1
|
Croft C, Nagul EA, Almeida MIS, Kolev SD. Polymer-Based Extracting Materials in the Green Recycling of Rare Earth Elements: A Review. ACS OMEGA 2024; 9:40315-40328. [PMID: 39371975 PMCID: PMC11447746 DOI: 10.1021/acsomega.4c06990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 10/08/2024]
Abstract
Rare earth elements (REEs) are becoming increasingly important in the development of modern and green energy technologies with the demand for REEs predicted to grow in the foreseeable future. The importance of REEs lies in their unique physiochemical properties, which cannot be reproduced using other elements. REEs are sourced through mining, with global exploration of additional commercially viable mining sites still ongoing. However, there is a growing need for recycling of REEs due to the current supply of REEs not matching the growing demand, the environmental impact of REE mining and processing (the so-called "balance problem"), and the generation of large volumes of harmful electronic waste (e-waste). Industrial REE processing is mainly carried out by hydrometallurgy processes, particularly solvent extraction (SX) and ion exchange (IX) technologies. However, these methods have a significant environmental impact due to their intensive use of harmful and nonsustainable reagents. This Review highlights the development of approaches involving polymer-based extracting materials for REE manufacturing as more sustainable alternatives to current industrial REE processing methods. These materials include supported liquid membranes (SLMs), solvent impregnated resins (SIRs), macro and micro capsules, polymer inclusion membranes (PIMs), and micro polymer inclusion beads (μPIBs). Polymer-based extracting materials have the advantage of more economical regent usage while applying the same extractants used in commercial SX, enabling applications analogous to the current industrial process. These materials can be fabricated by a variety of methods in a diverse range of physical formats, with the advantages and disadvantages of each material type described and discussed in this Review along with their applications to REE processing, including e-waste recycling and mineral processing.
Collapse
Affiliation(s)
- Charles
F. Croft
- School
of Chemistry, The University of Melbourne, Victoria 3010, Australia
| | - Edward A. Nagul
- School
of Chemistry, The University of Melbourne, Victoria 3010, Australia
| | | | - Spas D. Kolev
- School
of Chemistry, The University of Melbourne, Victoria 3010, Australia
- Department
of Chemical Engineering, The University
of Melbourne, Victoria 3010, Australia
- Faculty
of Chemistry and Pharmacy, Sofia University
“St. Kl. Ohridski”, 1 James Bourchier Boulevard, Sofia 1164, Bulgaria
| |
Collapse
|
2
|
Malki M, Mitiche L, Sahmoune A, Fontàs C. New Insights on Y, La, Nd, and Sm Extraction with Bifunctional Ionic Liquid Cyphos IL 104 Incorporated in a Polymer Inclusion Membrane. MEMBRANES 2024; 14:182. [PMID: 39330523 PMCID: PMC11433663 DOI: 10.3390/membranes14090182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/30/2024] [Accepted: 08/20/2024] [Indexed: 09/28/2024]
Abstract
In this study, an ionic liquid-based polymer inclusion membrane (IL-PIM) made of (50% polymer-50% CyphosIL104) was used to extract and separate the rare earth elements (REEs) Y, La, Nd, and Sm in chloride solutions. The effect of extraction time and pH was studied to optimize the extraction and separation conditions. The four REEs were effectively extracted at pH 4-5 from both single and mixed metals solutions. However, at pH 2, only Y was extracted. The recovery of the extracted REEs from the loaded PIM was achieved using HNO3 and H2SO4. In the case of La, it was quantitatively back-extracted with H2SO4 after a contact time of 1 h, while up to 4 h was necessary to recover 70% of the extracted Y, Sm, and Nd. Extraction isotherms were studied, and the Freundlich isotherm model was the most adequate to describe the interaction between the PIM and the REEs. Finally, the developed PIM was investigated for the extraction of REEs from mixtures containing other metals, which showed great selectivity for the REEs.
