1
|
Pérez-Miana M, Luque-Alled JM, Mayoral Á, Martínez-Visus Í, Foster AB, Budd PM, Coronas J. Amphiphilic Zeolitic Imidazolate Framework for Improved CO 2 Separation in PIM-1 Mixed Matrix Membranes. Angew Chem Int Ed Engl 2025; 64:e202420879. [PMID: 40146075 DOI: 10.1002/anie.202420879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/17/2025] [Accepted: 03/26/2025] [Indexed: 03/28/2025]
Abstract
This study aims to enhance the compatibility between filler and polymer in mixed matrix membranes (MMMs), addressing an important challenge in membrane development. ZIF-94, known for its affinity to CO2, was partially modified with 2-undecylimidazolate (umIm) through the solvent-assisted ligand exchange (SALE) method to improve its compatibility with the prototypical polymer of intrinsic microporosity PIM-1. The modified ZIF-94 (ZIF-94-umIm) can be considered as an amphiphilic MOF with both hydrophilic and hydrophobic moieties, while maintaining a considerably high CO2 adsorption capacity (2.34 mmol g-1 at 90 kPa and 0 °C). Gas separation experiments were performed using mixed gas compositions of 15/85 CO2/N2 at 3 bar and 35 °C. The resulting MMM with a 5 wt.% loading exhibited an enhanced CO2 separation performance, with ca. 70% and 10% increases in CO2 permeability (8900 Barrer) and CO2/N2 selectivity (20.2), respectively, compared to pristine PIM-1 membranes. In addition, thin film nanocomposite membranes were prepared showing a 23.5 CO2/N2 selectivity at 2350 GPU of CO2. This modification strategy shows a great potential for improving the CO2 capture technologies, highlighting the potential of tailoring MOF fillers for advanced membrane materials in gas separation applications.
Collapse
Affiliation(s)
- Marta Pérez-Miana
- Nanoscience and Materials Institute of Aragon (INMA), CSIC-Universidad de Zaragoza, Mariano Esquillor St., Zaragoza, 50018, Spain
- Department of Chemical and Environmental Engineering, Universidad de Zaragoza, María de Luna, 3 St., Zaragoza, 50018, Spain
| | - José Miguel Luque-Alled
- Nanoscience and Materials Institute of Aragon (INMA), CSIC-Universidad de Zaragoza, Mariano Esquillor St., Zaragoza, 50018, Spain
- Department of Chemical and Environmental Engineering, Universidad de Zaragoza, María de Luna, 3 St., Zaragoza, 50018, Spain
| | - Álvaro Mayoral
- Nanoscience and Materials Institute of Aragon (INMA), CSIC-Universidad de Zaragoza, Mariano Esquillor St., Zaragoza, 50018, Spain
| | - Íñigo Martínez-Visus
- Nanoscience and Materials Institute of Aragon (INMA), CSIC-Universidad de Zaragoza, Mariano Esquillor St., Zaragoza, 50018, Spain
- Department of Chemical and Environmental Engineering, Universidad de Zaragoza, María de Luna, 3 St., Zaragoza, 50018, Spain
| | - Andrew B Foster
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, M13 9PL, UK
| | - Peter M Budd
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, M13 9PL, UK
| | - Joaquín Coronas
- Nanoscience and Materials Institute of Aragon (INMA), CSIC-Universidad de Zaragoza, Mariano Esquillor St., Zaragoza, 50018, Spain
- Department of Chemical and Environmental Engineering, Universidad de Zaragoza, María de Luna, 3 St., Zaragoza, 50018, Spain
| |
Collapse
|
2
|
Sun Q, Zhang Y, Lim W, Meng D, Yu B, Du J, Hassan SU, Yao A, Cao D, Ma J, Guan J, Liu J. Oriented PolyMOFs Enabled by Bridging Coligand for CO 2 Separation. NANO LETTERS 2025; 25:2381-2387. [PMID: 39899431 DOI: 10.1021/acs.nanolett.4c05778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Despite enormous research efforts in recent years, polymer-metal-organic framework (polyMOF) development still faces several drawbacks, such as the substantial decrease in surface area, poor crystallinity, and monophyletic chemical structure of polyMOFs. Herein, we overcome the constraints of the coordination mode of conventional polyMOFs and report a bridging coligand strategy to prepare new types of polyMOFs, where the MOFs featuring accessible CuII sites are compelled to orientally regrow within the confined channels of semirigid PIM-1 in dimethyl sulfoxide. Coordination-substitution characteristics and solvent-modulated synthesis enable the Cu centers in MOFs to coordinate with the N atoms from PIM-1 by bridging coligand mode. The reduced particle size, enhanced ultramicroporosity, preferential orientation, and superior filler-matrix compatibility endow the polyMOF-based mixed matrix membrane with excellent CO2 separation performance, with a CO2 permeability of 4669 Barrer, and with a CO2/N2 selectivity of ∼30. This polyMOF design concept exploits a viable avenue for developing more inorganic-organic hybrid materials.
Collapse
Affiliation(s)
- Qian Sun
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yuting Zhang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Weiwang Lim
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Daijun Meng
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Bizi Yu
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jingcheng Du
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Shabi Ul Hassan
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Ayan Yao
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Dong Cao
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Ji Ma
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jian Guan
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jiangtao Liu
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
3
|
Guan J, Du J, Sun Q, He W, Ma J, Hassan SUI, Wu J, Zhang H, Zhang S, Liu J. Metal-organic cages improving microporosity in polymeric membrane for superior CO 2 capture. SCIENCE ADVANCES 2025; 11:eads0583. [PMID: 39841833 PMCID: PMC11753381 DOI: 10.1126/sciadv.ads0583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 12/18/2024] [Indexed: 01/24/2025]
Abstract
Mixed matrix membranes, with well-designed pore structure inside the polymeric matrix via the incorporation of inorganic components, offer a promising solution for addressing CO2 emissions. Here, we synthesized a series of novel metal organic cages (MOCs) with aperture pore size precisely positioned between CO2 and N2 or CH4. These MOCs were uniformly dispersed in the polymers of intrinsic microporosity (PIM-1). Among them, the MOC-Ph cage effectively modulated chain packing and optimized the microporous structure of the membrane. Remarkably, the PIM-Ph-5% membrane shows superior performance, achieving an excellent CO2 permeability of 8803.4 barrer and CO2/N2 selectivity of 59.9, far exceeding the 2019 upper bound. This approach opens opportunities for improving the porous structure of polymeric membranes for CO2 capture and other separation applications.
Collapse
Affiliation(s)
- Jian Guan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jingcheng Du
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qian Sun
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wen He
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ji Ma
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shabi UI Hassan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ji Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Hongjun Zhang
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Sui Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Jiangtao Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
4
|
Saini N, Pandey G, Sharma A, Pandey K, Awasthi K. Bimetallic PdPt nanoparticle-incorporated PEDOT:PSS/guar gum-blended membranes for enhanced CO 2 separation. NANOSCALE 2025; 17:2105-2120. [PMID: 39654481 DOI: 10.1039/d4nr03292f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
To address the escalating demand for efficient CO2 separation technologies, we introduce novel membranes utilizing natural polymer guar gum (GG), conjugate polymer (poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)) PEDOT:PSS, and bimetallic PdPt nanoparticles. Bimetallic PdPt nanoparticles were synthesized using the wet chemical method and characterized using X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) techniques. The morphologies, chemical bonds, functional groups, and mechanical properties of the fabricated membranes were characterized using various techniques. Through meticulous fabrication and characterization, the binary blended membranes demonstrated enhanced homogeneity and smoothness in their structure, attributed to the interaction between the polymers, and superior CO2 permeability due to the amphiphilic nature of the PEDOT:PSS polymer. Gas separation experiments performed using H2, N2, and CO2 gases confirmed that the 20% PEDOT:PSS/GG blended membranes showed the best performance with sufficient mechanical properties. Moreover, the results demonstrated an increase of 172% in CO2 permeability and 138% in CO2/H2 selectivity, respectively. Furthermore, integrating bimetallic PdPt nanoparticles provided an additional 197% increase in CO2/H2 selectivity, owing to the unique catalytic activities of noble metal nanoparticles. The study not only underscores the transformative potential of polymer blending and noble metal engineering, but also highlights the significance of using natural polymers for sustainable environmental solutions.
