. These biosensors need to have a controlled surface to provide information about the analyte. Specific detection remains limited due to nonspecific interactions between the molecules and the nanopore. Here, a polymer surface modification to passivate the membrane is performed. This functionalization improves nanopore stability and ionic conduction. Moreover, one can control the nanopore diameter and the specific interactions between protein and pore surface. The effect of ionic strength and pH are probed. Which enables control of the electroosmotic driving force and dynamics. Furthermore, a study of polymer chain structure and permeability in the pore are carried out. The nanopore chip is integrated into a microfluidic device to ease its handling. Finally, a discussion of an ionic conductance model through a permeable crown along the nanopore surface is elucidated. The proof of concept is demonstrated by the capture of free streptavidin by the biotins grafted into the nanopore. In the future, this approach could be used for virus diagnostic, nanoparticle or biomarker sensing.
Collapse
Affiliation(s)
- Izadora Mayumi Fujinami Tanimoto
- Université Paris-Saclay, Univ Evry, CNRS, LAMBE, 91025, Evry-Courcouronnes, France; Université Paris-Saclay, ENS Paris-Saclay, CNRS, LuMIn, Institut d'Alembert, 91190, Gif-sur-Yvette, France
| | | | - Nathalie Jarroux
- Université Paris-Saclay, Univ Evry, CNRS, LAMBE, 91025, Evry-Courcouronnes, France
| | - Jean Roman
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, LuMIn, Institut d'Alembert, 91190, Gif-sur-Yvette, France
| | - Gilles Patriarche
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120, Palaiseau, France
| | - Bruno Le Pioufle
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, LuMIn, Institut d'Alembert, 91190, Gif-sur-Yvette, France.
| | - Juan Pelta
- Université Paris-Saclay, Univ Evry, CNRS, LAMBE, 91025, Evry-Courcouronnes, France.
| | - Laurent Bacri
- Université Paris-Saclay, Univ Evry, CNRS, LAMBE, 91025, Evry-Courcouronnes, France.
| |
Collapse
|
30
|
Li C, Wen L, Sui X, Cheng Y, Gao L, Jiang L. Large-scale, robust mushroom-shaped nanochannel array membrane for ultrahigh osmotic energy conversion. SCIENCE ADVANCES 2021; 7:7/21/eabg2183. [PMID: 34138731 PMCID: PMC8133705 DOI: 10.1126/sciadv.abg2183] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/29/2021] [Indexed: 05/20/2023]
Abstract
The osmotic energy, a large-scale clean energy source, can be converted to electricity directly by ion-selective membranes. None of the previously reported membranes meets all the crucial demands of ultrahigh power density, excellent mechanical stability, and upscaled fabrication. Here, we demonstrate a large-scale, robust mushroom-shaped (with stem and cap) nanochannel array membrane with an ultrathin selective layer and ultrahigh pore density, generating the power density up to 22.4 W·m-2 at a 500-fold salinity gradient, which is the highest value among those of upscaled membranes. The stem parts are a negative-charged one-dimensional (1D) nanochannel array with a density of ~1011 cm-2, deriving from a block copolymer self-assembly; while the cap parts, as the selective layer, are formed by chemically grafted single-molecule-layer hyperbranched polyethyleneimine equivalent to tens of 1D nanochannels per stem. The membrane design strategy provides a promising approach for large-scale osmotic energy conversion.
Collapse
Affiliation(s)
- Chao Li
- Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Liping Wen
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xin Sui
- Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Yiren Cheng
- Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Longcheng Gao
- Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China.
