1
|
Farahbakhsh J, Najafi M, Golgoli M, Asif AH, Khiadani M, Razmjou A, Zargar M. Microplastics and dye removal from textile wastewater using MIL-53 (Fe) metal-organic framework-based ultrafiltration membranes. CHEMOSPHERE 2024; 364:143170. [PMID: 39181464 DOI: 10.1016/j.chemosphere.2024.143170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/02/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Microplastics (MPs) and other organic matters in textile wastewater have posed a formidable challenge for treatment processes, particularly in the primary stages such as ultrafiltration (UF). UF plays a crucial role in preventing the entry of pollutants into subsequent treatment steps. However, the performance efficiency of UF membranes is compromised by the potential fouling of membrane pores by MPs, dyes and other organic pollutants such as bovine serum albumin (BSA). This study focuses on enhancing UF membrane performance, specifically its antifouling properties, through the development of high-performance membranes using MIL-53(Fe) metal-organic framework (MOF) particles (noted as MIL-53 here). Various concentrations of the MIL-53 (0.05, 0.1, 0.2, and 0.5 wt%) were integrated into the membrane structure through phase inversion process. Streaming zeta potential results confirmed the negatively charged surface of the membranes and their high hydrophilicity was validated through contact angle analysis. FTIR, SEM, EDS, and XRD confirmed the presence of MIL-53 particles on the surface of membranes. The developed membranes were tested for 24 h to assess their antifouling properties, with a subsequent 30-min hydraulic flush to measure their flux recovery ratios. Methylene Blue (MB) dye was used as a cationic dye present in textile wastewater to evaluate the efficiency of the developed membranes in dye removal and the synergistic effects of dye rejection in the presence of organic matters (i.e., MPs and BSA). Since previous studies have not fully addressed the combination of dyes and organic matter, this study thoroughly investigated the effect of particle-type foulants (MPs) and their interactions with dye (MB), as well as water soluble protein-type foulants (BSA) and their interaction with MB. The results indicated that the developed membranes exhibited higher MB rejection when the dye was present with either MP or BSA, along with improved antifouling properties. The optimised UF membrane integrated with 0.1 wt% MIL-53 demonstrated nearly 96% BSA rejection and around 86% MB rejection in the mixed foulant case (BSA-MB). The modified membrane exhibited a substantial increase in water flux from 176 L m-2.h-1 to 327 L m-2.h-1. The findings of this research show the potential of iron-based MOFs in improving the performance of UF membranes and provide a platform for future studies on significant areas such as long-term stability studies and testing with other pollutants found in textile wastewater.
Collapse
Affiliation(s)
- Javad Farahbakhsh
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Mohadeseh Najafi
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Mitra Golgoli
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Abdul Hannan Asif
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Mehdi Khiadani
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Amir Razmjou
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia; Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia; UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Masoumeh Zargar
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia.
| |
Collapse
|
2
|
Gabryelczyk A, Yadav S, Swiderska-Mocek A, Altaee A, Lota G. From waste to energy storage: calcinating and carbonizing chicken eggshells into electrode materials for supercapacitors and lithium-ion batteries. RSC Adv 2023; 13:24162-24173. [PMID: 37577104 PMCID: PMC10416757 DOI: 10.1039/d3ra03037g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023] Open
Abstract
The presented study aims to explore the potential sources of common bio-wastes that could be successfully processed without any leftovers into materials for energy conversion and storage devices. We used chicken eggshells as an environmentally friendly precursor for electrode fillers in electrochemical capacitors (calcinated OS600 and OS900) and anode materials in Li-ion batteries (carbonized EM600 and EM900). Both groups of materials were obtained at two different temperatures to investigate the influence of their composition and properties on the electrochemical performance. Electrochemical capacitors with OS600 and OS900 substituted for 10 wt% of commercial activated carbon supplied similar capacitances, with OS600 stabilizing the long-term performance of the device. Also, both obtained anode materials are suitable for operation in Li-ion batteries, supplying a capacity of around 280 mA h g-1. Notably, EM900 is characterized by a well-developed structure, and as an anode, it exhibited better capacity retention of over 84%.