Collapse
Affiliation(s)
- Nishel Saini
- Department of Physics, Malaviya National Institute of Technology Jaipur, Rajasthan 302017, India.
| | - Gaurav Pandey
- Department of Physics, Malaviya National Institute of Technology Jaipur, Rajasthan 302017, India.
| | - Ankit Sharma
- Materials Research Centre, Malaviya National Institute of Technology, Jaipur, Rajasthan 302017, India
| | - Kamakshi Pandey
- Department of Physics, Malaviya National Institute of Technology Jaipur, Rajasthan 302017, India.
- Materials Research Centre, Malaviya National Institute of Technology, Jaipur, Rajasthan 302017, India
| | - Kamlendra Awasthi
- Department of Physics, Malaviya National Institute of Technology Jaipur, Rajasthan 302017, India.
| |
Collapse
|
5
|
Qiu B, Gao Y, Gorgojo P, Fan X. Membranes of Polymer of Intrinsic Microporosity PIM-1 for Gas Separation: Modification Strategies and Meta-Analysis. NANO-MICRO LETTERS 2025; 17:114. [PMID: 39847125 PMCID: PMC11757663 DOI: 10.1007/s40820-024-01610-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/28/2024] [Indexed: 01/24/2025]
Abstract
Polymers of intrinsic microporosity (PIMs) have received considerable attention for making high-performance membranes for carbon dioxide separation over the last two decades, owing to their highly permeable porous structures. However, challenges regarding its relatively low selectivity, physical aging, and plasticisation impede relevant industrial adoptions for gas separation. To address these issues, several strategies including chain modification, post-modification, blending with other polymers, and the addition of fillers, have been developed and explored. PIM-1 is the most investigated PIMs, and hence here we review the state-of-the-arts of the modification strategies of PIM-1 critically and discuss the progress achieved for addressing the aforementioned challenges via meta-analysis. Additionally, the development of PIM-1-based thin film composite membranes is commented as well, shedding light on their potential in industrial gas separation. We hope that the review can be a timely snapshot of the relevant state-of-the-arts of PIMs guiding future design and optimisation of PIMs-based membranes for enhanced performance towards a higher technology readiness level for practical applications.
Collapse
Affiliation(s)
- Boya Qiu
- Department of Chemical Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester, M13 9PL, UK
| | - Yong Gao
- Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, People's Republic of China
| | - Patricia Gorgojo
- Department of Chemical Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester, M13 9PL, UK.
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC-Universidad de Zaragoza, Mariano Esquillor, 50018, Zaragoza, Spain.
- Departamento de Ingeniería Química y Tecnologías del Medio Ambiente, Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain.
| | - Xiaolei Fan
- Department of Chemical Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester, M13 9PL, UK.
- Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, People's Republic of China.
- Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, 211 Xingguang Road, Ningbo, 315048, People's Republic of China.
| |
Collapse
|
6
|
Saini N, Pandey G, Sharma A, Pandey K, Kulshrestha V, Awasthi K. Bimetallic PdPt Nanoparticles Decorated PES Membranes for Enhanced H 2 Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:24318-24329. [PMID: 39511976 DOI: 10.1021/acs.langmuir.4c02669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Hydrogen separation has significant importance in diverse applications ranging from clean energy production to gas purification. Membrane technology stands out as a low-cost and efficient method to address the purpose. The development of efficient gas-sensitive materials can further bolster the membrane's performance. In this pursuit, bimetallic PdPt nanoparticles were synthesized using a wet chemical approach and were strategically decorated onto poly(ether sulfone) (PES) membranes. The fibrous morphology of the PES membranes provided an ideal platform for the decoration of nanoparticles, promising enhanced gas transport properties. Prior to the attachment of nanoparticles, the membranes were pretreated under UV light to enhance their surface properties and facilitate improved adhesion. The synthesized bimetallic nanoparticles were characterized by using transmission electron microscopy and X-ray photoelectron spectroscopy for their morphological and elemental analysis. Furthermore, the engineered membranes were characterized using various techniques, such as Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, and field emission scanning electron microscopy (FESEM) with rigorous scrutiny to ensure a comprehensive understanding of their structural, chemical, and morphological properties. The membranes were examined for their separation performance using pure H2, N2, and CO2 gases, and the results revealed a 30% increment in H2 permeability and 40 and 42% increments in H2/CO2 and H2/N2 selectivity, respectively. These findings confirmed the critical role of tailored material design and synthesis strategies in advancing membrane technologies for H2 separation applications.
Collapse
Affiliation(s)
- Nishel Saini
- Department of Physics, Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan 302017, India
| | - Gaurav Pandey
- Department of Physics, Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan 302017, India
| | - Ankit Sharma
- Materials Research Centre, Malaviya National Institute of Technology, Jaipur 302017, India
| | - Kamakshi Pandey
- Department of Physics, Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan 302017, India
- Materials Research Centre, Malaviya National Institute of Technology, Jaipur 302017, India
| | - Vaibhav Kulshrestha
- CSIR-Central Salt and Marine Chemical Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar 364002, India
| | - Kamlendra Awasthi
- Department of Physics, Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan 302017, India
| |
Collapse
|
7
|
Sharma A, Saini N, Awasthi K, Pandey K. ZIF-67@polyvinylidene fluoride mixed matrix membranes towards improved hydrogen separation performance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:53424-53436. [PMID: 39190248 DOI: 10.1007/s11356-024-34728-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
This work is primarily focused on overcoming the limitations of polymeric membranes in achieving the balance between permeability and selectivity of the separation performance. The filler, Zeolitic imidazole framework -67 (ZIF-67) nanoparticles were synthesised in cubical morphology using hexadecyltrimethylammonium bromide (CTAB) as a surfactant via the wet-chemical method. The uniform particles with particle sizes ranging between 120-180 nm were incorporated into the polyvinylidene fluoride (PVDF) matrix to fabricate mixed matrix membranes via the phase inversion method. These mixed matrix membranes were systematically characterised to confirm the chemical, structural and morphological properties of the materials and membranes. Furthermore, the membranes showed a 56.5% improvement in their mechanical properties. The results confirm that 5 wt.% ZIF-67/PVDF membrane showed the best separation results compared to its pure counterpart. The permeability of H₂ gas was reported to be 1,094,511 Barrer, with selectivities of 3.03 for H₂/CO₂ and 3.06 for H₂/N₂. This represents a 210.6% increase in the permeability of H₂ gas. These results demonstrate the influence of ZIF-67 loading in the PVDF polymer matrix along with the potential of ZIF-67/PVDF mixed matrix membranes in the field of hydrogen separation and purification.