| | - Lei Jiang
- Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
31
|
Wang L, Wang Z, Patel SK, Lin S, Elimelech M. Nanopore-Based Power Generation from Salinity Gradient: Why It Is Not Viable. ACS NANO 2021; 15:4093-4107. [PMID: 33497186 DOI: 10.1021/acsnano.0c08628] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In recent years, the development of nanopore-based membranes has revitalized the prospect of harvesting salinity gradient (blue) energy. In this study, we systematically analyze the energetic performance of nanopore-based power generation (NPG) at various process scales, beginning with a single nanopore, followed by a multipore membrane coupon, and ending with a full-scale system. We confirm the high power densities attainable by a single nanopore and demonstrate that, at the coupon scale and above, concentration polarization severely hinders the power density of NPG, revealing the common, yet significant, error in linearly extrapolating single-pore performance to multipore membranes. Through our consideration of concentration polarization, we also importantly show that the development of materials with exceptional nanopore properties provides limited enhancement of practical process performance. For a full-scale NPG membrane module, we find an inherent tradeoff between power density and thermodynamic energy efficiency, whereby achieving a high power density sacrifices the energy efficiency. Furthermore, we derive a simple expression for the theoretical maximum energy efficiency of NPG, showing it is solely related to the membrane selectivity (i.e., S2/2). Through this relation, it is apparent that the energy efficiency of NPG is limited to only 50% (for a completely selective membrane, i.e., S = 1), reinforcing our optimistic full-scale simulations which result in a (practical) maximum energy efficiency of 42%. Finally, we assess the net extractable energy of a full-scale NPG system which mixes river water and seawater by including the energy losses from pretreatment and pumping, revealing that the NPG process-both in its current state of development and in the case of highly optimistic performance with minimized external energy losses-is not viable for power generation.
Collapse
Affiliation(s)
- Li Wang
- Department of Chemical and Environmental Engineering, Yale University, P.O. Box 208268, New Haven, Connecticut 06520, United States
| | - Zhangxin Wang
- Department of Chemical and Environmental Engineering, Yale University, P.O. Box 208268, New Haven, Connecticut 06520, United States
| | - Sohum K Patel
- Department of Chemical and Environmental Engineering, Yale University, P.O. Box 208268, New Haven, Connecticut 06520, United States
| | - Shihong Lin
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, P.O. Box 208268, New Haven, Connecticut 06520, United States
| |
Collapse
|
32
|
Fabrication of soft-etched nanoporous polyimide membranes for ionic conduction and discrimination. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118633] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Wang H, Su L, Yagmurcukardes M, Chen J, Jiang Y, Li Z, Quan A, Peeters FM, Wang C, Geim AK, Hu S. Blue Energy Conversion from Holey-Graphene-like Membranes with a High Density of Subnanometer Pores. NANO LETTERS 2020; 20:8634-8639. [PMID: 33179495 DOI: 10.1021/acs.nanolett.0c03342] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Blue energy converts the chemical potential difference from salinity gradients into electricity via reverse electrodialysis and provides a renewable source of clean energy. To achieve high energy conversion efficiency and power density, nanoporous membrane materials with both high ionic conductivity and ion selectivity are required. Here, we report ion transport through a network of holey-graphene-like sheets made by bottom-up polymerization. The resulting ultrathin membranes provide controlled pores of <10 Å in diameter with an estimated density of about 1012 cm-2. The pores' interior contains NH2 groups that become electrically charged with varying pH and allow tunable ion selectivity. Using the holey-graphene-like membranes, we demonstrate power outputs reaching hundreds of watts per square meter. The work shows a viable route toward creating membranes with high-density angstrom-scale pores, which can be used for energy generation, ion separation, and related technologies.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Liangmei Su
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | | | - Jiawei Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Yu Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Zhe Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Anchang Quan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | | | - Cheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Andre K Geim
- School of Physics & Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom
- National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Sheng Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
34
|
Gao M, Tsai PC, Su YS, Peng PH, Yeh LH. Single Mesopores with High Surface Charges as Ultrahigh Performance Osmotic Power Generators. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2006013. [PMID: 33155434 DOI: 10.1002/smll.202006013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/14/2020] [Indexed: 06/11/2023]
Abstract
Numerous studies on osmotic power generators with nanoscale pores are conducted. However, their performance output is limited because of the finite osmotic current and conductance from such tiny pores. Here, a proof-of-concept study demonstrating that the rectified mesopore (sub-micrometer-scale pore) with high surface charges can be applied in osmotic energy conversion is reported. A single conical mesopore of ≈405 nm in tip diameter, which can reach an osmotic conductance as high as 0.284 μS (corresponding to a current of 27.5 nA and voltage of 97 mV), enables a record-high power of 667 pW under a 1000-fold salinity gradient, more than doubling all of the state-of-the-art single-pore osmotic power generators reported. This work extends the knowledge of osmotic energy with solid-state pores from nanoscale to mesoscale and opens up a promising avenue toward ultrahigh performance osmotic power.