Collapse
Affiliation(s)
- Agnieszka Gabryelczyk
- Faculty of Chemical Technology, Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology Berdychowo 4 60-965 Poznan Poland
| | - Sudesh Yadav
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney 15 Broadway NSW 2007 Australia
| | - Agnieszka Swiderska-Mocek
- Faculty of Chemical Technology, Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology Berdychowo 4 60-965 Poznan Poland
| | - Ali Altaee
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney 15 Broadway NSW 2007 Australia
| | - Grzegorz Lota
- Faculty of Chemical Technology, Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology Berdychowo 4 60-965 Poznan Poland
- Łukasiewicz Research Network - Institute of Non-Ferrous Metals Division in Poznan, Central Laboratory of Batteries and Cells Forteczna 12 61-362 Poznan Poland
| |
Collapse
|
3
|
Memisoglu G, Murugesan RC, Zubia J, Rozhin AG. Graphene Nanocomposite Membranes: Fabrication and Water Treatment Applications. MEMBRANES 2023; 13:145. [PMID: 36837648 PMCID: PMC9965488 DOI: 10.3390/membranes13020145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 05/31/2023]
Abstract
Graphene, a two-dimensional hexagonal honeycomb carbon structure, is widely used in membrane technologies thanks to its unique optical, electrical, mechanical, thermal, chemical and photoelectric properties. The light weight, mechanical strength, anti-bacterial effect, and pollution-adsorption properties of graphene membranes are valuable in water treatment studies. Incorporation of nanoparticles like carbon nanotubes (CNTs) and metal oxide into the graphene filtering nanocomposite membrane structure can provide an improved photocatalysis process in a water treatment system. With the rapid development of graphene nanocomposites and graphene nanocomposite membrane-based acoustically supported filtering systems, including CNTs and visible-light active metal oxide photocatalyst, it is necessary to develop the researches of sustainable and environmentally friendly applications that can lead to new and groundbreaking water treatment systems. In this review, characteristic properties of graphene and graphene nanocomposites are examined, various methods for the synthesis and dispersion processes of graphene, CNTs, metal oxide and polymer nanocomposites and membrane fabrication and characterization techniques are discussed in details with using literature reports and our laboratory experimental results. Recent membrane developments in water treatment applications and graphene-based membranes are reviewed, and the current challenges and future prospects of membrane technology are discussed.
Collapse
Affiliation(s)
- Gorkem Memisoglu
- Department of Communications Engineering, Escuela de Ingeniería de Bilbao, University of the Basque Country (UPV/EHU), E-48013 Bilbao, Spain
- Department of Electronics Technology, Istiklal University, Kahramanmaras 46300, Türkiye
| | | | - Joseba Zubia
- Department of Communications Engineering, Escuela de Ingeniería de Bilbao, University of the Basque Country (UPV/EHU), E-48013 Bilbao, Spain
| | - Aleksey G. Rozhin
- Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET, UK
| |
Collapse
|
4
|
Vinothkumar K, Chandra L, Mohan S, Balakrishna RG. Nature-Inspired Photoactive Metal–Organic Framework Nanofiber Filters for Oil–Water Separation: Conserving Successive Flux, Rejection, and Antifouling. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | - Lavanya Chandra
- Centre for Nano and Material Sciences, Jain University, Bangalore562112, Karnataka, India
| | - Sakar Mohan
- Centre for Nano and Material Sciences, Jain University, Bangalore562112, Karnataka, India
| | - R. Geetha Balakrishna
- Centre for Nano and Material Sciences, Jain University, Bangalore562112, Karnataka, India
| |
Collapse
|
5
|
Xia L, Chen F, Chao J, Zhang D, Tian Y, Zhang D. Femtosecond laser engineered eggshell membrane for durable oil/water separation under harsh conditions. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
6
|
Pawar CM, Sreenath S, Dave V, Bavdane PP, Singh V, Verma V, Nagarale RK. Chemically stable and high acid recovery anion exchange membrane. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
7
|
Yadav S, Ibrar I, Samal AK, Altaee A, Déon S, Zhou J, Ghaffour N. Preparation of fouling resistant and highly perm-selective novel PSf/GO-vanillin nanofiltration membrane for efficient water purification. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126744. [PMID: 34333408 DOI: 10.1016/j.jhazmat.2021.126744] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/18/2021] [Accepted: 07/23/2021] [Indexed: 05/26/2023]