Collapse
Affiliation(s)
- Ankit Sharma
- Materials Research Centre, Malaviya National Institute of Technology, Jaipur, 302017, India
| | - Nishel Saini
- Department of Physics, Malaviya National Institute of Technology, Jaipur, 302017, India
| | - Kamlendra Awasthi
- Department of Physics, Malaviya National Institute of Technology, Jaipur, 302017, India
| | - Kamakshi Pandey
- Materials Research Centre, Malaviya National Institute of Technology, Jaipur, 302017, India.
- Department of Physics, Malaviya National Institute of Technology, Jaipur, 302017, India.
| |
Collapse
|
8
|
Jia Y, Chen K, Liu P, Liu Y, Pi X, Zhang X, Zhang Y. Thermally Annealed High-Aspect-Ratio ZIF-8 Nanoplates-Incorporated Mixed Matrix Membranes for Improved H 2/CO 2 Selectivity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37100-37110. [PMID: 38968215 DOI: 10.1021/acsami.4c07974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
The main challenge in the preparation of MOF-based mixed matrix membranes is to construct a good interface morphology to improve the gas separation performance and stability of the membranes. Herein, high-aspect-ratio ZIF-8 nanoplates for H2/CO2 separation membranes were synthesized by direct template conversion. The ZIF-8 nanoplates were prepared with the commercial Matrimid polymer to form MMMs by the flat scraping method. The homogeneous dispersion of high-aspect-ratio nanoplates in the membrane and the good compatibility between the filler and the matrix caused by the thermal annealing operation improve the gas separation performance and mechanical properties of MMMs. The H2/CO2 selectivity of MMMs loaded with 30 wt % ZIF-8 nanoplates increased to 10.3, and the H2 permeability was 330.1 Barrer. This synthesis method can be extended to prepare various ZIF nanoplates with elevated aspect ratios to obtain excellent performance fillers for gas separation of MMMs. In addition, the thermal annealing operation allows more efficient gas separation in polymer membranes and is a feasible way to design excellent and stable MMMs.
Collapse
Affiliation(s)
- Yan Jia
- College of New Energy and Materials, China University of Petroleum (Beijing), Changping District, Beijing 102249, PR China
| | - Kaiyi Chen
- College of Chemical Engineering and Environment, China University of Petroleum (Beijing), Changping District, Beijing 102249, PR China
| | - Pengxiao Liu
- College of New Energy and Materials, China University of Petroleum (Beijing), Changping District, Beijing 102249, PR China
| | - Yubo Liu
- China Offshore Oil Engineering (Qingdao) Co., limited, Huangdao District, Qingdao 266400, PR China
| | - Xingjian Pi
- College of New Energy and Materials, China University of Petroleum (Beijing), Changping District, Beijing 102249, PR China
| | - Xiaocan Zhang
- College of Science, China University of Petroleum (Beijing), Changping District, Beijing 102249, PR China
| | - Ying Zhang
- College of New Energy and Materials, China University of Petroleum (Beijing), Changping District, Beijing 102249, PR China
| |
Collapse
|
9
|
Mizrahi Rodriguez K, Lin S, Wu AX, Storme KR, Joo T, Grosz AF, Roy N, Syar D, Benedetti FM, Smith ZP. Penetrant-induced plasticization in microporous polymer membranes. Chem Soc Rev 2024; 53:2435-2529. [PMID: 38294167 DOI: 10.1039/d3cs00235g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Penetrant-induced plasticization has prevented the industrial deployment of many polymers for membrane-based gas separations. With the advent of microporous polymers, new structural design features and unprecedented property sets are now accessible under controlled laboratory conditions, but property sets can often deteriorate due to plasticization. Therefore, a critical understanding of the origins of plasticization in microporous polymers and the development of strategies to mitigate this effect are needed to advance this area of research. Herein, an integrative discussion is provided on seminal plasticization theory and gas transport models, and these theories and models are compared to an exhaustive database of plasticization characteristics of microporous polymers. Correlations between specific polymer properties and plasticization behavior are presented, including analyses of plasticization pressures from pure-gas permeation tests and mixed-gas permeation tests for pure polymers and composite films. Finally, an evaluation of common and current state-of-the-art strategies to mitigate plasticization is provided along with suggestions for future directions of fundamental and applied research on the topic.
Collapse
Affiliation(s)
- Katherine Mizrahi Rodriguez
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sharon Lin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Albert X Wu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Kayla R Storme
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Taigyu Joo
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Aristotle F Grosz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Naksha Roy
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Duha Syar
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Francesco M Benedetti
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Zachary P Smith
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
10
|
Li Y, Wu L, Wang K, Zhou B, Li Q, Li Z, Yan B, Gong C, Wang Q, Jia J, Shen HM, Deng S, Zhang W, She Y. Nitrogen-Rich Conjugated Microporous Polymers with Improved Cobalt(II) Density for Highly Efficient Electrocatalytic Oxygen Evolution. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8903-8912. [PMID: 38324390 DOI: 10.1021/acsami.3c18620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Developing efficient oxygen evolution catalysts (OECs) made from earth-abundant elements is extremely important since the oxygen evolution reaction (OER) with sluggish kinetics hinders the development of many energy-related electrochemical devices. Herein, an efficient strategy is developed to prepare conjugated microporous polymers (CMPs) with abundant and uniform coordination sites by coupling the N-rich organic monomer 2,4,6-tris(5-bromopyrimidin-2-yl)-1,3,5-triazine (TBPT) with Co(II) porphyrin. The resulting CMP-Py(Co) is further metallized with Co2+ ions to obtain CMP-Py(Co)@Co. Structural characterization results reveal that CMP-Py(Co)@Co has higher Co2+ content (12.20 wt %) and affinity toward water compared with CMP-Py(Co). Moreover, CMP-Py(Co)@Co exhibits an excellent OER activity with a low overpotential of 285 mV vs RHE at 10 mA cm-2 and a Tafel slope of 80.1 mV dec-1, which are significantly lower than those of CMP-Py(Co) (335 mV vs RHE and 96.8 mV dec-1). More interestingly, CMP-Py(Co)@Co outperforms most reported porous organic polymer-based OECs and the benchmark RuO2 catalyst (320 mV vs RHE and 87.6 mV dec-1). Additionally, Co2+-free CMP-Py(2H) has negligible OER activity. Thereby, the enhanced OER activity of CMP-Py(Co)@Co is attributed to the incorporation of Co2+ ions leading to rich active sites and enlarged electrochemical surface areas. Density functional theory (DFT) calculations reveal that Co2+-TBPT sites have higher activity than Co2+-porphyrin sites for the OER. These results indicate that the introduction of rich active metal sites in stable and conductive CMPs could provide novel guidance for designing efficient OECs.
