1
|
Petukhov DI, Valeev RG, Johnson DJ. Intercalation of carbon quantum dots into the selective layer of water softening membranes for improved performance and antifouling properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:179012. [PMID: 40024038 DOI: 10.1016/j.scitotenv.2025.179012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Nanofiltration contributes to water softening by the exclusion of multi-valent hardness ions, through size exclusion mechanisms. Hardness reduction can be enhanced by the addition of positive charges to the selective layer, to take advantage of repulsive electrostatic interactions. However, there are two common drawbacks to this approach: the alteration of the permeability/selectivity trade-off and the increased fouling propensity of positively charged membranes towards negatively charged organic foulants, which should be overcome for effective membrane utilization. To overcome this, positively charged aminated carbon quantum dots (CQDs) were incorporated into a positively charged selective layer to maintain selectivity against metal cations. CQDs incorporation improved membrane hydrophilicity, affected pore size distribution and molecular weight cut-off and smoothed the surface of the selective layer. As a result, membrane permeance increased by 2.3 times, up to 12 l/(m2·bar·h), compared to the pure membrane, while the positive surface charge contributed to maintaining high rejection rates for double charged cations: 92.6 % for MgCl₂ and 88.5 % for CaCl₂, and with a slight reduction of NaCl rejection from 56.5 % to 49 %. The fabricated membranes were tested for softening feed solutions simulating realistic brackish water and seawater compositions. For brackish water with total dissolved solids up to 6000 ppm, the rejection rates for Mg2+ and Ca2+ ions exceeded 93 % and 87 %, respectively, achieving total water hardness removal higher than 90 % and a Mg2+/Na+ separation factor up to 14, which can be utilized for pretreatment of brackish and sea water before the RO desalination process. Furthermore, the modification enhanced membrane antifouling properties due to improved membrane hydrophilicity and reduced surface roughness. In summary, incorporating aminated positive CQDs is an effective method for enhancing the characteristics of positively charged nanofiltration membranes for water softening as pretreatment for brackish water and seawater desalination.
Collapse
Affiliation(s)
- Dmitrii I Petukhov
- Division of Engineering New York University Abu Dhabi, Division of Engineering, Abu Dhabi, United Arab Emirates; Water Research Center New York University Abu Dhabi, Division of Engineering, Abu Dhabi, United Arab Emirates
| | - Rishat G Valeev
- Udmurt Federal Research Center of the Ural Brunch of Russian Academy of Sciences (UdmFRC of UB RAS), Izhevsk, Russia
| | - Daniel J Johnson
- Division of Engineering New York University Abu Dhabi, Division of Engineering, Abu Dhabi, United Arab Emirates; Water Research Center New York University Abu Dhabi, Division of Engineering, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
2
|
Wu Q, Wang S, Guo Z, Chen X, Zhen H, Wang Y, Wang J. Facile Preparation of Sulfonated Polysulfone Composite Membranes with High Hydrophilicity and Visible-Light Driving Self-Cleaning Performance. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4832-4844. [PMID: 39779493 DOI: 10.1021/acsami.4c17381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The photo-Fenton reaction can efficiently degrade organic pollutants and thus is applied intensively for clearing out membrane fouling. However, the pollutant removal efficiency is greatly limited by the redox cycle rate of Fe2+/Fe3+ and the rapid recombination rate of the photogenerated electrons and holes. In order to overcome these drawbacks, a sulfonated polysulfone composite membrane was designed and prepared by incorporating titanium dioxide (TiO2) nanoparticles into a sulfonated polysulfone membrane and sequentially forming β-FeOOHs on the membrane surface. It was found that the synergy of TiO2 and β-FeOOH enhanced the hydrophilicity and improved the pure water flux of the composite membrane. As a result, the composite membrane exhibited superior separation performance for methylene blue and rhodamine B cationic dyes. The rejection rate was larger than 99.5%, and the pure water flux was larger than 125.7 L m-2 h-1, largely surpassing that of nanofiltration membranes. Meanwhile, the composite membrane exhibited an excellent self-cleaning performance, achieving a flux recovery rate over 99.7% after visible-light driving Fenton reaction treatment. The rejection rate still remained above 97.2% after 5 cycles of filtration and recovery, indicating the strong treatment ability of the membrane for dye wastewater.
Collapse
Affiliation(s)
- Qianqian Wu
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, PR China
- School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Shuai Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, PR China
- School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Zhongxu Guo
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, PR China
- School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Xi Chen
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, PR China
- School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Haozhi Zhen
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, PR China
- School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Yuxuan Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, PR China
- School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Jianzu Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, PR China
- School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, PR China
| |
Collapse
|
3
|
He S, Meng Y, Liu J, Huang D, Mi Y, Ma R. Recent Developments in Nanocomposite Membranes Based on Carbon Dots. Polymers (Basel) 2024; 16:1481. [PMID: 38891428 PMCID: PMC11175156 DOI: 10.3390/polym16111481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Carbon dots (CDs) have aroused colossal attention in the fabrication of nanocomposite membranes ascribed to their ultra-small size, good dispersibility, biocompatibility, excellent fluorescence, facile synthesis, and ease of functionalization. Their unique properties could significantly improve membrane performance, including permeance, selectivity, and antifouling ability. In this review, we summarized the recent development of CDs-based nanocomposite membranes in many application areas. Specifically, we paid attention to the structural regulation and functionalization of CDs-based nanocomposite membranes by CDs. Thus, a detailed discussion about the relationship between the CDs' properties and microstructures and the separation performance of the prepared membranes was presented, highlighting the advantages of CDs in designing high-performance separation membranes. In addition, the excellent optical and electric properties of CDs enable the nanocomposite membranes with multiple functions, which was also presented in this review.