Collapse
Affiliation(s)
- Mohamed Malki
- Laboratory of Physics and Materials Chemistry (LPCM), University Mouloud Mammeri of Tizi Ouzou, Tizi Ouzou 15000, Algeria
- Department of Chemistry, University of Girona, C/Maria Aurèlia Capmany 69, 17003 Girona, Spain
| | - Lynda Mitiche
- Laboratory of Physics and Materials Chemistry (LPCM), University Mouloud Mammeri of Tizi Ouzou, Tizi Ouzou 15000, Algeria
| | - Amar Sahmoune
- Laboratory of Physics and Materials Chemistry (LPCM), University Mouloud Mammeri of Tizi Ouzou, Tizi Ouzou 15000, Algeria
| | - Clàudia Fontàs
- Department of Chemistry, University of Girona, C/Maria Aurèlia Capmany 69, 17003 Girona, Spain
| |
Collapse
|
3
|
Lair L, Ouimet JA, Dougher M, Boudouris BW, Dowling AW, Phillip WA. Critical Mineral Separations: Opportunities for Membrane Materials and Processes to Advance Sustainable Economies and Secure Supplies. Annu Rev Chem Biomol Eng 2024; 15:243-266. [PMID: 38663030 DOI: 10.1146/annurev-chembioeng-100722-114853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Sustainable energy solutions and electrification are driving increased demand for critical minerals. Unfortunately, current mineral processing techniques are resource intensive, use large quantities of hazardous chemicals, and occur at centralized facilities to realize economies of scale. These aspects of existing technologies are at odds with the sustainability goals driving increased demand for critical minerals. Here, we argue that the small footprint and modular nature of membrane technologies position them well to address declining concentrations in ores and brines, the variable feed concentrations encountered in recycling, and the environmental issues associated with current separation processes; thus, membrane technologies provide new sustainable pathways to strengthening resilient critical mineral supply chains. The success of creating circular economies hinges on overcoming diverse barriers across the molecular to infrastructure scales. As such, solving these challenges requires the convergence of research across disciplines rather than isolated innovations.
Collapse
Affiliation(s)
- Laurianne Lair
- 1Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, USA; , , , ,
| | - Jonathan Aubuchon Ouimet
- 1Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, USA; , , , ,
| | - Molly Dougher
- 1Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, USA; , , , ,
| | - Bryan W Boudouris
- 2Charles D. Davidson School of Chemical Engineering and Department of Chemistry, Purdue University, West Lafayette, Indiana, USA;
| | - Alexander W Dowling
- 1Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, USA; , , , ,
| | - William A Phillip
- 1Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, USA; , , , ,
| |
Collapse
|
4
|
Kazemi D, Yaftian MR. PVDF-HFP-based polymer inclusion membrane functionalized with D2EHPA for the selective extraction of bismuth(III) from sulfate media. Sci Rep 2024; 14:11622. [PMID: 38773177 PMCID: PMC11109169 DOI: 10.1038/s41598-024-62401-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/16/2024] [Indexed: 05/23/2024] Open
Abstract
This study is the first application of a PVDF-HFP-based polymer inclusion membrane incorporating the poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and di(2-ethylhexyl)phosphoric acid (D2EHPA) as the base polymer and extractant for the extraction of bismuth(III), respectively. It is demonstrated that the PIM comprised of 60 wt% PVDF-HFP and 40 wt% D2EHPA is the most effective in the extraction of bismuth(III) from feed solution containing 20 mg L-1 bismuth(III) and 0.2 mol L-1 sulfate adjusted to pH 1.4. The extracted bismuth(III) ions are back-extracted quantitatively to the receiving solution containing 1 mol L-1 sulfuric acid. The stoichiometry experiments reveal that the Bi: D2EHPA ratio in the bismuth(III) extracted complex is 1:6, and D2EHPA is dimer. Moreover, it is shown that the studied PIM has high selectivity in the extraction of bismuth(III) over other interfering ions such as Mo(VI), Cr(III), Al(III), Fe(III), Ni(II), Zn(II), Cd(II), Co(II), Cu(II), and Mn(II). The interference of Fe(III) is also eliminated by masking with fluoride, leading finally to a nearly pure extraction of bismuth(III).
Collapse
Affiliation(s)
- Davood Kazemi
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, 45371-38791, Iran.
| | - Mohammad Reza Yaftian
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, 45371-38791, Iran.