Collapse
Affiliation(s)
- Yanzhe Li
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Liang Wu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Keke Wang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Bolin Zhou
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qiang Li
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhengrun Li
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Bin Yan
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chengtao Gong
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qin Wang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianhong Jia
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hai-Min Shen
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shengwei Deng
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wang Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuanbin She
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
11
|
Liu Y, Zhang Z, Li Z, Wei X, Zhao F, Fan C, Jiang Z. Surface Segregation Methods toward Molecular Separation Membranes. SMALL METHODS 2023; 7:e2300737. [PMID: 37668447 DOI: 10.1002/smtd.202300737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/14/2023] [Indexed: 09/06/2023]
Abstract
As a highly promising approach to solving the issues of energy and environment, membrane technology has gained increasing attention in various fields including water treatment, liquid separations, and gas separations, owing to its high energy efficiency and eco-friendliness. Surface segregation, a phenomenon widely found in nature, exhibits irreplaceable advantages in membrane fabrication since it is an in situ method for synchronous modification of membrane and pore surfaces during the membrane forming process. Meanwhile, combined with the development of synthesis chemistry and nanomaterial, the group has developed surface segregation as a versatile membrane fabrication method using diverse surface segregation agents. In this review, the recent breakthroughs in surface segregation methods and their applications in membrane fabrication are first briefly introduced. Then, the surface segregation phenomena and the classification of surface segregation agents are discussed. As the major part of this review, the authors focus on surface segregation methods including free surface segregation, forced surface segregation, synergistic surface segregation, and reaction-enhanced surface segregation. The strategies for regulating the physical and chemical microenvironments of membrane and pore surfaces through the surface segregation method are emphasized. The representative applications of surface segregation membranes are presented. Finally, the current challenges and future perspectives are highlighted.
Collapse
Affiliation(s)
- Yanan Liu
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Ecological Civilization, Hainan University, 570228, Haikou, China
| | - Zhao Zhang
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Ecological Civilization, Hainan University, 570228, Haikou, China
| | - Zongmei Li
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Ecological Civilization, Hainan University, 570228, Haikou, China
| | - Xiaocui Wei
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Ecological Civilization, Hainan University, 570228, Haikou, China
| | - Fu Zhao
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Ecological Civilization, Hainan University, 570228, Haikou, China
| | - Chunyang Fan
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Ecological Civilization, Hainan University, 570228, Haikou, China
| | - Zhongyi Jiang
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Ecological Civilization, Hainan University, 570228, Haikou, China
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China
| |
Collapse
|
12
|
Cheng Y, Joarder B, Datta SJ, Alsadun N, Poloneeva D, Fan D, Khairova R, Bavykina A, Jia J, Shekhah O, Shkurenko A, Maurin G, Gascon J, Eddaoudi M. Mixed Matrix Membranes with Surface Functionalized Metal-Organic Framework Sieves for Efficient Propylene/Propane Separation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300296. [PMID: 37045553 DOI: 10.1002/adma.202300296] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Membrane technology, regarded as an environmentally friendly and sustainable approach, offers great potential to address the large energy penalty associated with the energy-intensive propylene/propane separation. Quest for molecular sieving membranes for this important separation is of tremendous interest. Here, a fluorinated metal-organic framework (MOF) material, known as KAUST-7 (KAUST: King Abdullah University of Science and Technology) with well-defined narrow 1D channels that can effectively discriminate propylene from propane based on a size-sieving mechanism, is successfully incorporated into a polyimide matrix to fabricate molecular sieving mixed matrix membranes (MMMs). Markedly, the surface functionalization of KAUST-7 nanoparticles with carbene moieties affords the requisite interfacial compatibility, with minimal nonselective defects at polymer-filler interfaces, for the fabrication of a molecular sieving MMM. The optimal membrane with a high MOF loading (up to 45 wt.%) displays a propylene permeability of ≈95 barrer and a mixed propylene/propane selectivity of ≈20, far exceeding the state-of-the-art upper bound limits. Moreover, the resultant membrane exhibits robust structural stability under practical conditions, including high pressures (up to 8 bar) and temperatures (up to 100 °C). The observed outstanding performance attests to the importance of surface engineering for the preparation and plausible deployment of high-performance MMMs for industrial applications.
Collapse
Affiliation(s)
- Youdong Cheng
- Functional Materials Design, Discovery and Development (FMD3), Advanced Membranes & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Biplab Joarder
- Functional Materials Design, Discovery and Development (FMD3), Advanced Membranes & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Shuvo Jit Datta
- Functional Materials Design, Discovery and Development (FMD3), Advanced Membranes & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Norah Alsadun
- Functional Materials Design, Discovery and Development (FMD3), Advanced Membranes & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Department of Chemistry, College of Science, King Faisal University (KFU), Al-Ahsa, 31982-400, Saudi Arabia
| | - Daria Poloneeva
- Advanced Catalytic Materials (ACM), KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Dong Fan
- Institut Charles Gerhardt Montpellier (ICGM), Université de Montpellier, CNRS, ENSCM, Montpellier, 34095, France
| | - Rushana Khairova
- Advanced Catalytic Materials (ACM), KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Anastasiya Bavykina
- Advanced Catalytic Materials (ACM), KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Jiangtao Jia
- Functional Materials Design, Discovery and Development (FMD3), Advanced Membranes & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Osama Shekhah
- Functional Materials Design, Discovery and Development (FMD3), Advanced Membranes & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Aleksander Shkurenko
- Functional Materials Design, Discovery and Development (FMD3), Advanced Membranes & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Guillaume Maurin
- Institut Charles Gerhardt Montpellier (ICGM), Université de Montpellier, CNRS, ENSCM, Montpellier, 34095, France
| | - Jorge Gascon
- Advanced Catalytic Materials (ACM), KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Mohamed Eddaoudi
- Functional Materials Design, Discovery and Development (FMD3), Advanced Membranes & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
13
|
Delgado-Marín JJ, Rendón-Patiño A, Velisoju VK, Kumar GS, Zambrano N, Rueping M, Gascón J, Castaño P, Narciso J, Ramos-Fernandez EV. Leaching in Specific Facets of ZIF-67 and ZIF-L Zeolitic Imidazolate Frameworks During the CO 2 Cycloaddition with Epichlorohydrin. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:692-699. [PMID: 37520114 PMCID: PMC10373435 DOI: 10.1021/acs.chemmater.2c03374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/21/2022] [Indexed: 08/01/2023]
Abstract
Zeolitic imidazolate frameworks (ZIFs) have been profusely used as catalysts for inserting CO2 into organic epoxides (i.e., epichlorohydrin) through cycloaddition. Here, we demonstrate that these materials suffer from irreversible degradation by leaching. To prove this, we performed the reactions and analyzed the final reaction mixtures by elemental analysis and the resulting materials by different microscopies. We found that the difference in catalytic activity between three ZIF-67 and one ZIF-L catalysts was related to the rate at which the materials degraded. Particularly, the {100} facet leaches faster than the others, regardless of the material used. The catalytic activity strongly depended on the amount of leached elements in the liquid phase since these species are extremely active. Our work points to the instability of these materials under relevant reaction conditions and the necessity of additional treatments to improve their stability.
Collapse
Affiliation(s)
- Jose J. Delgado-Marín
- Instituto
de Materiales and Departamento de Química Inorgánica,
Facultad de Ciencias, Universidad de Alicante, Apdo. 99, Alicante 03080, Spain
| | - Alejandra Rendón-Patiño
- KAUST
Catalysis Center, Advanced Catalytic Materials, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Vijay Kumar Velisoju
- KAUST
Catalysis Center, Advanced Catalytic Materials, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Gadde Sathish Kumar
- KAUST
Catalysis Center, Advanced Catalytic Materials, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Naydu Zambrano
- KAUST
Catalysis Center, Advanced Catalytic Materials, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Magnus Rueping
- KAUST
Catalysis Center, Advanced Catalytic Materials, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Jorge Gascón
- KAUST
Catalysis Center, Advanced Catalytic Materials, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Pedro Castaño
- KAUST
Catalysis Center, Advanced Catalytic Materials, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Javier Narciso
- Instituto
de Materiales and Departamento de Química Inorgánica,
Facultad de Ciencias, Universidad de Alicante, Apdo. 99, Alicante 03080, Spain
| | - Enrique V. Ramos-Fernandez
- Instituto
de Materiales and Departamento de Química Inorgánica,
Facultad de Ciencias, Universidad de Alicante, Apdo. 99, Alicante 03080, Spain
| |
Collapse
|
14
|
Zhang J, Guan B, Wu X, Chen Y, Guo J, Ma Z, Bao S, Jiang X, Chen L, Shu K, Dang H, Guo Z, Li Z, Huang Z. Research on photocatalytic CO 2 conversion to renewable synthetic fuels based on localized surface plasmon resonance: current progress and future perspectives. Catal Sci Technol 2023. [DOI: 10.1039/d2cy01967a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Due to its desirable optoelectronic properties, localized surface plasmon resonance (LSPR) can hopefully play a promising role in photocatalytic CO2 reduction reaction (CO2RR). In this review, mechanisms and applications of LSPR effect in this field are introduced in detail.