Collapse
Affiliation(s)
- Shuheng He
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; (S.H.); (J.L.)
| | - Yiding Meng
- Zhejiang Institute of Standardization, Hangzhou 310007, China;
| | - Jiali Liu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; (S.H.); (J.L.)
| | - Dali Huang
- Department of Materials Science & Engineering, Texas A&M University, College Station, TX 77843, USA;
| | - Yifang Mi
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; (S.H.); (J.L.)
| | - Rong Ma
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
4
|
Petukhov DI, Johnson DJ. Membrane modification with carbon nanomaterials for fouling mitigation: A review. Adv Colloid Interface Sci 2024; 327:103140. [PMID: 38579462 DOI: 10.1016/j.cis.2024.103140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/07/2024]
Abstract
This paper provides a comprehensive overview of recent advancements in membrane modification for fouling mitigation in various water treatment processes, employing carbon nanomaterials such as fullerenes, nanodiamonds, carbon quantum dots, carbon nanotubes, and graphene oxide. Currently, using different carbon nanomaterials for polymeric membrane fouling mitigation is at various stages: CNT-modified membranes have been studied for more than ten years and have already been tested in pilot-scale setups; tremendous attention has been paid to utilizing graphene oxide as a modifying agent, while the research on carbon quantum dots' influence on the membrane antifouling properties is in the early stages. Given the intricate nature of fouling as a colloidal phenomenon, the review initially delves into the factors influencing the fouling process and explores strategies to address it. The diverse chemistry and antibacterial properties of carbon nanomaterials make them valuable for mitigating scaling, colloidal, and biofouling. This review covers surface modification of existing membranes using different carbon materials, which can be implemented as a post-treatment procedure during membrane fabrication. Creating mixed-matrix membranes by incorporating carbon nanomaterials into the polymer matrix requires the development of new synthetic procedures. Additionally, it discusses promising strategies to actively suppress fouling through external influences on modified membranes. In the concluding section, the review compares the effectiveness of carbon materials of varying dimensions and identifies key characteristics influencing the antifouling properties of membranes modified with carbon nanomaterials.
Collapse
Affiliation(s)
- Dmitrii I Petukhov
- Division of Engineering, Water Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Daniel J Johnson
- Division of Engineering, Water Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
5
|
Bai X, Lu Y, Wang M, Yu X, Huang Z. Enhanced properties of a positive-charged nanofiltration membrane containing quaternarized chitosan through second interfacial polymerization for the removal of salts and pharmaceuticals. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:2020-2034. [PMID: 38678406 DOI: 10.2166/wst.2024.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/20/2024] [Indexed: 04/30/2024]
Abstract
Nanofiltration (NF) membrane technology has been widely used in the removal of salts and trace organic pollutants, such as pharmaceuticals and personal care products (PPCPs), due to its superiority. A positive-charged composite NF membrane with an active skin layer was prepared by polyethyleneimine (PEI), trimethyl benzene chloride, and quaternate chitosan (HTCC) through second interfacial polymerization on the polyethersulfone ultrafiltration membrane. The physicochemical properties of the nanocomposite membrane were investigated using surface morphology, hydrophilicity, surface charge, and molecular weight cut-off (MWCO). The influence of the concentration and reaction time of PEI and HTCC was documented. The optimized membrane had a MWCO of about 481 Da and possessed a pure water permeability of 25.37 L·m-2·h-1·MPa-1. The results also exhibited salt rejection ability as MgCl2 > CaCl2 > MgSO4 > Na2SO4 > NaCl > KCl, showing a positive charge on the fabricated membrane. In addition, the membrane had higher rejection to atenolol, carbamazepine, amlodipine, and ibuprofen at 89.46, 86.02, 90.12, and 77.21%, respectively. Moreover, the anti-fouling performance and stability of the NF membrane were also improved.
Collapse
Affiliation(s)
- Xinhui Bai
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; X.B. and Y.L. contributed equally to this manuscript
| | - Yuting Lu
- School of Sino-French Engineer, Nanjing University of Science and Technology, Nanjing 210094, China; X.B. and Y.L. contributed equally to this manuscript
| | - Mudan Wang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xinyang Yu
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhonghua Huang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China E-mail:
| |
Collapse
|
6
|
Moradi S, Zinatizadeh AA, Zinadini S. Post-treatment of soft drink industrial wastewater using a new antibacterial ultra-filtration membrane prepared of Polyethersulfone blended with boehmite-tannic acid-graphene quantum dot. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e10997. [PMID: 38385894 DOI: 10.1002/wer.10997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/05/2024] [Accepted: 01/25/2024] [Indexed: 02/23/2024]
Abstract
Polymeric membranes have garnered great interest in wastewater treatment; however, fouling is known as their main limitation. Therefore, the blending of hydrophilic nanoparticles in polymeric membranes' structure is a promising approach for fouling reduction. Herein, a hydrophilic boehmite-tannic acid-graphene quantum dot (BM-TA-GQD) nanoparticle was synthesized and blended in a polyethersulfone polymeric membrane in different percentages. The fabricated membranes were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM) images, water contact angle, porosity measurement, and antibacterial and antifouling properties. Surface SEM images of the modified membranes showed good dispersion of nanoparticles up to 0.5 wt%, which resulted in hydrophilicity and pure water flux enhancement. Based on AFM images, the mean roughness (Sa) of the fabricated membranes decreased from 2.07 to 0.84 nm for the bare and optimum membranes, respectively. In terms of performance, increasing the nanoparticle percentages up to 0.5 wt% resulted in the flux recovery ratio developing from 44.58% for the bare membrane to 71.35% for the 0.5 wt% BM-TA-GQD/PES membrane (optimum membrane). The antibacterial property of fabricated membranes was studied against biologically treated soft drink industrial wastewater (BTSDIW) as a bacterial source. The results showed that the turbidity of solutions containing permeated wastewater from the modified membranes (0.1, 0.5, and 1 wt% of BM-TA-GQD) was lower than that obtained from the unmodified membrane. These results confirmed the antibacterial properties of fabricated membranes. Finally, the optimal membrane (0.5 wt% BM-TA-GQD) was examined for post-treatment of the BTSDIW. An effluent COD of 13 mg/L and turbidity of 2 NTU showed a successful performance of the filtration process. PRACTITIONER POINTS: Ultrafiltration PES membranes were modified by different loadings of BM-TA-GQD. Hydrophilicity improvement was achieved by adding BM-TA-GQD nanoparticles. Expansion of size and number of macro-voids in modified membranes was confirmed. Membrane roughness was reduced in the BM-TA-GQD blended membranes. The optimum membrane was efficient in COD and turbidity removal.