Abstract
To meet the rising global demand for water, it is necessary to develop membranes capable of efficiently purifying contaminated water sources. Herein, we report a series of novel polysulfone (PSf)/GO-vanillin nanofiltration membranes highly permeable, selective, and fouling resistant. The membranes are composed of two-dimensional (2D) graphite oxide (GO) layers embedded with vanillin as porogen and PSf as the base polymer. There is a growing interest in addressing the synergistic effect of GO and vanillin on improving the permeability and antifouling characteristics of membranes. Various spectroscopic and microscopic techniques were used to perform detailed physicochemical and morphological analyses. The optimized PSf16/GO0.15-vanillin0.8 membrane demonstrated 92.5% and 25.4% rejection rate for 2000 ppm magnesium sulphate (MgSO4) and sodium chloride (NaCl) solutions respectively. Antifouling results showed over 99% rejection for BSA and 93.57% flux recovery ratio (FRR). Experimental work evaluated the antifouling characteristics of prepared membranes to treat landfill leachate wastewater. The results showed 84-90% rejection for magnesium (Mg+2) and calcium (Ca+2) with 90.32 FRR. The study experimentally demonstrated that adding GO and vanillin to the polymeric matrix significantly improves fouling resistance and membrane performance. Future research will focus on molecular sieving for industrial separations and other niche applications using mixed matrix membranes.
Collapse
Affiliation(s)
- Sudesh Yadav
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| | - Ibrar Ibrar
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| | - Akshaya K Samal
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Ramanagara, Bangalore 562112, India
| | - Ali Altaee
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia.
| | - Sébastien Déon
- Institut UTINAM (UMR CNRS 6213), Université de Bourgogne-Franche-Comté, 16 Route de Gray, 25030 Besançon Cedex, France
| | - John Zhou
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| | - Noreddine Ghaffour
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Biological and Environmental Science and Engineering (BESE), 23955-6900 Thuwal, Saudi Arabia
| |
Collapse
|
8
|
Prepared poly(aryl piperidinium) anion exchange membranes for acid recovery to improve dialysis coefficients and selectivity. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118805] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Ji W, Ge X, Afsar NU, Zhao Z, Wu B, Song W, He Y, Ge L, Xu T. In-situ crosslinked AEMs with self-assembled nanostructure for acid recovery. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116927] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Zhang C, Zhang W, Wang Y. Diffusion Dialysis for Acid Recovery from Acidic Waste Solutions: Anion Exchange Membranes and Technology Integration. MEMBRANES 2020; 10:E169. [PMID: 32751246 PMCID: PMC7463704 DOI: 10.3390/membranes10080169] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022]
Abstract
Inorganic acids are commonly used in mining, metallurgical, metal-processing, and nuclear-fuel-reprocessing industries in various processes, such as leaching, etching, electroplating, and metal-refining. Large amounts of spent acidic liquids containing toxic metal ion complexes are produced during these operations, which pose a serious hazard to the living and non-living environment. Developing economic and eco-friendly regeneration approaches to recover acid and valuable metals from these industrial effluents has focused the interest of the research community. Diffusion dialysis (DD) using anion exchange membranes (AEMs) driven by an activity gradient is considered an effective technology with a low energy consumption and little environmental contamination. In addition, the properties of AEMs have an important effect on the DD process. Hence, this paper gives a critical review of the properties of AEMs, including their acid permeability, membrane stability, and acid selectivity during the DD process for acid recovery. Furthermore, the DD processes using AEMs integrated with various technologies, such as pressure, an electric field, or continuous operation are discussed to enhance its potential for industrial applications. Finally, some directions are provided for the further development of AEMs in DD for acid recovery from acidic waste solutions.