| |
Collapse
|
5
|
Kadhim NR, Flayeh HM, Abbar AH. A new approach for cobalt (II) removal from simulated wastewater using electro membrane extraction with a flat sheet supported liquid membrane. Heliyon 2023; 9:e22343. [PMID: 38045123 PMCID: PMC10692895 DOI: 10.1016/j.heliyon.2023.e22343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 12/05/2023] Open
Abstract
The aim of this work was to efficiently remove cobalt (Co) from aqueous solutions by using a novel Electromembrane Extraction (EME) technique. This novel electrochemical cell design featured two distinct glass chambers, incorporating a Supported Liquid Membrane (SLM) composed of a polypropylene flat membrane saturated with 1-octanol and a carrier substance, as well as electrodes constructed from graphite and stainless steel. The investigation covered an exploration of various effective parameters like, carrier type, voltage across the cell, donor solution pH, and the initial Co concentration, with the overarching goal of comprehending their individual effect on Co removal efficiency. Notably, two different carriers, tris(2-ethylhexyl) phosphate (TEHP) and bis(2-ethylhexyl) phosphate (DEHP), were systematically evaluated in combination with 1-octanol. The findings underscored the pivotal role of the cell voltage in significantly enhancing the mass transfer rate of cobalt across the membrane, thereby advancing the effectiveness of the removal process. After a comprehensive optimization process, the optimal operating conditions were established as follows: employing 1-octanol with 1.0 % v/v bis(2-ethylhexyl) phosphate as a carrier, applying a voltage of 60 V, maintaining an initial pH of 5, utilizing an initial cobalt concentration of 15 mg/L, conducting an extraction for 6 h, and employing a stirring rate of 1000 rpm. Remarkably, these conditions led to the attainment of an impressive removal efficiency of 87 %. In stark contrast, when no voltage was applied, the removal efficiency did not surpass 40 %. This underscores the pivotal role of the applied voltage in enhancing the cobalt removal process under the specified conditions.
Collapse
Affiliation(s)
- Noor R. Kadhim
- Environmental Engineering Department, College of Engineering, University of Baghdad, Iraq
| | - Hussain M. Flayeh
- Environmental Engineering Department, College of Engineering, University of Baghdad, Iraq
| | - Ali H. Abbar
- Biochemical Engineering Department, Al-Khwarizmi College of Engineering, University of Baghdad, Iraq
| |
Collapse
|
6
|
The Use of Polymer Membranes for the Recovery of Copper, Zinc and Nickel from Model Solutions and Jewellery Waste. Polymers (Basel) 2023; 15:polym15051149. [PMID: 36904389 PMCID: PMC10007522 DOI: 10.3390/polym15051149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
A polymeric inclusion membrane (PIM) consisting of matrix CTA (cellulose triacetate), ONPPE (o-nitrophenyl pentyl ether) and phosphonium salts (Cyphos 101, Cyphos 104) was used for separation of Cu(II), Zn(II) and Ni(II) ions. Optimum conditions for metal separation were determined, i.e., the optimal concentration of phosphonium salts in the membrane, as well as the optimal concentration of chloride ions in the feeding phase. On the basis of analytical determinations, the values of parameters characterizing transport were calculated. The tested membranes most effectively transported Cu(II) and Zn(II) ions. The highest recovery coefficients (RF) were found for PIMs with Cyphos IL 101. For Cu(II) and Zn(II), they are 92% and 51%, respectively. Ni(II) ions practically remain in the feed phase because they do not form anionic complexes with chloride ions. The obtained results suggest that there is a possibility of using these membranes for separation of Cu(II) over Zn(II) and Ni(II) from acidic chloride solutions. The PIM with Cyphos IL 101 can be used to recover copper and zinc from jewellery waste. The PIMs were characterized by AFM and SEM microscopy. The calculated values of the diffusion coefficient indicate that the boundary stage of the process is the diffusion of the complex salt of the metal ion with the carrier through the membrane.
Collapse
|
7
|
Szczepański P. Comparison of Kinetic Models Applied for Transport Description in Polymer Inclusion Membranes. MEMBRANES 2023; 13:236. [PMID: 36837739 PMCID: PMC9967031 DOI: 10.3390/membranes13020236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/28/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Five mathematical models for transport description in polymer inclusion membranes (PIMs) were presented and compared via regression analysis. The applicability of the models was estimated through the examination of experimental data of Zn(II), Cd(II), Pb(II), and Cu(II) ions transported by typical carriers. In four kinetic models, a change in the feed and stripping solution volume was taken into account. The goodness of fit was compared using the standard error of the regression, Akaike information criterion (AIC), Bayesian (Schwarz) information criterion (BIC), and Hannan-Quinn information criterion (HQC). The randomness distribution in the data was confirmed via a nonparametric runs test. Based on these quantities, appropriate models were selected.
