1
|
Wei W, Nan S, Wang H, Xu S, Liu X, He R. Design and preparation of sulfonated polymer membranes for Zn/MnO2 flow batteries with assistance of machine learning. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
2
|
Duan X, Wang CW, Wang T, Xie X, Zhou X, Ye Y. Removal of Metal Ions in Phosphoric Acid by Electro-Electrodialysis with Cross-Linked Anion-Exchange Membranes. ACS OMEGA 2021; 6:32417-32430. [PMID: 34901593 PMCID: PMC8655774 DOI: 10.1021/acsomega.1c03720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/17/2021] [Indexed: 06/14/2023]
Abstract
There are numerous metallic impurities in wet phosphoric acid, which causes striking negative effects on industrial phosphoric acid production. In this study, the purification behavior of metallic impurities (Fe, Mg, Ca) from a wet phosphoric acid solution employing the electro-electrodialysis (EED) technology was investigated. The cross-linked polysulfone anion-exchange membranes (AEMs) for EED were prepared using N,N,N',N'-tetramethyl-1,6-hexanediamine (TMHDA) to achieve simultaneous cross-linking and quaternization without any cross-linkers or catalysts. The performance of the resulting membranes can be determined using quaternization reagents. When the molar ratio of trimethylamine/TMHDA/chloromethylated polysulfone is 3:1:1, the cross-linked membrane CQAPSU-3-1 exhibits lower water swelling and membrane area resistance than the non-cross-linked membrane. The low membrane area resistance of CQAPSU-3-1 with long alkyl chains is obtained due to the hydrophilic-hydrophobic microphase separation structure formed by TMHDA. EED experiments with different initial phosphoric acid concentrations of 0.52 and 1.07 M were conducted to evaluate the phosphoric acid purification of different AEMs. The results show that the EED experiments were more suitable for the purification of wet phosphoric acid solution at low concentrations. It was found that the phosphoric acid concentration in the anode compartment could be increased from 0.52 to 1.04 M. Through optimization, with an initial acid concentration of 0.52 M, CQAPSU-3-1 exhibits an enhanced metallic impurity removal ratio of higher than 72.0%, the current efficiency of more than 90%, and energy consumption of 0.48 kWh/kg. Therefore, CQAPSU-3-1 exhibits much higher purification efficiency than other membranes at a low initial phosphoric acid concentration, suggesting its potential in phosphoric acid purification application.
Collapse
Affiliation(s)
- Xiaoling Duan
- Hubei
Key Laboratory of Purification and Application of Plant Anti-Cancer
Active Ingredients, School of Chemistry and Life Sciences, Hubei University of Education, Wuhan 430205, China
- Key
Laboratory of Material Chemistry for Energy Conversion and Storage,
Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Cun-Wen Wang
- Key
Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430073, China
| | - Tielin Wang
- Key
Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430073, China
| | - Xiaolin Xie
- Key
Laboratory of Material Chemistry for Energy Conversion and Storage,
Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xingping Zhou
- Key
Laboratory of Material Chemistry for Energy Conversion and Storage,
Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yunsheng Ye
- Key
Laboratory of Material Chemistry for Energy Conversion and Storage,
Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
3
|
Kim M, Ko H, Nam SY, Kim K. Study on Control of Polymeric Architecture of Sulfonated Hydrocarbon-Based Polymers for High-Performance Polymer Electrolyte Membranes in Fuel Cell Applications. Polymers (Basel) 2021; 13:3520. [PMID: 34685282 PMCID: PMC8539910 DOI: 10.3390/polym13203520] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 01/23/2023] Open
Abstract
Polymer electrolyte membrane fuel cell (PEMFC) is an eco-friendly energy conversion device that can convert chemical energy into electrical energy without emission of harmful oxidants such as nitrogen oxides (NOx) and/or sulfur oxides (SOx) during operation. Nafion®, a representative perfluorinated sulfonic acid (PFSA) ionomer-based membrane, is generally incorporated in fuel cell systems as a polymer electrolyte membrane (PEM). Since the PFSA ionomers are composed of flexible hydrophobic main backbones and hydrophilic side chains with proton-conducting groups, the resulting membranes are found to have high proton conductivity due to the distinct phase-separated structure between hydrophilic and hydrophobic domains. However, PFSA ionomer-based membranes have some drawbacks, including high cost, low glass transition temperatures and emission of environmental pollutants (e.g., HF) during degradation. Hydrocarbon-based PEMs composed of aromatic backbones with proton-conducting hydrophilic groups have been actively studied as substitutes. However, the main problem with the hydrocarbon-based PEMs is the relatively low proton-conducting behavior compared to the PFSA ionomer-based membranes due to the difficulties associated with the formation of well-defined phase-separated structures between the hydrophilic and hydrophobic domains. This study focused on the structural engineering of sulfonated hydrocarbon polymers to develop hydrocarbon-based PEMs that exhibit outstanding proton conductivity for practical fuel cell applications.
