1
|
Li Y, Li SH, Xu LH, Mao H, Zhang AS, Zhao ZP. Highly selective PDMS membranes embedded with ILs-decorated halloysite nanotubes for ethyl acetate pervaporation separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
2
|
Liang F, Liu D, Dong S, Zhao J, Cao X, Jin W. Facile construction of polyzwitterion membrane via assembly of graphene oxide-based core-brush nanosheet for high-efficiency water permeation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
3
|
An ultrapermeable thin film composite membrane supported by “green” nanofibrous polyimide substrate for polar aprotic organic solvent recovery. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Xie W, Li L, Wang X, Yuan L, Zhu Z. Crosslinking structures of POD membranes copolymerized with nitrilotriacetic acid and their properties. POLYMER 2022. [DOI: 10.1016/j.polymer.2021.124484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
|
6
|
Petrov AV, Toikka AM. Comparative Atomic-Level Analysis of Sorption and Diffusion Properties of Membrane Materials on the Base of Polymer and Its Prepolymer: A Case Study of Polyheteroarylenes. MEMBRANES 2021; 11:membranes11120925. [PMID: 34940426 PMCID: PMC8709246 DOI: 10.3390/membranes11120925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022]
Abstract
The sorption properties of polymers and the mobility of penetrants are the main factors which determine the trans-membrane processes. Other factors concern the membrane material structure and chemical nature. In this paper, we consider the case of polymers with similar structure units, namely a polymer and its pre-polymer (polybenzoxazinoneimide and imide-containing polyamic acid). The available experimental data show a great difference in the pervaporation process using these two polymeric membranes. Some explanation of this difference can be found at the atomic-level study. A comparative analysis of the diffusion of water and isopropanol molecules was carried out using the density functional theory and molecular dynamics simulations.
Collapse
|
7
|
Development of Novel Polyamide-Imide/DES Composites and Their Application for Pervaporation and Gas Separation. Molecules 2021; 26:molecules26040990. [PMID: 33668455 PMCID: PMC7917730 DOI: 10.3390/molecules26040990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 11/30/2022] Open
Abstract
Novel polymer composites based on polyamide–imide Torlon and deep eutectic solvent (DES) were fabricated and adapted for separation processes. DES composed of zinc chloride and acetamide in a ratio of 1:3 M was first chosen as a Torlon-modifier due to the possibility of creating composites with a uniform filling of the DES through the formation of hydrogen bonds. The structure of the membranes was investigated by scanning electron microscopy and X-ray diffraction analysis; thermal stability was determined by thermogravimetric analysis and mass spectrometry. The surface of the composites was studied by determining the contact angles and calculating the surface tension. The transport properties were investigated by such membrane methods as pervaporation and gas separation. It was found that the inclusion of DES in the polymer matrix leads to a significant change in the structure and surface character of composites. It was also shown that DES plays the role of a plasticizer and increases the separation performance in the separation of liquids and gases. Torlon/DES composites with a small amount of modifier were effective in alcohol dehydration, and were permeable predominantly to water impurities in isopropanol. Torlon/DES-5 demonstrates high selectivity in the gas separation of O2/N2 mixture.
Collapse
|
8
|
Jiang H, Shi W, Liu Q, Wang H, Li J, Wu C, Li Y, Wei Z. Intensification of water/ethanol separation by PVA hybrid membrane with different functional ligand UiO-66-X nanochannels in pervaporation process. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117802] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Zhu T, Xu S, Yu F, Yu X, Wang Y. ZIF-8@GO composites incorporated polydimethylsiloxane membrane with prominent separation performance for ethanol recovery. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117681] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
10
|
Preparation of PVA-PFSA-Si pervaporative hybrid membrane and its dehydration performance. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03107-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Jyothi MS, Reddy KR, Soontarapa K, Naveen S, Raghu AV, Kulkarni RV, Suhas DP, Shetti NP, Nadagouda MN, Aminabhavi TM. Membranes for dehydration of alcohols via pervaporation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 242:415-429. [PMID: 31063879 DOI: 10.1016/j.jenvman.2019.04.043] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/14/2019] [Accepted: 04/13/2019] [Indexed: 06/09/2023]
Abstract
Alcohols are the essential chemicals used in a variety of pharmaceutical and chemical industries. The extreme purity of alcohols in many of such industrial applications is essential. Though distillation is one of the methods used conventionally to purify alcohols, the method consumes more energy and requires carcinogenic entertainers, making the process environmentally toxic. Alternatively, efforts have been made to focus research efforts on alcohol dehydration by the pervaporation (PV) separation technique using polymeric membranes. The present review is focused on alcohol dehydration using PV separation technique, which is the most efficient and benign method of purifying alcohols that are required in fine chemicals synthesis and developing pharmaceutical formulations. This review will discuss about the latest developments in the area of PV technique used in alcohol dehydration using a variety of novel membranes.
Collapse
Affiliation(s)
- M S Jyothi
- Department of Chemical Technology, Faculty of Sciences, & Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, 10330, Thailand
| | - Kakarla Raghava Reddy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia.
| | - K Soontarapa
- Department of Chemical Technology, Faculty of Sciences, & Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, 10330, Thailand
| | - S Naveen
- Department of Basic Sciences, Center for Emerging Technology, SET, JAIN Deemed to be University, Bangalore 562 112, India
| | - Anjanapura V Raghu
- Department of Basic Sciences, Center for Emerging Technology, SET, JAIN Deemed to be University, Bangalore 562 112, India.
| | - Raghavendra V Kulkarni
- Department of Pharmaceutics, BLDEA's SSM College of Pharmacy and Research Centre, Vijayapur, 586 103, Karnataka, India
| | - D P Suhas
- Department of Chemistry, St. Joseph's College, Langford Road, Bangalore, 560027, India
| | - Nagaraj P Shetti
- Department of Chemistry, K.L.E. Institute of Technology, Gokul, Hubballi, 580030, India
| | - Mallikarjuna N Nadagouda
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, 45324, USA
| | | |
Collapse
|
12
|
Wu JK, Ye CC, Zhang WH, Wang NX, Lee KR, An QF. Construction of well-arranged graphene oxide/polyelectrolyte complex nanoparticles membranes for pervaporation ethylene glycol dehydration. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Chen YT, Liao YL, Sun YM, Hu CC, Lai JY, Liu YL. Lignin as an effective agent for increasing the separation performance of crosslinked polybenzoxazine based membranes in pervaporation dehydration application. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.02.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
|
15
|
High-efficiency water-selective membranes from the solution-diffusion synergy of calcium alginate layer and covalent organic framework (COF) layer. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.11.040] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
16
|
Xu S, Zhang H, Yu F, Zhao X, Wang Y. Enhanced ethanol recovery of PDMS mixed matrix membranes with hydrophobically modified ZIF-90. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.05.056] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Application of cosolvent-assisted interfacial polymerization technique to fabricate thin-film composite polyamide pervaporation membranes with PVDF hollow fiber as support. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.07.084] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Lin CY, Hu CC, Chiu YT, Lai JY, Liu YL. In situ crosslinking and micro-cavity generation in fabrication of polymeric membranes for pervaporation dehydration on methanol aqueous solutions. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|