Collapse
Affiliation(s)
- Sahar Moradi
- Department of Applied Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Ali Akbar Zinatizadeh
- Department of Applied Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
- Environmental Pollution and Engineering Group, Environmental Research Center (ERC), Razi University, Kermanshah, Iran
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), University of Queensland, Brisbane, Queensland, Australia
| | - Sirus Zinadini
- Department of Applied Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
- Environmental Pollution and Engineering Group, Environmental Research Center (ERC), Razi University, Kermanshah, Iran
| |
Collapse
|
7
|
Akbar Heidari A, Mahdavi H. Recent Advances in the Support Layer, Interlayer and Active Layer of TFC and TFN Organic Solvent Nanofiltration (OSN) Membranes: A Review. CHEM REC 2023:e202300189. [PMID: 37642266 DOI: 10.1002/tcr.202300189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/28/2023] [Indexed: 08/31/2023]
Abstract
Although separation of solutes from organic solutions is considered a challenging process, it is inevitable in various chemical, petrochemical and pharmaceutical industries. OSN membranes are the heart of OSN technology that are widely utilized to separate various solutes and contaminants from organic solvents, which is now considered an emerging field. Hence, numerous studies have been attracted to this field to manufacture novel membranes with outstanding properties. Thin-film composite (TFC) and nanocomposite (TFN) membranes are two different classes of membranes that have been recently utilized for this purpose. TFC and TFN membranes are made up of similar layers, and the difference is the use of various nanoparticles in TFN membranes, which are classified into two types of porous and nonporous ones, for enhancing the permeate flux. This study aims to review recent advances in TFC and TFN membranes fabricated for organic solvent nanofiltration (OSN) applications. Here, we will first study the materials used to fabricate the support layer, not only the membranes which are not stable in organic solvents and require to be cross-linked, but also those which are inherently stable in harsh media and do not need any cross-linking step, and all of their advantages and disadvantages. Then, we will study the effects of fabricating different interlayers on the performance of the membranes, and the mechanisms of introducing an interlayer in the regulation of the PA structure. At the final step, we will study the type of monomers utilized for the fabrication of the active layer, the effect of surfactants in reducing the tension between the monomers and the membrane surface, and the type of nanoparticles used in the active layer of TFN membranes and their effects in enhancing the membrane separation performance.
Collapse
Affiliation(s)
- Ali Akbar Heidari
- School of Chemistry, College of Science, University of Tehran, 1417614411, Tehran, Iran E-mail: addresses
| | - Hossein Mahdavi
- School of Chemistry, College of Science, University of Tehran, 1417614411, Tehran, Iran E-mail: addresses
| |
Collapse
|
8
|
Tayel A, Abdelaal AB, Esawi AMK, Ramadan AR. Thin-Film Nanocomposite (TFN) Membranes for Water Treatment Applications: Characterization and Performance. MEMBRANES 2023; 13:membranes13050477. [PMID: 37233538 DOI: 10.3390/membranes13050477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023]
Abstract
Thin-film nanocomposite (TFN) membranes have been widely investigated for water treatment applications due to their promising performance in terms of flux, salt rejection, and their antifouling properties. This review article provides an overview of the TFN membrane characterization and performance. It presents different characterization techniques that have been used to analyze these membranes and the nanofillers within them. The techniques comprise structural and elemental analysis, surface and morphology analysis, compositional analysis, and mechanical properties. Additionally, the fundamentals of membrane preparation are also presented, together with a classification of nanofillers that have been used so far. The potential of TFN membranes to address water scarcity and pollution challenges is significant. This review also lists examples of effective TFN membrane applications for water treatment. These include enhanced flux, enhanced salt rejection, antifouling, chlorine resistance, antimicrobial properties, thermal stability, and dye removal. The article concludes with a synopsis of the current status of TFN membranes and future perspectives.
Collapse
Affiliation(s)
- Amr Tayel
- Department of Chemistry, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
| | - Ahmed B Abdelaal
- Department of Chemistry, McGill University, 845 Rue Sherbrooke O, Montreal, QC H3A 0G4, Canada
| | - Amal M K Esawi
- Department of Mechanical Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
| | - Adham R Ramadan
- Department of Chemistry, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
| |
Collapse
|
9
|
Li J, Gong JL, Fang SY, Cao WC, Tang SQ, Qin M, Zhou HY, Wang YW. Low-pressure thin-film composite nanofiltration membranes with enhanced selectivity and antifouling property for effective dye/salt separation. J Colloid Interface Sci 2023; 641:197-214. [PMID: 36933467 DOI: 10.1016/j.jcis.2023.03.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023]
Abstract
For better sustainable resource recovery and elevating the separation efficiency of dye/salt mixture, it is essential to develop an appropriate nanofiltration membrane for the treatment of textile dyeing wastewater containing relatively smaller molecule dyes. In this work, a novel composite polyamide-polyester nanofiltration membrane was fabricated by tailoring amino functionalized quantum dots (NGQDs) and β-cyclodextrin (CD). An in-situ interfacial polymerization occurred between the synthesized NGQDs-CD and trimesoyl chloride (TMC) on the modified multi-carbon nanotubes (MWCNTs) substrate. The incorporation of NGQDs significantly elevated the rejection (increased by ∼ 45.08%) of the resultant membrane for small molecular dye (Methyl orange, MO) compared to the pristine CD membrane at low pressure (1.5 bar). The newly developed NGQDs-CD-MWCNTs membrane exhibited enhanced water permeability without compromising the dye rejection compared to the pure NGQDs membrane. The improved performance of the membrane was primarily attributed to the synergistic effect of functionalized NGQDs and the special hollow-bowl structure of CD. The optimal NGQDs-CD-MWCNTs-5 membrane expressed pure water permeability of 12.35 L m-2h-1 bar-1 at the pressure of 1.5 bar. Noteworthily, the NGQDs-CD-MWCNTs-5 membrane not only showed high rejection for the larger molecular dye of Congo Red (CR, 99.50%) but also for the smaller molecular dye of MO (96.01%) and Brilliant Green (BG, 95.60%) with the permeability of 8.81, 11.40, and 6.37 L m-2h-1 bar-1, respectively at low pressure (1.5 bar). The rejection of inorganic salts by the NGQDs-CD-MWCNTs-5 membrane was 17.20% for sodium chloride (NaCl), 14.30% for magnesium chloride (MgCl2), 24.63% for magnesium sulfate (MgSO4), and 54.58% for sodium sulfate (Na2SO4), respectively. The great rejection of dyes remained in the dye/salt binary mixed system (higher than 99% for BG and CR, <21% for NaCl). Importantly, the NGQDs-CD-MWCNTs-5 membrane exhibited favorable antifouling performance and potential good operation stability performance. Consequently, the fabricated NGQDs-CD-MWCNTs-5 membrane suggested a prospective application for the reuse of salts and water in textile wastewater treatment owing to the effective selective separation performance.