Collapse
Affiliation(s)
- Mengyao Gao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Pei-Ching Tsai
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Yen-Shao Su
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Po-Hsien Peng
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Li-Hsien Yeh
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| |
Collapse
|
35
|
Huang WC, Hsu JP. Ultrashort nanopores of large radius can generate anomalously high salinity gradient power. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136613] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Laucirica G, Toimil-Molares ME, Trautmann C, Marmisollé W, Azzaroni O. Polyaniline for Improved Blue Energy Harvesting: Highly Rectifying Nanofluidic Diodes Operating in Hypersaline Conditions via One-Step Functionalization. ACS APPLIED MATERIALS & INTERFACES 2020; 12:28148-28157. [PMID: 32449855 DOI: 10.1021/acsami.0c05102] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Solid-state nanochannels have attracted substantial attention of the scientific community due to their remarkable control of ionic transport and the feasibility to regulate the iontronic output by different stimuli. Most of the developed nanodevices are subjected to complex modification methods or show functional responsiveness only in moderate-ionic-strength solutions. Within this project, we present a nanofluidic device with enhanced ionic current rectification properties attained by a simple one-step functionalization of single bullet-shaped polyethylene terephthalate (PET) nanochannels with polyaniline (PANI) that can work in high-ionic-strength solutions. The integration of PANI also introduces a broad pH sensitivity, which makes it possible to modulate the ionic transport behavior between anion-selective and cation-selective regimes depending on the pH range. Since PANI is an electrochemically active polymer, ionic transport also becomes dependent on the presence of redox stimuli in solution. We demonstrate that PANI-functionalized single-nanochannel membranes function as an efficient salinity gradient-based energy conversion device even in acidic concentrated salt solutions, opening the door to applications under a variety of novel operating conditions.
Collapse
Affiliation(s)
- Gregorio Laucirica
- Instituto de Investigaciones Fisicoquı́micas Teóricas y Aplicadas (INIFTA), Departamento de Quı́mica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CONICET, 64 and 113, 1900 La Plata, Argentina
| | | | - Christina Trautmann
- GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
- Technische Universität Darmstadt, Materialwissenshaft, 64287 Darmstadt, Germany
| | - Waldemar Marmisollé
- Instituto de Investigaciones Fisicoquı́micas Teóricas y Aplicadas (INIFTA), Departamento de Quı́mica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CONICET, 64 and 113, 1900 La Plata, Argentina
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquı́micas Teóricas y Aplicadas (INIFTA), Departamento de Quı́mica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CONICET, 64 and 113, 1900 La Plata, Argentina
| |
Collapse
|
37
|
Ramirez P, Cervera J, Ali M, Nasir S, Ensinger W, Mafe S. Impact of Surface Charge Directionality on Membrane Potential in Multi-ionic Systems. J Phys Chem Lett 2020; 11:2530-2534. [PMID: 32160752 DOI: 10.1021/acs.jpclett.0c00554] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The membrane potential (Vmem), defined as the electric potential difference across a membrane flanked by two different salt solutions, is central to electrochemical energy harvesting and conversion. Also, Vmem and the ionic concentrations that establish it are important to biophysical chemistry because they regulate crucial cell processes. We study experimentally and theoretically the salt dependence of Vmem in single conical nanopores for the case of multi-ionic systems of different ionic charge numbers. The major advances of this work are (i) to measure Vmem using a series of ions (Na+, K+, Ca2+, Cl-, and SO42-) that are of interest to both energy conversion and cell biochemistry, (ii) to describe the physicochemical effects resulting from the nanostructure asymmetry, (iii) to develop a theoretical model for multi-ionic systems, and (iv) to quantify the contributions of the liquid junction potentials established in the salt bridges to the total cell membrane potential.