Collapse
Affiliation(s)
- Jinhe Zhang
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No. 800, Min Hang District, Shanghai 200240, P.R. China
| | - Bin Guan
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No. 800, Min Hang District, Shanghai 200240, P.R. China
| | - Xingze Wu
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No. 800, Min Hang District, Shanghai 200240, P.R. China
| | - Yujun Chen
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No. 800, Min Hang District, Shanghai 200240, P.R. China
| | - Jiangfeng Guo
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No. 800, Min Hang District, Shanghai 200240, P.R. China
| | - Zeren Ma
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No. 800, Min Hang District, Shanghai 200240, P.R. China
| | - Shibo Bao
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No. 800, Min Hang District, Shanghai 200240, P.R. China
| | - Xing Jiang
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No. 800, Min Hang District, Shanghai 200240, P.R. China
| | - Lei Chen
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No. 800, Min Hang District, Shanghai 200240, P.R. China
| | - Kaiyou Shu
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No. 800, Min Hang District, Shanghai 200240, P.R. China
| | - Hongtao Dang
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No. 800, Min Hang District, Shanghai 200240, P.R. China
| | - Zelong Guo
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No. 800, Min Hang District, Shanghai 200240, P.R. China
| | - Zekai Li
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No. 800, Min Hang District, Shanghai 200240, P.R. China
| | - Zhen Huang
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Dongchuan Road No. 800, Min Hang District, Shanghai 200240, P.R. China
| |
Collapse
|
15
|
Li H, Zhuang S, Zhao B, Yu Y, Liu Y. Visualization of the gas permeation in core–shell MOF/Polyimide mixed matrix membranes and structural optimization based on finite element equivalent simulation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Zhao Q, Lian S, Li R, Yang Y, Zang G, Song C. Fabricating Leaf-like hierarchical ZIF-67 as Intra-Mixed matrix membrane microarchitecture for efficient intensification of CO2 separation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Shen Q, Cong S, Zhu J, Zhang Y, He R, Yi S, Zhang Y. Novel pyrazole-based MOF synergistic polymer of intrinsic microporosity membranes for high-efficient CO2 capture. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Qu K, Huang K, Xu J, Dai L, Wang Y, Cao H, Xia Y, Wu Y, Xu W, Yao Z, Guo X, Lian C, Xu Z. High‐Efficiency CO
2
/N
2
Separation Enabled by Rotation of Electrostatically Anchored Flexible Ligands in Metal–Organic Framework. Angew Chem Int Ed Engl 2022; 61:e202213333. [DOI: 10.1002/anie.202213333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Kai Qu
- State Key Laboratory of Chemical Engineering East China University of Science and Technology No.130 Meilong Road Shanghai 200237 China
| | - Kang Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering Nanjing Tech University No. 30 Puzhu South Road Nanjing 211816 China
| | - Jipeng Xu
- State Key Laboratory of Chemical Engineering East China University of Science and Technology No.130 Meilong Road Shanghai 200237 China
| | - Liheng Dai
- State Key Laboratory of Chemical Engineering East China University of Science and Technology No.130 Meilong Road Shanghai 200237 China
| | - Yixing Wang
- State Key Laboratory of Chemical Engineering East China University of Science and Technology No.130 Meilong Road Shanghai 200237 China
| | - Hongyan Cao
- State Key Laboratory of Materials-Oriented Chemical Engineering Nanjing Tech University No. 30 Puzhu South Road Nanjing 211816 China
| | - Yongsheng Xia
- State Key Laboratory of Materials-Oriented Chemical Engineering Nanjing Tech University No. 30 Puzhu South Road Nanjing 211816 China
| | - Yulin Wu
- State Key Laboratory of Chemical Engineering East China University of Science and Technology No.130 Meilong Road Shanghai 200237 China
| | - Weiyi Xu
- State Key Laboratory of Chemical Engineering East China University of Science and Technology No.130 Meilong Road Shanghai 200237 China
| | - Zhizhen Yao
- State Key Laboratory of Chemical Engineering East China University of Science and Technology No.130 Meilong Road Shanghai 200237 China
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering East China University of Science and Technology No.130 Meilong Road Shanghai 200237 China
| | - Cheng Lian
- State Key Laboratory of Chemical Engineering East China University of Science and Technology No.130 Meilong Road Shanghai 200237 China
| | - Zhi Xu
- State Key Laboratory of Chemical Engineering East China University of Science and Technology No.130 Meilong Road Shanghai 200237 China
| |
Collapse
|
19
|
Becerra J, Nguyen DT, Nair Gopalakrishnan V, Do TO. Chemically Bonded Plasmonic Triazole-Functionalized Au/Zeolitic Imidazole Framework (ZIF-67) for Enhanced CO 2 Photoreduction. CHEMSUSCHEM 2022; 15:e202201535. [PMID: 36121437 DOI: 10.1002/cssc.202201535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Indexed: 06/15/2023]
Abstract
The design of functionalized metallic nanoparticles is considered an emerging technique to ensure the interaction between metal and semiconductor material. In the literature, this interface interaction is mainly governed by electrostatic or van der Waals forces, limiting the injection of electrons under light irradiation. To enhance the transfer of electrons between two compounds, close contact or chemical bonding at the interface is required. Herein, a new approach was reported for the synthesis of chemically bonded plasmonic Au NPs/ZIF-67 nanocomposites. The structure of ZIF-67 was grown on the surface of functionalized plasmonic Au NPs using 1H-1,2,4-triazole-3-thiol as the capping agent, which acted as both stabilizer of Au nanoparticles and a molecular linker for ZIF-67 formation. As a result, the synthesized material exhibited outstanding photocatalytic CO2 reduction with a methanol production rate of 2.70 mmol h-1 g-1 cat under sunlight irradiation. This work emphasizes that the diligent use of capping agents, with suitable functional groups, could facilitate the formation of intimate heterostructure for enhanced photocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Jorge Becerra
- Department of Chemical Engineering, Laval University, 1065 Avenue de la Médecine, G1V0A6, Quebec, QC, Canada
| | - Duc-Trung Nguyen
- Department of Chemical Engineering, Laval University, 1065 Avenue de la Médecine, G1V0A6, Quebec, QC, Canada
| | - Vishnu Nair Gopalakrishnan
- Department of Chemical Engineering, Laval University, 1065 Avenue de la Médecine, G1V0A6, Quebec, QC, Canada
| | - Trong-On Do
- Department of Chemical Engineering, Laval University, 1065 Avenue de la Médecine, G1V0A6, Quebec, QC, Canada
| |
Collapse
|
20
|
Lian S, Zhao Q, Zhang Z, Li R, Song C. Tailored interfacial microenvironment of mixed matrix membranes based on deep eutectic solvents for efficient CO2 separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Liu Y, Wu C, Zhou Z, Liu W, Guo H, Zhang B. Upgrading CO2/CH4 separation performances of Pebax-based mixed-matrix membranes incorporated with core/shell-structured ZIF-L(Co)@ZIF-8 composite nanosheets. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
22
|
Cheng Y, Datta SJ, Zhou S, Jia J, Shekhah O, Eddaoudi M. Advances in metal-organic framework-based membranes. Chem Soc Rev 2022; 51:8300-8350. [PMID: 36070414 DOI: 10.1039/d2cs00031h] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Membrane-based separations have garnered considerable attention owing to their high energy efficiency, low capital cost, small carbon footprint, and continuous operation mode. As a class of highly porous crystalline materials with well-defined pore systems and rich chemical functionalities, metal-organic frameworks (MOFs) have demonstrated great potential as promising membrane materials over the past few years. Different types of MOF-based membranes, including polycrystalline membranes, mixed matrix membranes (MMMs), and nanosheet-based membranes, have been developed for diversified applications with remarkable separation performances. In this comprehensive review, we first discuss the general classification of membranes and outline the historical development of MOF-based membranes. Subsequently, particular attention is devoted to design strategies for MOF-based membranes, along with detailed discussions on the latest advances on these membranes for various gas and liquid separation processes. Finally, challenges and future opportunities for the industrial implementation of these membranes are identified and outlined with the intent of providing insightful guidance on the design and fabrication of high-performance membranes in the future.