Collapse
Affiliation(s)
- Piotr Szczepański
- Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina Street, 87-100 Toruń, Poland
| |
Collapse
|
8
|
Pan W, Chen L, Wang Y, Yan Y. Selective separation of low concentration rare earths via coordination-induced ion imprinted electrospun membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Zeng L, Yi Q, Peng X, Huang Z, Van der Bruggen B, Zhang Y, Kuang Y, Ma Y, Tang K. Modelling and optimization of a new complexing retardant-enhanced polymer inclusion membrane system for highly selective separation of Zn2+ and Cu2+. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Sinha S, De S, Mishra D, Shekhar S, Agarwal A, Sahu KK. Phosphonomethyl iminodiacetic acid functionalized metal organic framework supported PAN composite beads for selective removal of La(III) from wastewater: Adsorptive performance and column separation studies. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127802. [PMID: 34896724 DOI: 10.1016/j.jhazmat.2021.127802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/15/2021] [Accepted: 11/11/2021] [Indexed: 06/14/2023]
Abstract
The rare earth elements being toxic in nature are being accumulated in water bodies as their industrial usage is growing exponentially, thus their efficient separation holds an immense significance. Herein, ligand functionalized metal organic framework (MOF), Phosphonomethyl iminodiacetic acid coordinated at Fe-BTC, was synthesized post-synthetically and incorporated subsequently in polyacrylonitrile polymer to prepare the composite beads via nonsolvent induced-phase-inversion technique for selective adsorption of La(III) from the wastewater in batch and dynamic column mode. XPS NMR, and FTIR were used to establish the interaction between functionalized ligand and unsaturated metal nodes of MOF. The adsorption capacity was 232.5 mg/g and 77.51 mg/g at 298 K of the functionalized MOF and composite beads respectively. Adsorption kinetics followed a pseudo-second order rate equation, and isotherm indicated the best fitting with Langmuir model. The dynamic behavior of the adsorption column packed with MOF/Polymer beads was fairly described by the Thomas model. The breakthrough time of 23.2 h could be attained with 12 cm of bed height and 10 ml/min of flow rate. These MOF/Polymer beads shown the selectivity of La over transitional metals were recycled over 5 times with about 15% loss of adsorption capacity. The findings provide suggestive insights of the potential use of functionalized MOF towards the separation of the rare earth element.
Collapse
Affiliation(s)
- Shivendra Sinha
- MER Division, National Metallurgical Laboratory, Jamshedpur, India; Academy of Scientific and Innovative Research, New Delhi, India
| | - S De
- Chemical Engineering Department, IIT Kharagpur, India.
| | - D Mishra
- MER Division, National Metallurgical Laboratory, Jamshedpur, India.
| | - S Shekhar
- MER Division, National Metallurgical Laboratory, Jamshedpur, India
| | - A Agarwal
- MER Division, National Metallurgical Laboratory, Jamshedpur, India
| | - K K Sahu
- MER Division, National Metallurgical Laboratory, Jamshedpur, India
| |
Collapse
|
11
|
Optimization and Evaluation of Polymer Inclusion Membranes Based on PVC Containing Copoly-EDVB 4% as a Carrier for the Removal of Phenol Solutions. MEMBRANES 2022; 12:membranes12030295. [PMID: 35323769 PMCID: PMC8949209 DOI: 10.3390/membranes12030295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 12/10/2022]
Abstract
Polymer inclusion membrane (PIM) is a method for separating liquid membranes into thin, stable, and flexible film forms. In this study, the PIM was made using polyvinyl chloride (PVC), dibenzyl ether (DBE), and 4% copoly-eugenol divinyl benzene (co-EDVB) as a supporting polymer, plasticizer, and carrier compound, respectively. Furthermore, a phenol transport test was carried out using the parameters of pH influence, the effect of NaOH concentration, and transport time. The PIM membrane was also evaluated using the parameters affecting the concentration of plasticizer, the effect of salt concentration, and the lifetime of the PIM membrane. The results show that the optimum pH obtained to transport phenol to the receiving phase was 5.5, with a concentration of 0.1 M of the NaOH receiving phase and a transport time of 72 h. Furthermore, it was found that the use of plasticizers and salts affected the ability and resistance of the membranes. The membrane lifetime increased up to 60 days with the addition of 0.1 M NaNO3 or NaCl salt in the source phase.
Collapse
|
12
|
Development of micro polymer inclusion beads (µPIBs) for the extraction of lanthanum. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Kazemi D, Yaftian MR. Selective transport-recovery of bismuth(III) by a polymer inclusion membrane containing polyvinyl chloride base polymer and bis(2-ethylhexyl)phosphoric acid. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
14
|
Bashiri A, Nikzad A, Maleki R, Asadnia M, Razmjou A. Rare Earth Elements Recovery Using Selective Membranes via Extraction and Rejection. MEMBRANES 2022; 12:80. [PMID: 35054606 PMCID: PMC8779715 DOI: 10.3390/membranes12010080] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 01/27/2023]
Abstract
Recently, demands for raw materials like rare earth elements (REEs) have increased considerably due to their high potential applications in modern industry. Additionally, REEs' similar chemical and physical properties caused their separation to be difficult. Numerous strategies for REEs separation such as precipitation, adsorption and solvent extraction have been applied. However, these strategies have various disadvantages such as low selectivity and purity of desired elements, high cost, vast consumption of chemicals and creation of many pollutions due to remaining large amounts of acidic and alkaline wastes. Membrane separation technology (MST), as an environmentally friendly approach, has recently attracted much attention for the extraction of REEs. The separation of REEs by membranes usually occurs through three mechanisms: (1) complexation of REE ions with extractant that is embedded in the membrane matrix, (2) adsorption of REE ions on the surface created-active sites on the membrane and (3) the rejection of REE ions or REEs complex with organic materials from the membrane. In this review, we investigated the effect of these mechanisms on the selectivity and efficiency of the membrane separation process. Finally, potential directions for future studies were recommended at the end of the review.