Collapse
Affiliation(s)
- Patricio Ramirez
- Departamento de Física Aplicada, Universitat Politécnica de València, E-46022 València, Spain
| | - Javier Cervera
- Departament de Física de la Terra i Termodinàmica, Universitat de València, E-46100 Burjassot, Spain
| | - Mubarak Ali
- Materials Research Department, GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany
- Department of Material- and Geo-Sciences, Technische Universität Darmstadt, D-64287 Darmstadt, Germany
| | - Saima Nasir
- Materials Research Department, GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany
- Department of Material- and Geo-Sciences, Technische Universität Darmstadt, D-64287 Darmstadt, Germany
| | - Wolfgang Ensinger
- Department of Material- and Geo-Sciences, Technische Universität Darmstadt, D-64287 Darmstadt, Germany
| | - Salvador Mafe
- Departament de Física de la Terra i Termodinàmica, Universitat de València, E-46100 Burjassot, Spain
| |
Collapse
|
38
|
Yen WK, Huang WC, Hsu JP. Ion current rectification behavior of a nanochannel having nonuniform cross-section. Electrophoresis 2020; 41:802-810. [PMID: 32107787 DOI: 10.1002/elps.201900396] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/14/2020] [Accepted: 02/19/2020] [Indexed: 01/30/2023]
Abstract
Due to its versatile applications in biotechnology, ion current rectification (ICR), which arises from the asymmetric nature of the ion transport in a nanochannel, has drawn much attention, recently. Here, the ICR behavior of a pH-regulated nanochannel comprising two series connected cylindrical nanochannels of different radii is examined theoretically, focusing on the influences of the radii ratio, the length ratio, the bulk concentration, and the solution pH. The results of numerical simulation reveal that the rectification factor exhibits a local maximum with respect to both the radii ratio and the length ratio. The values of the radii ratio and the length ratio at which the local maximum in the rectification factor occur depend upon the level of the bulk salt concentration. The rectification factor also shows a local maximum as the solution pH varies. Among the factors examined, the solution pH influences the ICR behavior of the nanochannel most significantly.
Collapse
Affiliation(s)
- Wei-Kuan Yen
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Wei-Cheng Huang
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Jyh-Ping Hsu
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan.,Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| |
Collapse
|
39
|
Automated measuring of mass transport through synthetic nanochannels functionalized with polyelectrolyte porous networks. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
40
|
Hsu JP, Su TC, Peng PH, Hsu SC, Zheng MJ, Yeh LH. Unraveling the Anomalous Surface-Charge-Dependent Osmotic Power Using a Single Funnel-Shaped Nanochannel. ACS NANO 2019; 13:13374-13381. [PMID: 31639293 DOI: 10.1021/acsnano.9b06774] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanofluidic osmotic power, which converts a difference in salinity between brine and fresh water into electricity with nanoscale channels, has received more and more attention in recent years. It is long believed that to gain high-performance osmotic power, highly charged channel materials should be exploited so as to enhance the ion selectivity. In this paper, we report counterintuitive surface-charge-density-dependent osmotic power in a single funnel-shaped nanochannel (FSN), violating the previous viewpoint. For the highly charged nanochannel, the performance of osmotic power decreases with a further increase in its surface charge density. With increasing pH (surface charge density), the FSN enables a local maximum power density as high as ∼3.5 kW/m2 in a 500 mM/1 mM KCl gradient. This observation is strongly supported by our rigorous model where the equilibrium chemical reaction between functional carboxylate ion groups on the channel wall and protons is taken into account. The modeling reveals that for a highly charged nanochannel, a significant increase in the surface charge density amplifies the ion concentration polarization effect, thus weakening the effective salinity ratio across the channel and undermining the osmotic power generated.