Collapse
Affiliation(s)
- Youdong Cheng
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Shuvo Jit Datta
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Sheng Zhou
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Jiangtao Jia
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Osama Shekhah
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Mohamed Eddaoudi
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| |
Collapse
|
23
|
Loloei M, Kaliaguine S, Rodrigue D. CO2-Selective mixed matrix membranes of bimetallic Zn/Co-ZIF vs. ZIF-8 and ZIF-67. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Kang DY, Lee JS, Lin LC. X-ray Diffraction and Molecular Simulations in the Study of Metal-Organic Frameworks for Membrane Gas Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9441-9453. [PMID: 35881074 DOI: 10.1021/acs.langmuir.2c01317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
For more than a decade, researchers have been developing metal-organic frameworks (MOFs) in the form of pure MOF membranes as well as MOF-containing mixed-matrix membranes. MOF membranes have been used for H2/CO2 or C3H6/C3H8 separation, but relatively few MOF membranes enable the high-performance separation of CO2/N2, CO2/CH4, or N2/CH4. This article describes the use of in situ XRD analysis and molecular simulation to elucidate gas transport within MOFs and derivative membranes at the molecular level. In a review of recent studies by the authors and other research groups, this article examines the flexibility of MOFs initiated by activation, gas adsorption, and aging effects during gas permeation. This article also discusses the application of XRD analysis in conjunction with computational methods to investigate the CO2-MOF Coulombic interaction and its effects on CO2 separation. Note that this combined analysis approach is also useful in studying the effects of linker rotation on N2/CH4 separation. This article also examines the use of computational tools in identifying new MOFs for gas separation and, more importantly, in elaborating the relationship between the structure of MOFs and their corresponding gas transport properties.
Collapse
Affiliation(s)
- Dun-Yen Kang
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Jong Suk Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, Baekbeom-ro 35, Mapo-gu, Seoul 04107, Republic of Korea
| | - Li-Chiang Lin
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W. Woodruff Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
25
|
Sasikumar B, Arthanareeswaran G. Interfacial design of polysulfone/Cu-BTC membrane using [Bmim][Tf2N] and [Dmim][Cl] RTILs for CO2 separation: Performance assessment for single and mixed gas separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
CO2 separation performance for PIM based mixed matrix membranes embedded by superbase ionic liquids. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Incorporating KAUST-7 into PIM-1 towards mixed matrix membranes with long-term stable CO2/CH4 separation performance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Mixed matrix membrane development progress and prospect of using 2D nanosheet filler for CO2 separation and capture. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102094] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
29
|
Jung D, Su S, Syed ZH, Atilgan A, Wang X, Sha F, Lei Y, Gianneschi NC, Islamoglu T, Farha OK. A Catalytically Accessible Polyoxometalate in a Porous Fiber for Degradation of a Mustard Gas Simulant. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16687-16693. [PMID: 35353476 DOI: 10.1021/acsami.2c01584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polyoxometalates (POMs) are versatile materials for chemical catalysis due to their tunable acidity and rich redox properties. While POMs have attracted significant attention in homogeneous catalysis, challenges regarding aggregation and instability in solvents often prevent the wide implementation of POMs as heterogeneous catalysts. Therefore, the successful incorporation of a POM into a solid support, such as a polymer, is desirable for practical applications where unique functionalities of the POM combine with the advantages of the polymer. In this work, we showcase how polymers of intrinsic microporosity (PIMs) can serve as matrices for anchoring a pure inorganic Keggin-type POM (H3PW12O40) to fabricate PIM-based composite materials. Specifically, we found that PIMs installed with amidoxime functionalities could successfully attach POMs (PW12@PIM-1-AO) without self-segregation. Furthermore, we fabricated porous fibrous mats via electrospinning of the PIM-POM composites. Comprehensive characterization confirmed the integrity of the POM in the composite material. Following this, we demonstrated that the incorporated POMs in the composite fibers maintained their innate catalytic activity for the oxidative degradation of 2-chloroethyl ethyl sulfide, a sulfur mustard simulant, in the presence of hydrogen peroxide as the oxidant. Ultimately, our work highlights that PIM-based hybrid materials provide a potential route for implementing these reactive fiber mats into protective equipment.
