1
|
Mostafavi AH, Mishra AK, Gallucci F, Kim JH, Ulbricht M, Coclite AM, Hosseini SS. Advances in surface modification and functionalization for tailoring the characteristics of thin films and membranes via chemical vapor deposition techniques. J Appl Polym Sci 2023. [DOI: 10.1002/app.53720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
| | - Ajay Kumar Mishra
- College of Medicine and Chemical Engineering Hebei University of Science and Technology Shijiazhuang China
- Division of Nanomaterials Academy of Nanotechnology and Waste Water Innovations Johannesburg South Africa
- Department of Chemistry Durban University of Technology Durban South Africa
| | - Fausto Gallucci
- Inorganic Membranes and Membrane Reactors, Sustainable Process Engineering, Department of Chemical Engineering and Chemistry Eindhoven University of Technology Eindhoven MB The Netherlands
| | - Jong Hak Kim
- Department of Chemical and Biomolecular Engineering Yonsei University Seoul South Korea
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II Universität Duisburg‐Essen Essen Germany
| | - Anna Maria Coclite
- Institute of Solid State Physics, NAWI Graz Graz University of Technology Graz Austria
| | - Seyed Saeid Hosseini
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology University of South Africa Johannesburg South Africa
- Department of Chemical Engineering Vrije Universiteit Brussel Brussels Belgium
| |
Collapse
|
2
|
Akamatsu K, Imamura K, Nakao SI, Wang XL. Hydrogen Produced from Simulated Biogas Using a Membrane Reactor with a Dimethoxydimethylsilane-Derived Silica Membrane Operated under Pressure and without Sweep Gas. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2022. [DOI: 10.1252/jcej.22we044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kazuki Akamatsu
- Department of Environmental Chemistry and Chemical Engineering, School of Advanced Engineering, Kogakuin University
| | - Keigo Imamura
- Department of Environmental Chemistry and Chemical Engineering, School of Advanced Engineering, Kogakuin University
| | - Shin-ichi Nakao
- Department of Environmental Chemistry and Chemical Engineering, School of Advanced Engineering, Kogakuin University
| | - Xiao-lin Wang
- Department of Chemical Engineering, Tsinghua University
| |
Collapse
|
3
|
Open-air plasma deposition of polymer-supported silica-based membranes for gas separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Yuan Z, He G, Faucher S, Kuehne M, Li SX, Blankschtein D, Strano MS. Direct Chemical Vapor Deposition Synthesis of Porous Single-Layer Graphene Membranes with High Gas Permeances and Selectivities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104308. [PMID: 34510595 DOI: 10.1002/adma.202104308] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Single-layer graphene containing molecular-sized in-plane pores is regarded as a promising membrane material for high-performance gas separations due to its atomic thickness and low gas transport resistance. However, typical etching-based pore generation methods cannot decouple pore nucleation and pore growth, resulting in a trade-off between high areal pore density and high selectivity. In contrast, intrinsic pores in graphene formed during chemical vapor deposition are not created by etching. Therefore, intrinsically porous graphene can exhibit high pore density while maintaining its gas selectivity. In this work, the density of intrinsic graphene pores is systematically controlled for the first time, while appropriate pore sizes for gas sieving are precisely maintained. As a result, single-layer graphene membranes with the highest H2 /CH4 separation performances recorded to date (H2 permeance > 4000 GPU and H2 /CH4 selectivity > 2000) are fabricated by manipulating growth temperature, precursor concentration, and non-covalent decoration of the graphene surface. Moreover, it is identified that nanoscale molecular fouling of the graphene surface during gas separation where graphene pores are partially blocked by hydrocarbon contaminants under experimental conditions, controls both selectivity and temperature dependent permeance. Overall, the direct synthesis of porous single-layer graphene exploits its tremendous potential as high-performance gas-sieving membranes.