Collapse
Affiliation(s)
- Juan Li
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Ji-Lai Gong
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China.
| | - Si-Yuan Fang
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Wei-Cheng Cao
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Si-Qun Tang
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Meng Qin
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Huai-Yang Zhou
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Yu-Wen Wang
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| |
Collapse
|
10
|
Progression of Quantum Dots Confined Polymeric Systems for Sensorics. Polymers (Basel) 2023; 15:polym15020405. [PMID: 36679283 PMCID: PMC9863920 DOI: 10.3390/polym15020405] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
The substantial fluorescence (FL) capabilities, exceptional photophysical qualities, and long-term colloidal stability of quantum dots (QDs) have aroused a lot of interest in recent years. QDs have strong and wide optical absorption, good chemical stability, quick transfer characteristics, and facile customization. Adding polymeric materials to QDs improves their effectiveness. QDs/polymer hybrids have implications in sensors, photonics, transistors, pharmaceutical transport, and other domains. There are a great number of review articles available online discussing the creation of CDs and their many uses. There are certain review papers that can be found online that describe the creation of composites as well as their many different uses. For QDs/polymer hybrids, the emission spectra were nearly equal to those of QDs, indicating that the optical characteristics of QDs were substantially preserved. They performed well as biochemical and biophysical detectors/sensors for a variety of targets because of their FL quenching efficacy. This article concludes by discussing the difficulties that still need to be overcome as well as the outlook for the future of QDs/polymer hybrids.
Collapse
|
11
|
Sun W, Zhang N, Li Q, Li X, Chen S, Zong L, Baikeli Y, Lv E, Deng H, Zhang X, Baqiah H. Bioinspired lignin-based loose nanofiltration membrane with excellent acid, fouling, and chlorine resistances toward dye/salt separation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
Liu J, Abdirahman AA, Wang X, Su Y. Assembly of polyamide nanofilms for nanofiltration membranes with ultra-high desalination performance. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
13
|
Zheng H, Mou Z, Lim YJ, Liu B, Wang R, Zhang W, Zhou K. Incorporating ionic carbon dots in polyamide nanofiltration membranes for high perm-selectivity and antifouling performance. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
14
|
Ahmad NNR, Mohammad AW, Mahmoudi E, Ang WL, Leo CP, Teow YH. An Overview of the Modification Strategies in Developing Antifouling Nanofiltration Membranes. MEMBRANES 2022; 12:membranes12121276. [PMID: 36557183 PMCID: PMC9780855 DOI: 10.3390/membranes12121276] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 05/12/2023]
Abstract
Freshwater deficiency has become a significant issue affecting many nations' social and economic development because of the fast-growing demand for water resources. Nanofiltration (NF) is one of the promising technologies for water reclamation application, particularly in desalination, water, and wastewater treatment fields. Nevertheless, membrane fouling remains a significant concern since it can reduce the NF membrane performance and increase operating expenses. Consequently, numerous studies have focused on improving the NF membrane's resistance to fouling. This review highlights the recent progress in NF modification strategies using three types of antifouling modifiers, i.e., nanoparticles, polymers, and composite polymer/nanoparticles. The correlation between antifouling performance and membrane properties such as hydrophilicity, surface chemistry, surface charge, and morphology are discussed. The challenges and perspectives regarding antifouling modifiers and modification strategies conclude this review.
Collapse
Affiliation(s)
- Nor Naimah Rosyadah Ahmad
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Abdul Wahab Mohammad
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
- Chemical and Water Desalination Engineering Program, College of Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence: author:
| | - Ebrahim Mahmoudi
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
- Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Wei Lun Ang
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
- Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Choe Peng Leo
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Malaysia
| | - Yeit Haan Teow
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
- Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|
15
|
Plasma-enabled graphene quantum dot-based nanofiltration membranes for water purification and dye monitoring. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
16
|
Membranes constructed with zero-dimension carbon quantum dots for CO2 separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Saleem H, Goh PS, Saud A, Khan MAW, Munira N, Ismail AF, Zaidi SJ. Graphene Quantum Dot-Added Thin-Film Composite Membrane with Advanced Nanofibrous Support for Forward Osmosis. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12234154. [PMID: 36500777 PMCID: PMC9735732 DOI: 10.3390/nano12234154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/01/2022] [Accepted: 11/10/2022] [Indexed: 05/17/2023]
Abstract
Forward osmosis (FO) technology for desalination has been extensively studied due to its immense benefits over conventionally used reverse osmosis. However, there are some challenges in this process such as a high reverse solute flux (RSF), low water flux, and poor chlorine resistance that must be properly addressed. These challenges in the FO process can be resolved through proper membrane design. This study describes the fabrication of thin-film composite (TFC) membranes with polyethersulfone solution blown-spun (SBS) nanofiber support and an incorporated selective layer of graphene quantum dots (GQDs). This is the first study to sustainably develop GQDs from banyan tree leaves for water treatment and to examine the chlorine resistance of a TFC FO membrane with SBS nanofiber support. Successful GQD formation was confirmed with different characterizations. The performance of the GQD-TFC-FO membrane was studied in terms of flux, long-term stability, and chlorine resistance. It was observed that the membrane with 0.05 wt.% of B-GQDs exhibited increased surface smoothness, hydrophilicity, water flux, salt rejection, and chlorine resistance, along with a low RSF and reduced solute flux compared with that of neat TFC membranes. The improvement can be attributed to the presence of GQDs in the polyamide layer and the utilization of SBS nanofibrous support in the TFC membrane. A simulation study was also carried out to validate the experimental data. The developed membrane has great potential in desalination and water treatment applications.