Collapse
Affiliation(s)
- Dahee Jung
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Shengyi Su
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Zoha H Syed
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Chemical Sciences and Engineering Division, Argonne, National Laboratory, Lemont, Illinois 60439, United States
| | - Ahmet Atilgan
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Xingjie Wang
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Fanrui Sha
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Yifan Lei
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Nathan C Gianneschi
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science & Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Biomedical Engineering, Department of Pharmacology, Chemistry of Life Processes Institute, Simpson Querrey Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Timur Islamoglu
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Omar K Farha
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
30
|
Ge J, Ohata Y, Ohnishi T, Moteki T, Ogura M. Highly Dispersed Co/Zn-Doped Zeolitic Imidazolate Framework-Derived Carbon Nanoparticles with High NO Adsorption Capacity at Low Operating Temperature. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Jiachen Ge
- Institute of Industrial Science, The University of Tokyo, Komaba, Meguro, Tokyo 153-8505, Japan
| | - Yusuke Ohata
- Institute of Industrial Science, The University of Tokyo, Komaba, Meguro, Tokyo 153-8505, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Takeshi Ohnishi
- Institute of Industrial Science, The University of Tokyo, Komaba, Meguro, Tokyo 153-8505, Japan
| | - Takahiko Moteki
- Institute of Industrial Science, The University of Tokyo, Komaba, Meguro, Tokyo 153-8505, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Masaru Ogura
- Institute of Industrial Science, The University of Tokyo, Komaba, Meguro, Tokyo 153-8505, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
31
|
Insights into the progress of polymeric nano-composite membranes for hydrogen separation and purification in the direction of sustainable energy resources. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
32
|
He S, Zhu B, Li S, Zhang Y, Jiang X, Hon Lau C, Shao L. Recent progress in PIM-1 based membranes for sustainable CO2 separations: Polymer structure manipulation and mixed matrix membrane design. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120277] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
33
|
Symbiosis-inspired de novo synthesis of ultrahigh MOF growth mixed matrix membranes for sustainable carbon capture. Proc Natl Acad Sci U S A 2022; 119:2114964119. [PMID: 34969860 PMCID: PMC8740686 DOI: 10.1073/pnas.2114964119] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2021] [Indexed: 01/23/2023] Open
Abstract
Mixed matrix membranes (MMMs) are one of the most promising solutions for energy-efficient gas separation. However, conventional MMM synthesis methods inevitably lead to poor filler-polymer interfacial compatibility, filler agglomeration, and limited loading. Herein, inspired by symbiotic relationships in nature, we designed a universal bottom-up method for in situ nanosized metal organic framework (MOF) assembly within polymer matrices. Consequently, our method eliminating the traditional postsynthetic step significantly enhanced MOF dispersion, interfacial compatibility, and loading to an unprecedented 67.2 wt % in synthesized MMMs. Utilizing experimental techniques and complementary density functional theory (DFT) simulation, we validated that these enhancements synergistically ameliorated CO2 solubility, which was significantly different from other works where MOF typically promoted gas diffusion. Our approach simultaneously improves CO2 permeability and selectivity, and superior carbon capture performance is maintained even during long-term tests; the mechanical strength is retained even with ultrahigh MOF loadings. This symbiosis-inspired de novo strategy can potentially pave the way for next-generation MMMs that can fully exploit the unique characteristics of both MOFs and matrices.
Collapse
|
34
|
Butt TH, Tamime R, Budd PM, Harrison WJ, Shamair Z, Khan AL. Enhancing the organophilic separations with mixed matrix membranes of PIM-1 and bimetallic Zn/Co-ZIF filler. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
Electrochemical Determination of Diclofenac by Using ZIF-67/g-C3N4 Modified Electrode. ADSORPT SCI TECHNOL 2021. [DOI: 10.1155/2021/7896286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A facial differential pulse voltammetric procedure using a glassy carbon electrode modified with zeolite imidazolate framework-67/graphitic carbon nitride (ZIF-67/g-C3N4) for the diclofenac (DCF) determination is demonstrated. ZIF-67/g-C3N4 with different mass ratios of the components was synthesized in a self-assembly process. The obtained materials were characterized by using X-ray diffraction, scanning electron microscopy (SEM), EDX-mapping, and nitrogen adsorption/desorption isotherms. The peak current varies linearly with the DCF concentration in the range of 0.2–2.2 μmol·L−1 and has a detection limit of 0.071 μmol·L−1. The modified electrode exhibits acceptable repeatability, reproducibility, and selectivity towards DCF. The proposed electrode allows determining DCF in human urine without pretreatment, and the results are comparable with those determined with HPLC.
Collapse
|
36
|
Shah Buddin M, Ahmad A. A review on metal-organic frameworks as filler in mixed matrix membrane: Recent strategies to surpass upper bound for CO2 separation. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101616] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
37
|
Jana A, Bergsman DS, Grossman JC. Adsorption-based membranes for air separation using transition metal oxides. NANOSCALE ADVANCES 2021; 3:4502-4512. [PMID: 36133475 PMCID: PMC9418459 DOI: 10.1039/d1na00307k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/25/2021] [Indexed: 06/16/2023]
Abstract
In this work, we use computational modeling to examine the viability of adsorption-based pore-flow membranes for separating gases when a purely size-based separation strategy is ineffective. Using molecular dynamics simulations of O2 and N2, we model permeation through a nanoporous graphene membrane. Permeation is assumed to follow a five-step adsorption-based pathway, with desorption being the rate-limiting step. Using this model, we observe increased selectivity between O2 and N2, resulting from increased adsorption energy differences. We explore the limits of this strategy, providing an initial set of constraints that need to be satisfied to allow for selectivity. Finally, we provide a preliminary exploration of some transition metal oxides that appear to satisfy those conditions. Using density functional theory calculations, we confirm that these oxides possess adsorption energies needed to operate as adsorption-based pore-flow membranes. These adsorption energies provide a suitable motivation to examine adsorption-based pore-flow membranes as a viable option for air separation.
Collapse
Affiliation(s)
- Asmita Jana
- Department of Materials Science and Engineering, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge Massachusetts 02139 USA
| | - David S Bergsman
- Department of Materials Science and Engineering, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge Massachusetts 02139 USA
| | - Jeffrey C Grossman
- Department of Materials Science and Engineering, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge Massachusetts 02139 USA
| |
Collapse
|
38
|
Advances in the Use of Nanocomposite Membranes for Carbon Capture Operations. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1155/2021/6666242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The adoption of nanodoped membranes in the areas of gas stream separation, water, and wastewater treatments due to the physical and operational advantages of such membranes has significantly increased. The literature has shown that the surface structure and physicochemical properties of nanodoped membranes contribute significantly to the interaction and rejection characteristics when compared to bare membranes. This study reviews the recent developments on nanodoped membranes, and their hybrids for carbon capture and gas separation operations. Features such as the nanoparticles/materials and hybrids used for membrane doping and the effect of physicochemical properties and water vapour in nanodoped membrane performance for carbon capture are discussed. The highlights of this review show that nanodoped membrane is a facile modification technique which improves the membrane performance in most cases and holds a great potential for carbon capture. Membrane module design and material, thickness, structure, and configuration were identified as key factors that contribute directly, to nanodoped membrane performance. This study also affirms that the three core parameters satisfied before turning a microporous material into a membrane are as follows: high permeability and selectivity, ease of fabrication, and robust structure. From the findings, it is also observed that the application of smart models and knowledge-based systems have not been extensively studied in nanoparticle-/material-doped membranes. More studies are encouraged because technical improvements are needed in order to achieve high performance of carbon capture using nanodoped membranes, as well as improving their durability, permeability, and selectivity of the membrane.
Collapse
|
39
|
Performance of polysulfone hollow fiber membranes encompassing ZIF-8, SiO2/ZIF-8, and amine-modified SiO2/ZIF-8 nanofillers for CO2/CH4 and CO2/N2 gas separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118471] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
40
|
Wang Z, Yuan J, Li R, Zhu H, Duan J, Guo Y, Liu G, Jin W. ZIF-301 MOF/6FDA-DAM polyimide mixed-matrix membranes for CO2/CH4 separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118431] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
41
|
Li M, Wu M, Pan B, Xu D, Lvsong Z, Li D, Zhang F, Huang J. Aerobic Oxidation of 2,3,6-Trimethylphenol with Reusable Homogenized Copper Catalysts. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-0025-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
42
|
Wang H, Wang M, Liang X, Yuan J, Yang H, Wang S, Ren Y, Wu H, Pan F, Jiang Z. Organic molecular sieve membranes for chemical separations. Chem Soc Rev 2021; 50:5468-5516. [PMID: 33687389 DOI: 10.1039/d0cs01347a] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Molecular separations that enable selective transport of target molecules from gas and liquid molecular mixtures, such as CO2 capture, olefin/paraffin separations, and organic solvent nanofiltration, represent the most energy sensitive and significant demands. Membranes are favored for molecular separations owing to the advantages of energy efficiency, simplicity, scalability, and small environmental footprint. A number of emerging microporous organic materials have displayed great potential as building blocks of molecular separation membranes, which not only integrate the rigid, engineered pore structures and desirable stability of inorganic molecular sieve membranes, but also exhibit a high degree of freedom to create chemically rich combinations/sequences. To gain a deep insight into the intrinsic connections and characteristics of these microporous organic material-based membranes, in this review, for the first time, we propose the concept of organic molecular sieve membranes (OMSMs) with a focus on the precise construction of membrane structures and efficient intensification of membrane processes. The platform chemistries, designing principles, and assembly methods for the precise construction of OMSMs are elaborated. Conventional mass transport mechanisms are analyzed based on the interactions between OMSMs and penetrate(s). Particularly, the 'STEM' guidelines of OMSMs are highlighted to guide the precise construction of OMSM structures and efficient intensification of OMSM processes. Emerging mass transport mechanisms are elucidated inspired by the phenomena and principles of the mass transport processes in the biological realm. The representative applications of OMSMs in gas and liquid molecular mixture separations are highlighted. The major challenges and brief perspectives for the fundamental science and practical applications of OMSMs are tentatively identified.