Collapse
Affiliation(s)
- Zhe Yuan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Guangwei He
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Samuel Faucher
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Matthias Kuehne
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sylvia Xin Li
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Daniel Blankschtein
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
5
|
Hao T, Wang Y, Liu Z, Li J, Shan L, Wang W, Liu J, Tang J. Emerging Applications of Silica Nanoparticles as Multifunctional Modifiers for High Performance Polyester Composites. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2810. [PMID: 34835575 PMCID: PMC8622537 DOI: 10.3390/nano11112810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022]
Abstract
Nano-modification of polyester has become a research hotspot due to the growing demand for high-performance polyester. As a functional carrier, silica nanoparticles show large potential in improving crystalline properties, enhancing strength of polyester, and fabricating fluorescent polyester. Herein, we briefly traced the latest literature on synthesis of silica modifiers and the resultant polyester nanocomposites and presented a review. Firstly, we investigated synthesis approaches of silica nanoparticles for modifying polyester including sol-gel and reverse microemulsion technology, and their surface modification methods such as grafting silane coupling agent or polymer. Then, we summarized processing technics of silica-polyester nanocomposites, like physical blending, sol-gel processes, and in situ polymerization. Finally, we explored the application of silica nanoparticles in improving crystalline, mechanical, and fluorescent properties of composite materials. We hope the work provides a guideline for the readers working in the fields of silica nanoparticles as well as modifying polyester.
Collapse
Affiliation(s)
- Tian Hao
- National Center of International Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Science & Technology Cooperation, Qingdao University, Qingdao 266071, China; (T.H.); (Z.L.); (J.L.); (L.S.); (W.W.)
| | - Yao Wang
- National Center of International Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Science & Technology Cooperation, Qingdao University, Qingdao 266071, China; (T.H.); (Z.L.); (J.L.); (L.S.); (W.W.)
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Zhipeng Liu
- National Center of International Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Science & Technology Cooperation, Qingdao University, Qingdao 266071, China; (T.H.); (Z.L.); (J.L.); (L.S.); (W.W.)
| | - Jie Li
- National Center of International Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Science & Technology Cooperation, Qingdao University, Qingdao 266071, China; (T.H.); (Z.L.); (J.L.); (L.S.); (W.W.)
| | - Liangang Shan
- National Center of International Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Science & Technology Cooperation, Qingdao University, Qingdao 266071, China; (T.H.); (Z.L.); (J.L.); (L.S.); (W.W.)
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Wenchao Wang
- National Center of International Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Science & Technology Cooperation, Qingdao University, Qingdao 266071, China; (T.H.); (Z.L.); (J.L.); (L.S.); (W.W.)
| | - Jixian Liu
- National Center of International Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Science & Technology Cooperation, Qingdao University, Qingdao 266071, China; (T.H.); (Z.L.); (J.L.); (L.S.); (W.W.)
| | - Jianguo Tang
- National Center of International Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Science & Technology Cooperation, Qingdao University, Qingdao 266071, China; (T.H.); (Z.L.); (J.L.); (L.S.); (W.W.)