Collapse
Affiliation(s)
- Atiyeh Bashiri
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran 16845-161, Iran;
| | - Arash Nikzad
- Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC V6T1Z4, Canada;
| | - Reza Maleki
- Department of Physics, University of Tehran, Tehran 14395-547, Iran;
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia;
| | - Amir Razmjou
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
15
|
Radzyminska-Lenarcik E, Maslowska K, Urbaniak W. Removal of Copper (II), Zinc (II), Cobalt (II), and Nickel (II) Ions by PIMs Doped 2-Alkylimidazoles. MEMBRANES 2021; 12:16. [PMID: 35054539 PMCID: PMC8779304 DOI: 10.3390/membranes12010016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 11/27/2022]
Abstract
Polymer inclusion membranes (PIMs) are an attractive approach to the separation of metals from an aqueous solution. This study is concerned with the use of 2-alkylimidazoles (alkyl = methyl, ethyl, propyl, butyl) as ion carriers in PIMs. It investigates the separation of copper (II), zinc (II), cobalt (II), and nickel (II) from aqueous solutions with the use of polymer inclusion membranes. PIMs are formed by casting a solution containing a carrier (extractant), a plasticizer (o-NPPE), and a base polymer such as cellulose triacetate (CTA) to form a thin, flexible, and stable film. The topics discussed include transport parameters, such as the type of carrier, initial fluxes, separation coefficients of copper in relation to other metals, as well as transport recovery of metal ions. The membrane was characterized using AFM and SEM to obtain information on its composition.
Collapse
Affiliation(s)
- Elzbieta Radzyminska-Lenarcik
- Faculty of Chemical Technology and Engineering, Bygdoszcz University of Science and Technology, 85-796 Bydgoszcz, Poland
| | - Kamila Maslowska
- Faculty of Chemistry, Adam Mickiewicz University, 61-712 Poznan, Poland; (K.M.); (W.U.)
| | - Wlodzimierz Urbaniak
- Faculty of Chemistry, Adam Mickiewicz University, 61-712 Poznan, Poland; (K.M.); (W.U.)
| |
Collapse
|
16
|
|
17
|
Polyvinyl chloride-based membranes: A review on fabrication techniques, applications and future perspectives. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119678] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
18
|
Serbanescu OS, Pandele AM, Oprea M, Semenescu A, Thakur VK, Voicu SI. Crown Ether-Immobilized Cellulose Acetate Membranes for the Retention of Gd (III). Polymers (Basel) 2021; 13:3978. [PMID: 34833276 PMCID: PMC8625204 DOI: 10.3390/polym13223978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 12/17/2022] Open
Abstract
This study presents a new, revolutionary, and easy method of separating Gd (III). For this purpose, a cellulose acetate membrane surface was modified in three steps, as follows: firstly, with aminopropyl triethoxysylene; then with glutaraldehyde; and at the end, by immobilization of crown ethers. The obtained membranes were characterized by Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS), through which the synthesis of membranes with Gd (III) separation properties is demonstrated. In addition, for the Gd (III) separating process, a gadolinium nitrate solution, with applications of moderator poison in nuclear reactors, was used. The membranes retention performance has been demonstrated by inductively coupled plasma mass spectrometry (ICP-MS), showing a separation efficiency of up to 91%, compared with the initial feed solution.
Collapse
Affiliation(s)
- Oana Steluta Serbanescu
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania; (O.S.S.); (A.M.P.); (M.O.)
| | - Andreea Madalina Pandele
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania; (O.S.S.); (A.M.P.); (M.O.)
- Advanced Polymers Materials Group, University Politehnica of Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania
| | - Madalina Oprea
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania; (O.S.S.); (A.M.P.); (M.O.)