Collapse
Affiliation(s)
- Haleema Saleem
- UNESCO Chair on Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Asif Saud
- UNESCO Chair on Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| | - Mohammad Aquib Wakeel Khan
- UNESCO Chair on Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| | - Nazmin Munira
- UNESCO Chair on Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Syed Javaid Zaidi
- UNESCO Chair on Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
- Correspondence: ; Tel.: +974-4403-7723
| |
Collapse
|
18
|
Zhang J, Jian Z, Jiang M, Peng B, Zhang Y, Wu Z, Zheng J. Influence of Dispersed TiO 2 Nanoparticles via Steric Interaction on the Antifouling Performance of PVDF/TiO 2 Composite Membranes. MEMBRANES 2022; 12:1118. [PMID: 36363673 PMCID: PMC9694972 DOI: 10.3390/membranes12111118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Herein, the influence of various contents of polyethylene glycol (PEG) on the dispersion of TiO2 nanoparticles and the comprehensive properties of PVDF/TiO2 composite membranes via the steric hindrance interaction was systematically explored. Hydrophilic PEG was employed as a dispersing surfactant of TiO2 nanoparticles in the pre-dispersion process and as a pore-forming additive in the following membrane preparation process. The slight overlap shown in the TEM image and low TSI value (<1) of the composite casting solution indicated the effective dispersion and stabilization under the steric interaction with a PEG content of 6 wt.%. Properties such as the surface pore size, the development of finger-like structures, permeability, hydrophilicity and Zeta potential were obviously enhanced. The improved antifouling performance between the membrane surface and foulants was corroborated by less negative free energy of adhesion (about −42.87 mJ/m2), a higher interaction energy barrier (0.65 KT) and low flux declination during the filtration process. The high critical flux and low fouling rate both in winter and summer as well as the long-term running operation in A/O-MBR firmly supported the elevated antifouling performance, which implies a promising application in the municipal sewage treatment field.
Collapse
Affiliation(s)
- Jie Zhang
- School of Chemistry and Materials Engineering, Huizhou University, 46 Yanda Road, Huizhou 516007, China
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
- School of Environmental Science and Engineering, South University of Science and Technology of China, No. 1088 Xueyuan Avenue, Shenzhen 518055, China
- Department of Electrical Engineering, National Cheng Kung University, No. 1 Daxue Road, Tainan 701401, China
| | - Zicong Jian
- School of Chemistry and Materials Engineering, Huizhou University, 46 Yanda Road, Huizhou 516007, China
| | - Minmin Jiang
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
| | - Bo Peng
- School of Chemistry and Materials Engineering, Huizhou University, 46 Yanda Road, Huizhou 516007, China
| | - Yuanyuan Zhang
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
| | - Zhichao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Junjian Zheng
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
| |
Collapse
|
19
|
A critical review on thin-film nanocomposite membranes enabled by nanomaterials incorporated in different positions and with diverse dimensions: Performance comparison and mechanisms. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Review on Thin-film Nanocomposite Membranes with Various Quantum Dots for Water Treatments. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
El Meragawi S, Cooray D, Majumder M. Improvement of the chlorine resistance of graphene oxide membranes through siloxane cross-linking. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2130078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Affiliation(s)
- Sally El Meragawi
- Nanoscale Science and Engineering Laboratory (NSEL), Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, Australia
- ARC Research Hub for Graphene Enabled Industry Transformation, Monash University, Clayton, Victoria, Australia
- ARC Research Hub for Advanced Manufacturing with 2D Materials, Monash University, Clayton, Victoria, Australia
| | - Dilusha Cooray
- Nanoscale Science and Engineering Laboratory (NSEL), Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, Australia
- ARC Research Hub for Graphene Enabled Industry Transformation, Monash University, Clayton, Victoria, Australia
- ARC Research Hub for Advanced Manufacturing with 2D Materials, Monash University, Clayton, Victoria, Australia
| | - Mainak Majumder
- Nanoscale Science and Engineering Laboratory (NSEL), Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, Australia
- ARC Research Hub for Graphene Enabled Industry Transformation, Monash University, Clayton, Victoria, Australia
- ARC Research Hub for Advanced Manufacturing with 2D Materials, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
22
|
Mousa HM, Fahmy HS, Ali GAM, Abdelhamid HN, Ateia M. Membranes for Oil/Water Separation: A Review. ADVANCED MATERIALS INTERFACES 2022; 9:10.1002/admi.202200557. [PMID: 37593153 PMCID: PMC10428143 DOI: 10.1002/admi.202200557] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Indexed: 08/19/2023]
Abstract
Recent advancements in separation and membrane technologies have shown a great potential in removing oil from wastewaters effectively. In addition, the capabilities have improved to fabricate membranes with tunable properties in terms of their wettability, permeability, antifouling, and mechanical properties that govern the treatment of oily wastewaters. Herein, authors have critically reviewed the literature on membrane technology for oil/water separation with a specific focus on: 1) membrane properties and characterization, 2) development of various materials (e.g., organic, inorganic, and hybrid membranes, and innovative materials), 3) membranes design (e.g., mixed matrix nanocomposite and multilayers), and 4) membrane fabrication techniques and surface modification techniques. The current challenges and future research directions in materials and fabrication techniques for membrane technology applications in oil/water separation are also highlighted. Thus, this review provides helpful guidance toward finding more effective, practical, and scalable solutions to tackle environmental pollution by oils.