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| |
Collapse
|
6
|
Kubo M, Okibayashi K, Kojima M, Mano R, Daiko Y, Honda S, Bernard S, Iwamoto Y. Superhydrophobic polycarbosilane membranes for purification of solar hydrogen. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Li JY, Wang DK, Tseng HH, Wey MY. Solvent effects on diffusion channel construction of organosilica membrane with excellent CO2 separation properties. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118758] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Dou H, Xu M, Wang B, Zhang Z, Wen G, Zheng Y, Luo D, Zhao L, Yu A, Zhang L, Jiang Z, Chen Z. Microporous framework membranes for precise molecule/ion separations. Chem Soc Rev 2020; 50:986-1029. [PMID: 33226395 DOI: 10.1039/d0cs00552e] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Microporous framework membranes such as metal-organic framework (MOF) membranes and covalent organic framework (COF) membranes are constructed by the controlled growth of small building blocks with large porosity and permanent well-defined micropore structures, which can overcome the ubiquitous tradeoff between membrane permeability and selectivity; they hold great promise for the enormous challenging separations in energy and environment fields. Therefore, microporous framework membranes are endowed with great expectations as next-generation membranes, and have evolved into a booming research field. Numerous novel membrane materials, versatile manipulation strategies of membrane structures, and fascinating applications have erupted in the last five years. First, this review summarizes and categorizes the microporous framework membranes with pore sizes lower than 2 nm based on their chemistry: inorganic microporous framework membranes, organic-inorganic microporous framework membranes, and organic microporous framework membranes, where the chemistry, fabrications, and differences among these membranes have been highlighted. Special attention is paid to the membrane structures and their corresponding modifications, including pore architecture, intercrystalline grain boundary, as well as their diverse control strategies. Then, the separation mechanisms of membranes are covered, such as diffusion-selectivity separation, adsorption-selectivity separation, and synergetic adsorption-diffusion-selectivity separation. Meanwhile, intricate membrane design to realize synergistic separation and some emerging mechanisms are highlighted. Finally, the applications of microporous framework membranes for precise gas separation, liquid molecule separation, and ion sieving are summarized. The remaining challenges and future perspectives in this field are discussed. This timely review may provide genuine guidance on the manipulation of membrane structures and inspire creative designs of novel membranes, promoting the sustainable development and steadily increasing prosperity of this field.
Collapse
Affiliation(s)
- Haozhen Dou
- Department of Chemical Engineering, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Hydrogen Selective SiCH Inorganic-Organic Hybrid/γ-Al 2O 3 Composite Membranes. MEMBRANES 2020; 10:membranes10100258. [PMID: 32992911 PMCID: PMC7600925 DOI: 10.3390/membranes10100258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 11/17/2022]
Abstract
Solar hydrogen production via the photoelectrochemical water-splitting reaction is attractive as one of the environmental-friendly approaches for producing H2. Since the reaction simultaneously generates H2 and O2, this method requires immediate H2 recovery from the syngas including O2 under high-humidity conditions around 50 °C. In this study, a supported mesoporous γ-Al2O3 membrane was modified with allyl-hydrido-polycarbosilane as a preceramic polymer and subsequently heat-treated in Ar to deliver a ternary SiCH organic–inorganic hybrid/γ-Al2O3 composite membrane. Relations between the polymer/hybrid conversion temperature, hydrophobicity, and H2 affinity of the polymer-derived SiCH hybrids were studied to functionalize the composite membranes as H2-selective under saturated water vapor partial pressure at 50 °C. As a result, the composite membranes synthesized at temperatures as low as 300–500 °C showed a H2 permeance of 1.0–4.3 × 10−7 mol m−2 s−1 Pa−1 with a H2/N2 selectivity of 6.0–11.3 under a mixed H2-N2 (2:1) feed gas flow. Further modification by the 120 °C-melt impregnation of low molecular weight polycarbosilane successfully improved the H2-permselectivity of the 500 °C-synthesized composite membrane by maintaining the H2 permeance combined with improved H2/N2 selectivity as 3.5 × 10−7 mol m−2 s−1 Pa−1 with 36. These results revealed a great potential of the polymer-derived SiCH hybrids as novel hydrophobic membranes for purification of solar hydrogen.