Collapse
Affiliation(s)
- Jyh-Ping Hsu
- Department of Chemical Engineering , National Taiwan University of Science and Technology , Taipei 10607 , Taiwan
- Department of Chemical Engineering , National Taiwan University , Taipei 10617 , Taiwan
| | - Tzu-Chiao Su
- Department of Chemical Engineering , National Taiwan University , Taipei 10617 , Taiwan
| | - Po-Hsien Peng
- Department of Chemical Engineering , National Taiwan University of Science and Technology , Taipei 10607 , Taiwan
| | - Shih-Chieh Hsu
- Department of Chemical and Materials Engineering , Tamkang University , New Taipei City 25137 , Taiwan
| | - Min-Jie Zheng
- Department of Chemical Engineering , National Taiwan University of Science and Technology , Taipei 10607 , Taiwan
| | - Li-Hsien Yeh
- Department of Chemical Engineering , National Taiwan University of Science and Technology , Taipei 10607 , Taiwan
| |
Collapse
|
41
|
Ma T, Balanzat E, Janot JM, Balme S. Nanopore Functionalized by Highly Charged Hydrogels for Osmotic Energy Harvesting. ACS APPLIED MATERIALS & INTERFACES 2019; 11:12578-12585. [PMID: 30860813 DOI: 10.1021/acsami.9b01768] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The salinity gradient between brine and fresh water is an abundant source of power which can be harvested by two major membrane methods: pressure-retarded osmosis and reversed electrodialysis. Nowadays, the latter technology is close to real application, but it still suffers from low power yield. Low membrane selectivity and complex membrane fabrication are the main limiting factors. To improve that, we design a couple of ion-selective membranes based on the track-etched polymer nanopore functionalized by highly charged hydrogels. Two nanopore geometries are compared (cylindrical and conical shape) to generate osmotic energy with gel functions and more importantly can be scaled up. Experiments from the single nanopore and multipore membrane to stacked membranes show complete characterization from ionic transportation to energy generation and a clear relationship from the single pore to stacked membranes. In the actual experiment conditions, a power density of 0.37 W m-2 at pH 7 was achieved. By improving ionic tracks and reducing intermembrane distances, it can be a good candidate for industrial applications.
Collapse
Affiliation(s)
- Tianji Ma
- Institut Européen des Membranes, UMR5635 UM ENSM CNRS , Place Eugène Bataillon , 34095 Montpellier Cedex 5 , France
| | - Emmanuel Balanzat
- Centre de Recherche sur les Ions, les Matériaux et la Photonique, UMR6252 CEA-CNRS-ENSICAEN , 6 Boulevard du Maréchal Juin , 14050 Caen Cedex 4 , France
| | - Jean-Marc Janot
- Institut Européen des Membranes, UMR5635 UM ENSM CNRS , Place Eugène Bataillon , 34095 Montpellier Cedex 5 , France
| | - Sébastien Balme
- Institut Européen des Membranes, UMR5635 UM ENSM CNRS , Place Eugène Bataillon , 34095 Montpellier Cedex 5 , France
| |
Collapse
|
42
|
Voltage-controlled ion transport and selectivity in a conical nanopore functionalized with pH-tunable polyelectrolyte brushes. J Colloid Interface Sci 2019; 537:496-504. [PMID: 30469118 DOI: 10.1016/j.jcis.2018.11.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 01/12/2023]
Abstract
Chemically functionalized bioinspired nanopores are widely adopted to control the ionic transport for various purposes. A detailed understanding of the underlying mechanisms is not only desirable but also necessary for device design and experimental data interpretation. Here, the conductance and the ion selectivity of a conical nanopore surface modified by a polyelectrolyte (PE) layer are studied through adjusting the pH, the bulk salt concentration, and the level of the applied potential bias. Possible mechanisms are proposed and discussed in detail. We show that the conductance is sensitive to the variation in the solution pH. The ion selectivity of the nanopore is influenced significantly by both the solution pH and the level of the applied potential bias. In particular, a cation-selective nanopore might become anion-selective through raising the applied potential bias. The ion transport behavior can be tuned easily by adjusting the level of pH, salt concentration, and applied potential bias, thereby providing useful information for the design of nanopore-based sensing devices.