Collapse
Affiliation(s)
- Hamouda M Mousa
- Mechanical Engineering Department, Faculty of Engineering, South Valley University, Qena 83523, Egypt
| | - Hanan S Fahmy
- Mechanical Engineering Department, Faculty of Engineering, South Valley University, Qena 83523, Egypt
| | - Gomaa A M Ali
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Hani Nasser Abdelhamid
- Advanced Multifunctional Materials Laboratory, Department of Chemistry, Faculty of Science, Assiut University, Assiut 71515, Egypt
| | - Mohamed Ateia
- United States Environmental Protection Agency, Center for Environmental Solutions & Emergency Response, Cincinnati, OH 45220, USA
| |
Collapse
|
23
|
Wu Y, Chen M, Lee HJ, A. Ganzoury M, Zhang N, de Lannoy CF. Nanocomposite Polymeric Membranes for Organic Micropollutant Removal: A Critical Review. ACS ES&T ENGINEERING 2022; 2:1574-1598. [PMID: 36120114 PMCID: PMC9469769 DOI: 10.1021/acsestengg.2c00201] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
The prevalence of organic micropollutants (OMPs) and their persistence in water supplies have raised serious concerns for drinking water safety and public health. Conventional water treatment technologies, including adsorption and biological treatment, are known to be insufficient in treating OMPs and have demonstrated poor selectivity toward a wide range of OMPs. Pressure-driven membrane filtration has the potential to remove many OMPs detected in water with high selectivity as a membrane's molecular weight cutoff (MWCO), surface charge, and hydrophilicity can be easily tailored to a targeted OMP's size, charge and octanol-water partition coefficient (Kow). Over the past 10 years, polymeric (nano)composite microfiltration (MF), ultrafiltration (UF), and nanofiltration (NF) membranes have been extensively synthesized and studied for their ability to remove OMPs. This review discusses the fate and transport of emerging OMPs in water, an assessment of conventional membrane-based technologies (NF, reverse osmosis (RO), forward osmosis (FO), membrane distillation (MD) and UF membrane-based hybrid processes) for their removal, and a comparison to the state-of-the-art nanoenabled membranes with enhanced selectivity toward specific OMPs in water. Nanoenabled membranes for OMP treatment are further discussed with respect to their permeabilities, enhanced properties, limitations, and future improvements.
Collapse
Affiliation(s)
- Yichen Wu
- Department
of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada
| | - Ming Chen
- School
of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Hye-Jin Lee
- Department
of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada
- Department
of Chemical and Biological Engineering, and Institute of Chemical
Process (ICP), Seoul National University, Seoul 08826, Republic of Korea
| | - Mohamed A. Ganzoury
- Department
of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada
| | - Nan Zhang
- Department
of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada
| | | |
Collapse
|
24
|
Li S, Yin Y, Liu S, Li H, Su B, Han L, Gao X, Gao C. Interlayered thin-film nanocomposite membrane with synergetic effect of COFs interlayer and GQDs incorporation for organic solvent nanofiltration. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
25
|
Yassari M, Shakeri A. Nature based forward osmosis membranes: A novel approach for improved anti-fouling properties of thin film composite membranes. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Niu Y, Chen Y, Bao S, Sun H, Wang Y, Ge B, Li P, Hou Y. Fabrication of polyarylate thin-film nanocomposite membrane based on graphene quantum dots interlayer for enhanced gas separation performance. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Lin YC, Zhuang GL, Tasi PF, Tseng HH. Removal of protein, histological dye and tetracycline from simulated bioindustrial wastewater with a dual pore size PPSU membrane. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128525. [PMID: 35228077 DOI: 10.1016/j.jhazmat.2022.128525] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/08/2022] [Accepted: 02/18/2022] [Indexed: 05/09/2023]
Abstract
Wastewater from production of active pharmaceutical ingredients (APIs) often contains proteins, azo dyes or antibiotics, which cause severe water eutrophication and growth of drug-resistant bacteria. A series of polyphenylsulfone (PPSU) membranes was prepared to determine the relationships between pore structures and the abilities of different membranes to separate foulants, and the characteristics and performance of the ultrafiltration membranes were investigated. The structure of the skin layer and the cross-sectional texture were converted from dense and finger-like macrovoids to porous sponge shapes because of a delayed liquid-liquid (L-L) demixing time. Formation of novel PPSU membranes via noncovalent bonding interactions was evaluated, and this selectively affected the membrane surface pore structure, layer thickness, surface polarity and electronic repulsive force. All PPSU membranes demonstrated excellent rejection of organic foulants, including bovine serum albumin (BSA) (~100% rejection) and acid red 1 (AR1) (~90% rejection). Additionally, M5 provided an excellent tetracycline (TC) rejection efficiency of 89% in the 1st cycle. Due to the small size of TC, pore size effects were displayed. Moreover, the pure water flux recovery rate (FRR) increased from 85% (M1, water/ethanol: 100/0) to 99.9% (M4, water/ethanol: 30/70) after BSA filtration because the weak nonsolvent decreased the roughness of the membrane surface, and the membrane made with added EtOH yielded excellent FRR values (99.9%) after AR1 filtration. Therefore, PPSU membranes successfully achieved over 90% rejection of organic foulants and excellent FRRs, indicating that they may be suitable for purifying wastewater from API plants that generate organic foulants with a wide range of sizes.
Collapse
Affiliation(s)
- Yi-Chen Lin
- School of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan; School of Chemical and Biomolecular Engineering, The University of Sydney, New South Wales 2006, Australia
| | - Guo-Liang Zhuang
- School of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan; Department of Chemical Engineering, Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 106, Taiwan
| | - Pei-Fang Tasi
- School of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Hui-Hsin Tseng
- School of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan; Department of Environmental Engineering, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
28
|
Yang HL, Ang MBMY, Tsai HA, Lee KR, Lai JY. Effect of adding carbon quantum dots to a NMP solution of cellulose acetate on the formation mechanism of ensuing membrane. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Zhao Y, Li N, Shi J, Xia Y, Zhu B, Shao R, Min C, Xu Z, Deng H. Extra-thin composite nanofiltration membranes tuned by γ-cyclodextrins containing amphipathic cavities for efficient separation of magnesium/lithium ions. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120419] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
30
|
Li J, Ji Z, Sun H, Zhang D, Zhao Y, Chen L. PVDF/SiO 2-g-CDs blended membrane for fluorescence detection and adsorption of metal ions. ENVIRONMENTAL TECHNOLOGY 2022; 43:1648-1661. [PMID: 33136522 DOI: 10.1080/09593330.2020.1845820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/24/2020] [Indexed: 06/11/2023]
Abstract
The preparation method of PVDF/SiO2-g-CDs blended membrane was that the silanized modified carbon dots (CDs) were grafted onto the PVDF/SiO2 blended membrane surface. The surface composition, morphology, hydrophilicity, fluorescence performance and metal ions adsorption performance of PVDF/SiO2-g-CDs blended membrane were studied. The fluorescence quenching effect of the membrane with Hg2+ and Fe3+ was obvious. The quenching mechanism was the complexation of metal ions with the functional groups of CDs including -NH2, -OH and -COOH. The optical detection limits of PVDF/SiO2-g-CDs blended membrane for Hg2+ was 1.6 nM in the linear range of 0.0025-20 μM, and the optical detection limits for Fe3+ was 2.1 μM in the linear range of 0.5-5000 μM. The maximum adsorption capacity of PVDF/SiO2-g-CDs blended membrane for Fe3+ was 47.04 mg·g-1. The adsorption of the membrane conformed to the pseudo-second-order kinetics and Langumir model, and belonged to monolayer chemical adsorption on the membrane surface. Through adsorption thermodynamic analysis, adsorption was a spontaneous endothermic process. The recovery rate of fluorescence and adsorption capacity could still be maintained above 82% after five cycles. The PVDF/SiO2-g-CDs blended membrane had the ability to regenerate. In summary, the PVDF/SiO2-g-CDs blended membrane had the dual functions of detecting and adsorbing metal ions, and had broad application prospects in sewage treatment.