Collapse
|
10
|
Synthesis of Silica Membranes by Chemical Vapor Deposition Using a Dimethyldimethoxysilane Precursor. MEMBRANES 2020; 10:membranes10030050. [PMID: 32235698 PMCID: PMC7143120 DOI: 10.3390/membranes10030050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/11/2020] [Accepted: 03/15/2020] [Indexed: 11/17/2022]
Abstract
Silica-based membranes prepared by chemical vapor deposition of tetraethylorthosilicate (TEOS) on γ-alumina overlayers are known to be effective for hydrogen separation and are attractive for membrane reactor applications for hydrogen-producing reactions. In this study, the synthesis of the membranes was improved by simplifying the deposition of the intermediate γ-alumina layers and by using the precursor, dimethyldimethoxysilane (DMDMOS). In the placement of the γ-alumina layers, earlier work in our laboratory employed four to five dipping-calcining cycles of boehmite sol precursors to produce high H2 selectivities, but this took considerable time. In the present study, only two cycles were needed, even for a macro-porous support, through the use of finer boehmite precursor particle sizes. Using the simplified fabrication process, silica-alumina composite membranes with H2 permeance > 10-7 mol m-2 s-1 Pa-1 and H2/N2 selectivity >100 were successfully synthesized. In addition, the use of the silica precursor, DMDMOS, further improved the H2 permeance without compromising the H2/N2 selectivity. Pure DMDMOS membranes proved to be unstable against hydrothermal conditions, but the addition of aluminum tri-sec-butoxide (ATSB) improved the stability just like for conventional TEOS membranes.
Collapse
|
11
|
DENİZ CU, TÜZÜN FN. Determination of Mechanical Properties of Composite Supports Used in Catalytic Membranes for Hydrogen Production and Separation. ChemistrySelect 2020. [DOI: 10.1002/slct.201904838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- C. Utku DENİZ
- Engineering Faculty of Hitit UniversityDepartment of Chemical Engineering 19030 ÇORUM TURKEY
| | - F. Nihal TÜZÜN
- Engineering Faculty of Hitit UniversityDepartment of Chemical Engineering 19030 ÇORUM TURKEY
| |
Collapse
|
12
|
Kato H, Lundin STB, Ahn SJ, Takagaki A, Kikuchi R, Oyama ST. Gas Separation Silica Membranes Prepared by Chemical Vapor Deposition of Methyl-Substituted Silanes. MEMBRANES 2019; 9:membranes9110144. [PMID: 31684187 PMCID: PMC6918472 DOI: 10.3390/membranes9110144] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/27/2019] [Accepted: 10/30/2019] [Indexed: 11/16/2022]
Abstract
The effect on the gas permeance properties and structural morphology of the presence of methyl functional groups in a silica membrane was studied. Membranes were synthesized via chemical vapor deposition (CVD) at 650 °C and atmospheric pressure using three silicon compounds with differing numbers of methyl- and methoxy-functional groups: tetramethyl orthosilicate (TMOS), methyltrimethoxysilane (MTMOS), and dimethyldimethoxysilane (DMDMOS). The residence time of the silica precursors in the CVD process was adjusted for each precursor and optimized in terms of gas permeance and ideal gas selectivity criteria. Final H2 permeances at 600 °C for the TMOS-, MTMOS-, and DMDMOS-derived membranes were respectively 1.7 × 10-7, 2.4 × 10-7, and 4.4 × 10-8 mol∙m-2∙s-1∙Pa-1 and H2/N2 selectivities were 990, 740, and 410. The presence of methyl groups in the membranes fabricated with the MTMOS and DMDMOS precursors was confirmed via Fourier-transform infrared (FTIR) spectroscopy. From FTIR analysis, an increasing methyl signal in the silica structure was correlated with both an improvement in the hydrothermal stability and an increase in the apparent activation energy for hydrogen permeation. In addition, the permeation mechanism for several gas species (He, H2, Ne, CO2, N2, and CH4) was determined by fitting the gas permeance temperature dependence to one of three models: solid state, gas-translational, or surface diffusion.
Collapse
Affiliation(s)
- Harumi Kato
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8556, Japan.
| | - Sean-Thomas B Lundin
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8556, Japan.
| | - So-Jin Ahn
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8556, Japan.
| | - Atsushi Takagaki
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8556, Japan.
| | - Ryuji Kikuchi
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8556, Japan.
| | - S Ted Oyama
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8556, Japan.
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China.
| |
Collapse
|