- Advanced Polymers Materials Group, University Politehnica of Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania
| | - Augustin Semenescu
- Faculty of Materials Science, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania;
- Academy of Romanian Scientists, Splaiul Independentei 54, 030167 Bucharest, Romania
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Edinburgh EH9 3JG, UK
- Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Uttar Pradesh 201314, India
- School of Engineering, University of Petroleum & Energy Studies (UPES), Uttarakhand, Dehradun 248007, India
| | - Stefan Ioan Voicu
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania; (O.S.S.); (A.M.P.); (M.O.)
- Advanced Polymers Materials Group, University Politehnica of Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania
| |
Collapse
|
19
|
A preliminary study of polymer inclusion membrane for lutetium(III) separation and membrane regeneration. J RARE EARTH 2021. [DOI: 10.1016/j.jre.2020.07.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Kazemi D, Yaftian MR, Kolev SD. Selective extraction of Bi(III) from sulfate solutions by a poly(vinyl chloride) based polymer inclusion membrane incorporating bis(2-ethylhexyl)phosphoric acid as the extractant. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Campo-Cobo LF, Pérez-Urbano ML, Gutiérrez-Valencia TM, Hoyos-Saavedra OL, Cuervo-Ochoa G. Selective Extraction of Gold with Polymeric Inclusion Membranes Based on Salen Ligands with Electron- Accepting Substituents. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-01924-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Calixresorcin[4]arene-Mediated Transport of Pb(II) Ions through Polymer Inclusion Membrane. MEMBRANES 2021; 11:membranes11040285. [PMID: 33924662 PMCID: PMC8069765 DOI: 10.3390/membranes11040285] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 11/29/2022]
Abstract
A facilitated transport of Pb(II) through polymer inclusion membrane (PIM) containing 1,8,15,22-tetra(1-heptyl)-calixresorcin[4]arene and its tetra- and octasubstituted derivatives containing phosphoryl, thiophosphoryl or ester groups as an ion carrier was investigated. The efficiency of Pb(II) removal from aqueous nitrate solutions was considered as a function of the composition of membrane (effect of polymer, plasticizer, and carrier), feed (effect of initial metal concentration and presence of other metal ions) and stripping phases, and temperature of the process conducting. Two kinetic models were applied for the transport description. The highest Pb(II) ions removal efficiency was obtained for the membrane with tetrathiophosphorylated heptyl-calixresorcin[4]arene as an ion carrier. The activation energy value, found from Eyring plot to be equal 38.7 ± 1.3 kJ/mol, suggests that the transport process is controllable both by diffusion and chemical reaction. The competitive transport of Pb(II) over Zn(II), Cd(II), and Cr(III) ions across PIMs under the optimal conditions was also performed. It was found that the Cr(III) ions’ presence in the feed phase disturb effective re-extraction of Pb(II) ions from membrane to stripping phase. Better stability of PIM-type than SLM-type membrane was found.
Collapse
|
23
|
Improving the extraction performance of polymer inclusion membranes by cross-linking their polymeric backbone. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Tan H, Zhang X, Li Z, Liang Q, Wu J, Yuan Y, Cao S, Chen J, Liu J, Qiu H. Nitrogen-doped nanoporous graphene induced by a multiple confinement strategy for membrane separation of rare earth. iScience 2020; 24:101920. [PMID: 33385117 PMCID: PMC7772569 DOI: 10.1016/j.isci.2020.101920] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/24/2020] [Accepted: 12/04/2020] [Indexed: 11/30/2022] Open
Abstract
Rare earth separation is still a major challenge in membrane science. Nitrogen-doped nanoporous graphene (NDNG) is a promising material for membrane separation, but it has not yet been tested for rare earth separation, and it is limited by multi-complex synthesis. Herein, we developed a one-step, facile, and scalable approach to synthesize NDNG with tunable pore size and controlled nitrogen content using confinement combustion. Nanoporous hydrotalcite from Zn(NO3)2 is formed between layers of graphene oxide (GO) absorbed with phenylalanine via confinement growth, thus preparing the sandwich hydrotalcite/phenylalanine/GO composites. Subsequently, area-confinement combustion of hydrotalcite nanopores is used to etch graphene nanopores, and the hydrotalcite interlayer as a closed flat nanoreactor induces two-dimensional space confinement doping of planar nitrogen into graphene. The membrane prepared by NDNG achieves separation of Sc3+ from the other rare earth ions with excellent selectivity (∼3.7) through selective electrostatic interactions of pyrrolic-N, and separation selectivity of ∼1.7 for Tm3+/Sm3+. A multiple confinement strategy is constructed to achieve the synthesis of NDNG Planar nitrogen-doped NDNG with tunable pore size is obtained by one-step synthesis NDNG membrane presents excellent selectivity for rare earth in strong acidic media
Collapse
Affiliation(s)
- Hongxin Tan