Collapse
Affiliation(s)
- Jingjing Li
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research On Separation Membranes, School of Materials Science and Engineering, Tiangong University, Tianjin, People's Republic of China
| | - Zhicheng Ji
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research On Separation Membranes, School of Materials Science and Engineering, Tiangong University, Tianjin, People's Republic of China
| | - Heyu Sun
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research On Separation Membranes, School of Materials Science and Engineering, Tiangong University, Tianjin, People's Republic of China
| | - Dongdong Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research On Separation Membranes, School of Materials Science and Engineering, Tiangong University, Tianjin, People's Republic of China
| | - Yiping Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research On Separation Membranes, School of Materials Science and Engineering, Tiangong University, Tianjin, People's Republic of China
| | - Li Chen
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research On Separation Membranes, School of Materials Science and Engineering, Tiangong University, Tianjin, People's Republic of China
| |
Collapse
|
31
|
Yang C, Li Y, Long M, Yang P, Li Y, Zheng Y, Zhang R, Su Y, Wu H, Jiang Z. Ultrathin nanofiltration membrane assembled by polyethyleneimine-grafted graphene quantum dots. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119944] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Perfluorooctanoyl chloride engineering toward high-flux antifouling polyamide nanofilms for desalination. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
33
|
Yu T, Wang X, Liu Z, Chen Z, Hong Z, Zhang M, Zheng Q, Shao W, Xie Q. Structure-performance relationships between amino acid-functionalized graphene quantum dots and self-cleaning nanofiltration membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
34
|
Wang Q, Peng Y, Ji X, Hadi MK, Zhang S, Tang J, Ran F. Conductive 3D networks in a 2D layer for high performance ultrafiltration membrane with high flux-retention and robust cyclic stability. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Li Y, You X, Li R, Li Y, Yang C, Long M, Zhang R, Su Y, Jiang Z. Loosening ultrathin polyamide nanofilms through alkali hydrolysis for high-permselective nanofiltration. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119623] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
36
|
Kim TN, Lee J, Choi JH, Ahn JH, Yang E, Hwang MH, Chae KJ. Tunable atomic level surface functionalization of a multi-layered graphene oxide membrane to break the permeability-selectivity trade-off in salt removal of brackish water. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
37
|
Custom-tailoring tight nanocomposite membranes for advanced reclamation of hairwork dyeing effluent. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Carbon Dot/Polymer Composites with Various Precursors and Their Sensing Applications: A Review. COATINGS 2021. [DOI: 10.3390/coatings11091100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Carbon dots (CDs) have generated much interest because of their significant fluorescence (FL) properties, extraordinary photophysical attributes, and long-term colloidal stability. CDs have been regarded as a prospective carbon nanomaterial for various sensing applications because of their low toxicity, strong and broad optical absorption, high chemical stability, rapid transfer properties, and easy modification. To improve their functionality, CD/polymer composites have been developed by integrating polymers into CDs. CD/polymer composites have diversified because of their easy preparation and applications in sensing, optoelectronics, semiconductors, molecular delivery, and various commercial fields. Many review articles are available regarding the preparation and applications of CDs. Some review articles describing the production and multiple applications of the composites are available. However, no such article has focused on the types of precursors, optical properties, coating characteristics, and specific sensing applications of CD/polymer composites. This review aimed to highlight and summarize the current progress of CD/polymer composites in the last five years (2017–2021). First, we overview the precursors used for deriving CDs and CD/polymer composites, synthesis methods for preparing CDs and CD/polymer composites, and the optical properties (absorbance, FL, emission color, and quantum yield) and coating characteristics of the composites. Most carbon and polymer precursors were dominated by synthetic precursors, with citric acid and polyvinyl alcohol widely utilized as carbon and polymer precursors, respectively. Hydrothermal treatment for CDs and interfacial polymerization for CDs/polymers were frequently performed. The optical properties of CDs and CD/polymer composites were almost identical, denoting that the optical characters of CDs were well-maintained in the composites. Then, the chemical, biological, and physical sensing applications of CD/polymer composites are categorized and discussed. The CD/polymer composites showed good performance as chemical, biological, and physical sensors for numerous targets based on FL quenching efficiency. Finally, remaining challenges and future perspectives for CD/polymer composites are provided.