Collapse
Affiliation(s)
- Hongjian Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Meidi Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Xu Liang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Jinqiu Yuan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Hao Yang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4 117585, Singapore
| | - Shaoyu Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yanxiong Ren
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Hong Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Fusheng Pan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China and Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
43
|
Degradation of methylene blue by a heterogeneous Fenton reaction catalyzed by FeCo2O4-N-C nanocomposites derived by ZIFs. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.01.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
Almuhtaseb RM, Awadallah-F A, Al-Muhtaseb SA, Khraisheh M. Influence of Casting Solvents on CO 2/CH 4 Separation Using Polysulfone Membranes. MEMBRANES 2021; 11:286. [PMID: 33924710 PMCID: PMC8070651 DOI: 10.3390/membranes11040286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 11/25/2022]
Abstract
Polysulfone membranes exhibit resistance to high temperature with low manufacturing cost and high efficiency in the separation process. The composition of gases is an important step that estimates the efficiency of separation in membranes. As membrane types are currently becoming in demand for CO2/CH4 segregation, polysulfone will be an advantageous alternative to have in further studies. Therefore, research is undertaken in this study to evaluate two solvents: chloroform (CF) and tetrahydrofuran (THF). These solvents are tested for casting polymeric membranes from polysulfone (PSF) to separate every single component from a binary gas mixture of CO2/CH4. In addition, the effect of gas pressure was conducted from 1 to 10 bar on the behavior of the permeability and selectivity. The results refer to the fact that the maximum permeability of CO2 and CH4 for THF is 62.32 and 2.06 barrer at 1 and 2 bars, respectively. Further, the maximum permeability of CF is 57.59 and 2.12 barrer at 1 and 2 bars, respectively. The outcome selectivity values are 48 and 36 for THF and CF at 1 bar, accordingly. Furthermore, the study declares that with the increase in pressure, the permeability and selectivity values drop for CF and THF. The performance for polysulfone (PSF) membrane that is manufactured with THF is superior to that of CF relative to the Robeson upper bound. Therefore, through the results, it can be deduced that the solvent during in-situ synthesis has a significant influence on the gas separation of a binary mixture of CO2/CH4.
Collapse
Affiliation(s)
| | | | | | - Majeda Khraisheh
- Department of Chemical Engineering, Qatar University, Doha P.O. Box 2713, Qatar; (R.M.A.); (A.A.-F.); (S.A.A.-M.)
| |
Collapse
|
45
|
Ehrling S, Miura H, Senkovska I, Kaskel S. From Macro- to Nanoscale: Finite Size Effects on Metal–Organic Framework Switchability. TRENDS IN CHEMISTRY 2021. [DOI: 10.1016/j.trechm.2020.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
46
|
Preparation of Amino-Functional UiO-66/PIMs Mixed Matrix Membranes with [bmim][Tf 2N] as Regulator for Enhanced Gas Separation. MEMBRANES 2021; 11:membranes11010035. [PMID: 33406610 PMCID: PMC7824137 DOI: 10.3390/membranes11010035] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 12/04/2022]
Abstract
Development of mixed matrix membranes (MMMs) with excellent permeance and selectivity applied for gas separation has been the focus of world attention. However, preparation of high-quality MMMs still remains a big challenge due to the lack of enough interfacial interaction. Herein, ionic liquid (IL)-modified UiO-66-NH2 filler was first incorporated into microporous organic polymer material (PIM-1) to prepare dense and defect-free mixed matrix membranes via a coating modification and priming technique. IL [bmim][Tf2N] not only improves the hydrophobicity of UiO-66-NH2 and facilitates better dispersion of UiO-66-NH2 nanoparticles into PIM-1 matrix, but also promotes the affinity between MOFs and polymer, sharply reducing interface non-selective defects of MMMs. By using this strategy, we can not only facilely synthesize high-quality MMMs ignoring non-selective interfacial voids, but also structurally regulate MOF nanoparticles in the polymer substrate and greatly improve interface compatibility and stability of MMMs. The method also gives suitable level of generality for fabrication of versatile defect-free MMMs based on different combination of MOFs and PIMs. The prepared UiO-66-NH2@IL/PIM-1 membrane exhibited outstanding gas separation behavior with large CO2 permeation of 8283.4 Barrer and high CO2/N2 selectivity of 22.5.
Collapse
|
47
|
Han J, Bai L, Jiang H, Zeng S, Yang B, Bai Y, Zhang X. Task-Specific Ionic Liquids Tuning ZIF-67/PIM-1 Mixed Matrix Membranes for Efficient CO2 Separation. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04830] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jiuli Han
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Bai
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
| | - Haiyan Jiang
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaojuan Zeng
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Bingbing Yang
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinge Bai
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiangping Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
48
|
Ahmad MZ, Castro-Muñoz R, Budd PM. Boosting gas separation performance and suppressing the physical aging of polymers of intrinsic microporosity (PIM-1) by nanomaterial blending. NANOSCALE 2020; 12:23333-23370. [PMID: 33210671 DOI: 10.1039/d0nr07042d] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In recent decades, polymers of intrinsic microporosity (PIMs), especially the firstly introduced PIM-1, have been actively explored for various membrane-based separation purposes and widely recognized as the next generation membrane materials of choice for gas separation due to their ultra-permeable characteristics. Unfortunately, the polymers suffer substantially the negative impacts of physical aging, a phenomenon that is primarily noticeable in high free volume polymers. The phenomenon occurs at the molecular level, which leads to changes in the physical properties, and consequently the separation performance and membrane durability. This review discusses the strategies that have been employed to manage the physical aging issue, with a focus on the approach of blending with nanomaterials to give mixed matrix membranes. A detailed discussion is provided on the types of materials used, their inherent properties, the effects on gas separation performance, and their benefits in the suppression of the aging problem.
Collapse
Affiliation(s)
- Mohd Zamidi Ahmad
- Organic Materials Innovation Center (OMIC), Department of Chemistry, University of Manchester, Oxford Road, M13 9PL, UK.
| | | | | |
Collapse
|
49
|
Plasmonic Materials: Opportunities and Challenges on Reticular Chemistry for Photocatalytic Applications. ChemCatChem 2020. [DOI: 10.1002/cctc.202001447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
50
|
In-situ growth of zeolitic imidazolate framework-67 nanoparticles on polysulfone/graphene oxide hollow fiber membranes enhance CO2/CH4 separation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118506] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|