Collapse
|
43
|
Hsu JP, Chu YY, Lin CY, Tseng S. Ion transport in a pH-regulated conical nanopore filled with a power-law fluid. J Colloid Interface Sci 2019; 537:358-365. [DOI: 10.1016/j.jcis.2018.11.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 11/28/2022]
|
44
|
Gao J, Liu X, Jiang Y, Ding L, Jiang L, Guo W. Understanding the Giant Gap between Single-Pore- and Membrane-Based Nanofluidic Osmotic Power Generators. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804279. [PMID: 30653272 DOI: 10.1002/smll.201804279] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/06/2018] [Indexed: 05/20/2023]
Abstract
Nanofluidic blue energy harvesting attracts great interest due to its high power density and easy-to-implement nature. Proof-of-concept studies on single-pore platforms show that the power density approaches up to 103 to 106 W m-2 . However, to translate the estimated high power density into real high power becomes a challenge in membrane-scale applications. The actual power density from existing membrane materials is merely several watts per square meter. Understanding the origin and thereby bridging the giant gap between the single-pore demonstration and the membrane-scale application is therefore highly demanded. In this work, an intuitive resistance paradigm is adopted to show that this giant gap originates from the different ion transport property in porous membrane, which is dominated by both the constant reservoir resistance and the reservoir/nanopore interfacial resistance. In this case, the generated electric power becomes saturated despite the increasing pore number. The theoretical predictions are further compared with existing experimental results in literature. For both single nanopore and multipore membrane, the simulation results excellently cover the range of the experimental results. Importantly, by suppressing the reservoir and interfacial resistances, kW m-2 to MW m-2 power density can be achieved with multipore membranes, approaching the level of a single-pore system.
Collapse
Affiliation(s)
- Jun Gao
- Faculty of Science and Technology, University of Twente, Enschede, 7500AE, The Netherlands
| | - Xueli Liu
- Faculty of Science and Technology, University of Twente, Enschede, 7500AE, The Netherlands
| | - Yanan Jiang
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Liping Ding
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Wei Guo
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
45
|
Lin CY, Combs C, Su YS, Yeh LH, Siwy ZS. Rectification of Concentration Polarization in Mesopores Leads To High Conductance Ionic Diodes and High Performance Osmotic Power. J Am Chem Soc 2019; 141:3691-3698. [DOI: 10.1021/jacs.8b13497] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Chih-Yuan Lin
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | | | - Yen-Shao Su
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Li-Hsien Yeh
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | | |
Collapse
|
46
|
Chinappi M, Malgaretti P. Charge polarization, local electroneutrality breakdown and eddy formation due to electroosmosis in varying-section channels. SOFT MATTER 2018; 14:9083-9087. [PMID: 30418463 DOI: 10.1039/c8sm01298a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We characterize the dynamics of an electrolyte embedded in a varying-section channel under the action of a constant external electrostatic field. By means of molecular dynamics simulations we determine the stationary density, charge and velocity profiles of the electrolyte. Our results show that when the Debye length is comparable to the width of the channel bottlenecks a concentration polarization along with two eddies sets inside the channel. Interestingly, upon increasing the external field, local electroneutrality breaks down and charge polarization sets leading to the onset of net dipolar field. This novel scenario, that cannot be captured by the standard approaches based on local electroneutrality, opens the route for the realization of novel micro and nano-fluidic devices.
Collapse
Affiliation(s)
- Mauro Chinappi
- Dipartimento di Ingegneria Industriale, Università di Roma Tor Vergata, via del Politecnico 1, 00133 Roma, Italia.
| | | |
Collapse
|
47
|
Puertas AM, Malgaretti P, Pagonabarraga I. Active microrheology in corrugated channels. J Chem Phys 2018; 149:174908. [DOI: 10.1063/1.5048343] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Antonio M. Puertas
- Department of Applied Physics, Universidad de Almería, 04120 Almería, Spain
| | - Paolo Malgaretti
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, D-70569 Stuttgart, Germany and IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - Ignacio Pagonabarraga
- CECAM, Centre Européen de Calcul Atomique et Moléculaire, École Polytechnique Fédérale de Lasuanne, Batochime, Avenue Forel 2, 1015 Lausanne, Switzerland
| |
Collapse
|
48
|
Ma T, Gaigalas P, Lepoitevin M, Plikusiene I, Bechelany M, Janot JM, Balanzat E, Balme S. Impact of Polyelectrolyte Multilayers on the Ionic Current Rectification of Conical Nanopores. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:3405-3412. [PMID: 29466014 DOI: 10.1021/acs.langmuir.8b00222] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Single conical nanopores were functionalised layer by layer with weak polyelectrolytes. We studied their influence on the ionic diode properties We have considered different couples of polyelectrolytes: poly-l-lysine/poly(acrylic acid) and poly(ethyleneimine)/poly(acrylic acid) as well as the influence of cross-linking. The results show that the nanopores decorated with poly(ethyleneimine)/poly(acrylic acid) exhibit an interesting behavior. Indeed, at pH 3, the nanopore is open only at the low salt concentration, while at pH 7, it is already open. The nanopores functionalized with poly-l-lysine/poly(acrylic acid) do not show an inversion of ionic transport properties with the pH as expected. After cross-linked to prevent large conformational changes, the ionic diode properties are dependent on the pH.