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Zhang
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Zhan Li
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Qing Liang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jinsheng Wu
- Lanzhou Ecology and Environment Monitoring Center of Gansu Province, Lanzhou 730000, China
| | - Yanli Yuan
- Lanzhou Ecology and Environment Monitoring Center of Gansu Province, Lanzhou 730000, China
| | - Shiwei Cao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China.,College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
25
|
López-Guerrero M, Granado-Castro M, Díaz-de-Alba M, Lande-Durán J, Casanueva-Marenco M. A polymer inclusion membrane for the simultaneous determination of Cu(II), Ni(II) and Cd(II) ions from natural waters. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104980] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Wang D, Liu J, Chen J, Liu Q, Zeng H. New insights into the interfacial behavior and swelling of polymer inclusion membrane (PIM) during Zn (II) extraction process. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
27
|
Meng X, Li J, Lv Y, Feng Y, Zhong Y. Electro-membrane extraction of cadmium(II) by bis(2-ethylhexyl) phosphate/kerosene/polyvinyl chloride polymer inclusion membrane. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121990. [PMID: 31896009 DOI: 10.1016/j.jhazmat.2019.121990] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/25/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
The development of the electroplating and battery industries has increased the environmental problems and the needs for resource recovery of Cd(II). In this study, the Electro-membrane extraction (EME) behaviour of Cd(II) was investigated by using polymer inclusion membrane with bis(2-ethylhexyl) phosphate as carrier and polyvinyl chloride as base polymer(PD-PIM) at 0-80 V. Results showed that the EME of Cd(II) by PD-PIM can be obtained in the feed phase with pH 3-8 and stripping phase of dilute acid. Voltage is the main factor to increase the mass transfer rate of Cd(II). The applied electric field reduced the mass transfer activation energy of Cd(II) by PD-PIM and weakened the mass transfer interference of Cd(II) on the background material of the feed phase. After using kerosene-stabilised PD-PIM for operation at pH5, 60 V for 120 h, Cd(II) in the 1 L solution reduced from 15 mg/L to 0.08 mg/L, and the enrichment factor was 9.79.
Collapse
Affiliation(s)
- Xiaorong Meng
- School of Chemistry & Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, China; Key Laboratory of Environmental Engineering, Shaanxi Province, China.
| | - Jiawen Li
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yongtao Lv
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yeyuan Feng
- School of Chemistry & Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yuanyuan Zhong
- School of Chemistry & Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
28
|
Huang S, Chen J, Chen L, Zou D, Liu C. A polymer inclusion membrane functionalized by di(2-ethylhexyl) phosphinic acid with hierarchically ordered porous structure for Lutetium(III) transport. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117458] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
29
|
Yoshida W, Kubota F, Baba Y, Kolev SD, Goto M. Separation and Recovery of Scandium from Sulfate Media by Solvent Extraction and Polymer Inclusion Membranes with Amic Acid Extractants. ACS OMEGA 2019; 4:21122-21130. [PMID: 31867505 PMCID: PMC6921615 DOI: 10.1021/acsomega.9b02540] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
We report on the separation and recovery of scandium(III) from sulfate solutions using solvent extraction and a membrane transport system utilizing newly synthesized amic acid extractants. Scandium(III) was quantitatively extracted with 50 mmol dm-3 N-[N,N-di(2-ethylhexyl)aminocarbonylmethyl]glycine (D2EHAG) or N-[N,N-di(2-ethylhexyl)aminocarbonylmethyl]phenylalanine (D2EHAF) in n-dodecane at pH 2 and easily stripped using a 0.5 mol dm-3 sulfuric acid solution. The extraction mechanisms of scandium(III) extraction with D2EHAG and D2EHAF were examined, and it was established that scandium(III) formed a 1:3 complex with both extractants (HR), that is, Sc(SO4)2 - aq + 1.5(HR)2org ⇄ Sc(SO4)R(HR)2org + H+ aq + SO4 2- aq. The equilibrium constants of extraction were evaluated to be 4.87 and 9.99 (mol dm-3)0.5 for D2EHAG and D2EHAF, respectively. D2EHAG and D2EHAF preferentially extracted scandium(III) with a high selectivity compared to common transition metal ions under high acidic conditions (0 < pH ≤ 3). In addition, scandium(III) was quantitatively transported from a feed solution into a 0.5 mol dm-3 sulfuric acid receiving solution through a polymer inclusion membrane (PIM) containing D2EHAF as a carrier. Scandium(III) was completely separated thermodynamically from nickel(II), aluminum(III), cobalt(II), manganese(II), chromium(III), calcium(II), and magnesium(II), and partially separated from iron(III) kinetically using a PIM containing D2EHAF as a carrier. The initial flux value for scandium(III) (J 0,Sc = 1.9 × 10-7 mol m-2 s-1) was two times higher than that of iron(III) (J 0,Fe = 9.3 × 10-8 mol m-2 s-1).