Collapse
Affiliation(s)
| | - Wen Zhang
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science & Desalination Technology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (C.Z.); (Y.W.)
| | | |
Collapse
|
11
|
Abstract
Organic fouling in the forward osmosis process is complex and influenced by different parameters in the forward osmosis such as type of feed and draw solution, operating conditions, and type of membrane. In this article, we reviewed organic fouling in the forward osmosis by focusing on wastewater treatment applications. Model organic foulants used in the forward osmosis literature were highlighted, which were followed by the characteristics of organic foulants when real wastewater was used as feed solution. The various physical and chemical cleaning protocols for the organic fouled membrane are also discussed. The study also highlighted the effective pre-treatment strategies that are effective in reducing the impact of organic fouling on the forward osmosis (FO) membrane. The efficiency of cleaning methods for the removal of organic fouling in the FO process was investigated, including recommendations on future cleaning technologies such as Ultraviolet and Ultrasound. Generally, a combination of physical and chemical cleaning is the best for restoring the water flux in the FO process.
Collapse
|
12
|
Yadav S, Soontarapa K, M S J, Padaki M, Balakrishna RG, Lai JY. Supplementing multi-functional groups to polysulfone membranes using Azadirachta indica leaves powder for effective and highly selective acid recovery. JOURNAL OF HAZARDOUS MATERIALS 2019; 369:1-8. [PMID: 30753955 DOI: 10.1016/j.jhazmat.2019.02.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 01/23/2019] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
Moderate and eco-pleasing ion-exchange trade membranes are in need to recover acid from industrial waste. Present study is focused on incorporation of plant waste (Azadirachta indica, neem leaves powder (NP)) of different composition as filler to polysulfone (PSf) membrane matrix to achieve acid recovery. Membranes were characterized, their chemical, mechanical and thermal stabilities and effectiveness in acid recovery via diffusion has been inspected. Multi-functional groups (-COOH, -NH2, -OH, -OAc, -C = O) present in different components of NP contributes in their own means in H+ ion transportation through membrane in acid recovery. They assisted formation of hydrogen bond and provided channels for ion permeation, and facilitated selective transportation of H+ ion over Fe2+ ions and explained mechanism is in accordance with Grotthuss-type and vehicle mechanism. Membrane with 15% of NP showed better performance in terms of ion exchange capacity (IEC) and acid recovery, at optimum concentration of NP, composite the membrane showed highest IEC values of 3.9771 mmol/g, UH+ value of ≈46.499 × 10-3 m/h and greater separation factor ≈154, which is higher than commercially available DF-120 membrane. An original thought of utilizing NP in membrane matrix opens up promising opportunities for extremely straightforward, easy, cost-effective and greener methods of recovery acid.
Collapse
Affiliation(s)
- Sudesh Yadav
- Center for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, 562112, Karnataka, India; Department of Chemical Engineering, National Taiwan University of Science and Technology, 12 Taipei, 10607, Taiwan
| | - Khantong Soontarapa
- Center of Excellence on Petrochemical and Materials Technology, Department of Chemical Technology, Faculty of Sciences, Chulalongkorn University, Phayathai Road, Bangkok 10330, Thailand.
| | - Jyothi M S
- Center for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, 562112, Karnataka, India; Center of Excellence on Petrochemical and Materials Technology, Department of Chemical Technology, Faculty of Sciences, Chulalongkorn University, Phayathai Road, Bangkok 10330, Thailand.
| | - Mahesh Padaki
- Center for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, 562112, Karnataka, India.
| | - R Geetha Balakrishna
- Center for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, 562112, Karnataka, India
| | - Juin-Yih Lai
- Department of Chemical Engineering, National Taiwan University of Science and Technology, 12 Taipei, 10607, Taiwan
| |
Collapse
|