Collapse
|
39
|
Custom-tailoring loose nanocomposite membrane incorporated bipiperidine/graphene quantum dots for high-efficient dye/salt fractionation in hairwork dyeing effluent. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118870] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
40
|
|
41
|
Yan F, Xu M, Xu J, Zang Y, Sun J, Yi C, Wang Y. Advances in Integrating Carbon Dots With Membranes and Their Applications. ChemistrySelect 2021. [DOI: 10.1002/slct.202101957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Fanyong Yan
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes School of Chemistry and Chemical Engineering Tiangong University Tianjin 300387 PR China
| | - Ming Xu
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes School of Chemistry and Chemical Engineering Tiangong University Tianjin 300387 PR China
| | - Jinxia Xu
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes School of Chemistry and Chemical Engineering Tiangong University Tianjin 300387 PR China
| | - Yueyan Zang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes School of Chemistry and Chemical Engineering Tiangong University Tianjin 300387 PR China
| | - Jingru Sun
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes School of Chemistry and Chemical Engineering Tiangong University Tianjin 300387 PR China
| | - Chunhui Yi
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes School of Chemistry and Chemical Engineering Tiangong University Tianjin 300387 PR China
| | - Yao Wang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes School of Chemistry and Chemical Engineering Tiangong University Tianjin 300387 PR China
| |
Collapse
|
42
|
Synthesizing Various Organic Polyacid Compounds for Modifying Forward Osmosis Membranes to Enhance Separation Performance. MEMBRANES 2021; 11:membranes11080597. [PMID: 34436360 PMCID: PMC8399665 DOI: 10.3390/membranes11080597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 11/24/2022]
Abstract
In order to overcome the challenges of low permeate flux (Jp) and the accompanying reverse solute flux (JS) during the forward osmosis (FO) membrane separation process, we synthesized four hybrid materials of polyacid-based organic compounds and incorporated them into the selective polyamide (PA) layer to make novel thin-film nanocomposite (TFN) FO membranes. The Jp and JS of each membrane were evaluated and used along with membrane selectivity (Jp/JS) as indicators of membrane separation performance. The fabricated and modified membranes were also characterized for ridge and valley surface morphologies with increasing hydrophilicity and finger-shaped parallel channels in the PSf substrate. Moreover, two highly hydrophilic nanoparticles of graphene oxide (GO) and titanium oxide (TiO2) were introduced with the hybrid materials for PA modification, which can further enhance the Jp of the TFN membranes. The highest Jp of the TFN membranes achieved 12.1 L/m2-h using 0.1% curcumin-acetoguanamine @ cerium polyacid (CATCP) and 0.0175% GO. The characteristic peaks of the hybrid materials were detected on the membrane surface using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, evidencing successful incorporation of the hybrid materials during membrane modification. Here, we present the novel TFN membranes using hybrid materials for separation applications. The reactions for synthesizing the hybrid materials and for incorporating them with PA layer are proposed.
Collapse
|
43
|
Zhang J, Li S, Ren D, Li H, Lv X, Han L, Su B. Fabrication of ultra-smooth thin-film composite nanofiltration membrane with enhanced selectivity and permeability on interlayer of hybrid polyvinyl alcohol and graphene oxide. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118649] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
44
|
Wu X, Yang L, Meng F, Shao W, Liu X, Li M. ZIF-8-incorporated thin-film nanocomposite (TFN) nanofiltration membranes: Importance of particle deposition methods on structure and performance. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119356] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Akther N, Kawabata Y, Lim S, Yoshioka T, Phuntsho S, Matsuyama H, Shon HK. Effect of graphene oxide quantum dots on the interfacial polymerization of a thin-film nanocomposite forward osmosis membrane: An experimental and molecular dynamics study. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119309] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
46
|
Abstract
During the last century, industrialization has grown very fast and as a result heavy metals have contaminated many water sources. Due to their high toxicity, these pollutants are hazardous for humans, fish, and aquatic flora. Traditional techniques for their removal are adsorption, electro-dialysis, precipitation, and ion exchange, but they all present various drawbacks. Membrane technology represents an exciting alternative to the traditional ones characterized by high efficiency, low energy consumption and waste production, mild operating conditions, and easy scale-up. In this review, the attention has been focused on applying driven-pressure membrane processes for heavy metal removal, highlighting each of the positive and negative aspects. Advantages and disadvantages, and recent progress on the production of nanocomposite membranes and electrospun nanofiber membranes for the adsorption of heavy metal ions have also been reported and critically discussed. Finally, future prospective research activities and the key steps required to make their use effective on an industrial scale have been presented
Collapse
|
47
|
Carbon quantum dots (CQDs) and polyethyleneimine (PEI) layer-by-layer (LBL) self-assembly PEK-C-based membranes with high forward osmosis performance. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.04.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Wang D, Li S, Li F, Li J, Li N, Wang Z. Thin film nanocomposite membrane with triple-layer structure for enhanced water flux and antibacterial capacity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145370. [PMID: 33736376 DOI: 10.1016/j.scitotenv.2021.145370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Triple-layered thin film composite (TFC) forward osmosis (FO) membranes prepared on interlayer-based supports have overcome the limitations of conventional porous substrates due to the formation of ultrathin and highly selective polyamide (PA) layers. However, mitigating the internal concentration polarization (ICP) and biofouling of TFC membranes remain a great challenge. Herein, we designed a novel triple-layered thin film nanocomposite (TFN) FO membrane with incorporation of silver (Ag) decorated graphene oxide quantum dots (GOQD) into PA layer via interfacial polymerization on a carbon nanotube (CNT) interlayer-based polyether sulfone substrate. By contrast with the TFC membranes, the newly developed GOQD/Ag incorporated triple-layered TFN membrane (TFN-GOQD/Ag) exhibited a great alleviation for ICP accompanied with a prominently enhanced water flux of 65.8 L·m-2·h-1 and decreased specific reverse salt flux of 1.4 g·m-2·h-1 by employing 1 M NaCl solution as draw solution. Moreover, the TFN-GOQD/Ag membrane possessed prominent antibacterial activity against both E. coli (99.8%) and S. aureus (97.3%). Noteworthy, the obtained TFN membrane demonstrated a controlled release of Ag+ along with long-term antibacterial potential and outstanding fouling resistance during the FO process. This work provides a new avenue to fabricate newly FO membranes with superior performance for water cleaning treatment.
Collapse
Affiliation(s)
- Dong Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, Shandong, PR China
| | - Shuya Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, Shandong, PR China
| | - Fulin Li
- Water Resources Research Institute of Shandong Province, Shandong Key Laboratory of Water Resources and Environment, Jinan 250014, Shandong, PR China.
| | - Jinmei Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, Shandong, PR China
| | - Nan Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, Shandong, PR China
| | - Zhining Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, Shandong, PR China.
| |
Collapse
|
49
|
Xu C, Chen Y. Understanding water and solute transport in thin film nanocomposite membranes by resistance-in-series theory combined with Monte Carlo simulation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
50
|
Zhao Q, Zhao DL, Chung TS. Thin-film nanocomposite membranes incorporated with defective ZIF-8 nanoparticles for brackish water and seawater desalination. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119158] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|