Collapse
Affiliation(s)
- Wataru Yoshida
- Department
of Applied Chemistry, Graduate School of Engineering and Center for Future Chemistry, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Fukiko Kubota
- Department
of Applied Chemistry, Graduate School of Engineering and Center for Future Chemistry, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Yuzo Baba
- Department
of Applied Chemistry, Graduate School of Engineering and Center for Future Chemistry, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Spas D. Kolev
- School
of Chemistry, The University of Melbourne, Victoria 3010, Australia
| | - Masahiro Goto
- Department
of Applied Chemistry, Graduate School of Engineering and Center for Future Chemistry, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| |
Collapse
|
30
|
Nagul EA, Croft CF, Cattrall RW, Kolev SD. Nanostructural characterisation of polymer inclusion membranes using X-ray scattering. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117208] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Makowka A, Pospiech B. Studies on extraction and permeation of lanthanum(III) and cerium(III) using cyphos IL 104 as extractant and ion carrier. SEP SCI TECHNOL 2019. [DOI: 10.1080/01496395.2019.1584635] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Adam Makowka
- Department of Chemistry, Czestochowa University of Technology, Czestochowa, Poland
| | - Beata Pospiech
- Department of Chemistry, Czestochowa University of Technology, Czestochowa, Poland
| |
Collapse
|
32
|
Liu E, Chen L, Dai J, Wang Y, Li C, Yan Y. Fabrication of phosphate functionalized chiral nematic mesoporous silica films for the efficient and selective adsorption of lanthanum ions. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.01.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
33
|
Yoshida W, Baba Y, Kubota F, Kolev SD, Goto M. Selective transport of scandium(III) across polymer inclusion membranes with improved stability which contain an amic acid carrier. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.11.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
|
35
|
Sharaf M, Yoshida W, Kubota F, Kolev SD, Goto M. A polymer inclusion membrane composed of the binary carrier PC-88A and Versatic 10 for the selective separation and recovery of Sc. RSC Adv 2018; 8:8631-8637. [PMID: 35539843 PMCID: PMC9078549 DOI: 10.1039/c7ra12697b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/18/2018] [Indexed: 11/29/2022] Open
Abstract
This study reports on the selective separation of scandium (Sc) from other rare earth metals (REMs) using a polymer inclusion membrane (PIM). The PIM prepared with PC-88A (2-ethylhexyl hydrogen-2-ethylhexylphosphonate) alone as the carrier showed high extractability but the poor back-extraction of the extracted Sc3+ ions did not allow the transport of these ions to the receiving solution of a membrane transport system. To overcome this problem, a novel approach was introduced using a mixture of carriers that allowed Sc3+ transport into the receiving solution. A cellulose triacetate (CTA) based PIM containing both PC-88A and Versatic 10 (decanoic acid) as carriers and dioctyl phthalate (DOP) as a plasticizer was prepared for the selective separation of Sc3+ from other REM ions in nitrate media. The membrane composition was optimized and the effect of operational parameters such as pH of the feed solution and composition of the receiving solution was explored. The flux at the membrane/feed solution interface was found to depend significantly on the carrier concentration in the PIM, pH of the feed solution and the receiving solution acidity. The newly developed PIM allowed quantitative and selective transport of Sc3+ thus demonstrating its suitability for the selective recovery of this metal. This study reports on the selective separation of scandium (Sc) from other rare earth metals (REMs) using a polymer inclusion membrane (PIM).![]()
Collapse
Affiliation(s)
- Maha Sharaf
- Department of Applied Chemistry
- Graduate School of Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Wataru Yoshida
- Department of Applied Chemistry
- Graduate School of Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Fukiko Kubota
- Department of Applied Chemistry
- Graduate School of Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Spas D. Kolev
- School of Chemistry
- The University of Melbourne
- Australia
- Centre for Aquatic Pollution Identification and Management (CAPIM)
- The University of Melbourne
| | - Masahiro Goto
- Department of Applied Chemistry
- Graduate School of Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| |
Collapse
|