Collapse
Affiliation(s)
- Tianji Ma
- Institut Européen des Membranes, UMR5635 UM ENSM CNRS , Place Eugène Bataillon , 34095 Montpellier Cedex 5 , France
| | - Paulius Gaigalas
- Institut Européen des Membranes, UMR5635 UM ENSM CNRS , Place Eugène Bataillon , 34095 Montpellier Cedex 5 , France
- Faculty of Chemistry and Geosciences , Vilnius University , Naugarduko Street 24 , 01513 Vilnius , Lithuania
| | - Mathilde Lepoitevin
- Institut Européen des Membranes, UMR5635 UM ENSM CNRS , Place Eugène Bataillon , 34095 Montpellier Cedex 5 , France
| | - Ieva Plikusiene
- Faculty of Chemistry and Geosciences , Vilnius University , Naugarduko Street 24 , 01513 Vilnius , Lithuania
- Department of Material Science and Electrical Engineering , Center for Physical Sciences and Technology , Sauletekio Avenue 3 , 02300 Vilnius , Lithuania
| | - Mikhael Bechelany
- Institut Européen des Membranes, UMR5635 UM ENSM CNRS , Place Eugène Bataillon , 34095 Montpellier Cedex 5 , France
| | - Jean-Marc Janot
- Institut Européen des Membranes, UMR5635 UM ENSM CNRS , Place Eugène Bataillon , 34095 Montpellier Cedex 5 , France
| | - Emmanuel Balanzat
- Centre de recherche sur les Ions, les Matériaux et la Photonique, UMR6252 CEA-CNRS-ENSICAEN , 6 Boulevard du Maréchal Juin , 14050 Caen Cedex 4 , France
| | - Sebastien Balme
- Institut Européen des Membranes, UMR5635 UM ENSM CNRS , Place Eugène Bataillon , 34095 Montpellier Cedex 5 , France
| |
Collapse
|
49
|
Balme S, Picaud F, Lepoitevin M, Bechelany M, Balanzat E, Janot JM. Unexpected ionic transport behavior in hydrophobic and uncharged conical nanopores. Faraday Discuss 2018; 210:69-85. [DOI: 10.1039/c8fd00008e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigated ionic transport behavior in the case of uncharged conical nanopores. We observed unexpected ionic transport behaviour, which is attributed to a predominant effect of slippage due to water organization at the solid/liquid interface.
Collapse
Affiliation(s)
- Sebastien Balme
- Institut Européen des Membranes
- IEM – UMR 5635
- ENSCM
- CNRS
- Univ. Montpellier
| | - Fabien Picaud
- Laboratoire de Nanomédecine
- Imagerie et Thérapeutique, EA 4662
- Université Bourgogne Franche-Comté
- Centre Hospitalier Universitaire de Besançon
- 25030 Besançon cedex
| | | | - Mikhael Bechelany
- Institut Européen des Membranes
- IEM – UMR 5635
- ENSCM
- CNRS
- Univ. Montpellier
| | - Emmanuel Balanzat
- Centre de recherche sur les Ions
- les Matériaux et la Photonique
- UMR6252 CEA-CNRS-ENSICAEN
- France
| | - Jean-Marc Janot
- Institut Européen des Membranes
- IEM – UMR 5635
- ENSCM
- CNRS
- Univ. Montpellier
| |
Collapse
|