Collapse
Affiliation(s)
| | | | | | - Kihyun Kim
- Department of Materials Engineering and Convergence Technology, Gyeongsang National University, Jinju 52828, Korea; (M.K.); (H.K.); (S.Y.N.)
| |
Collapse
|
4
|
Self-Humidifying Membrane for High-Performance Fuel Cells Operating at Harsh Conditions: Heterojunction of Proton and Anion Exchange Membranes Composed of Acceptor-Doped SnP 2O 7 Composites. MEMBRANES 2021; 11:membranes11100776. [PMID: 34677541 PMCID: PMC8541432 DOI: 10.3390/membranes11100776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/27/2021] [Accepted: 10/05/2021] [Indexed: 12/05/2022]
Abstract
Here we suggest a simple and novel method for the preparation of a high-performance self-humidifying fuel cell membrane operating at high temperature (>100 °C) and low humidity conditions (<30% RH). A self-humidifying membrane was effectively prepared by laminating together proton and anion exchange membranes composed of acceptor-doped SnP2O7 composites, Sn0.9In0.1H0.1P2O7/Sn0.92Sb0.08(OH)0.08P2O7. At the operating temperature of 100 °C, the electrochemical performances of the membrane electrode assembly (MEA) with this heterojunction membrane at 3.5% RH were better than or comparable to those of each MEA with only the proton or anion exchange membranes at 50% RH or higher.
Collapse
|
5
|
Yu H, Xia Y, Zeng K, Wang Y. Facile fabrication of sulfonated poly(aryl ether sulfone)/polybenzoxazine crosslinked membrane for vanadium flow battery application. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-020-03330-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Han J, Lee H, Kim J, Kim S, Kim H, Kim E, Sung YE, Kim K, Lee JC. Sulfonated poly(arylene ether sulfone) composite membrane having sulfonated polytriazole grafted graphene oxide for high-performance proton exchange membrane fuel cells. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118428] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
7
|
Son TY, Kim DJ, Vijayakumar V, Kim K, Kim DS, Nam SY. Anion exchange membrane using poly(ether ether ketone) containing imidazolium for anion exchange membrane fuel cell (AEMFC). J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Yu H, Xia Y, Zhang H, Gong X, Geng P, Gao Z, Wang Y. Improved chemical stability and proton selectivity of semi‐interpenetrating polymer network amphoteric membrane for vanadium redox flow battery application. J Appl Polym Sci 2020. [DOI: 10.1002/app.49803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hailin Yu
- State Key Laboratory of Polymer Materials Engineering College of Polymer Science and Engineering, Sichuan University Chengdu China
| | - Yifan Xia
- State Key Laboratory of Polymer Materials Engineering College of Polymer Science and Engineering, Sichuan University Chengdu China
| | - Hanwen Zhang
- State Key Laboratory of Polymer Materials Engineering College of Polymer Science and Engineering, Sichuan University Chengdu China
| | - Xinjian Gong
- Weifang Hengcai Digital Photo Materials Co., Ltd Weifang China
| | - Pengfei Geng
- Weifang Hengcai Digital Photo Materials Co., Ltd Weifang China
| | - Zhenwei Gao
- Weifang Hengcai Digital Photo Materials Co., Ltd Weifang China
| | - Yinghan Wang
- State Key Laboratory of Polymer Materials Engineering College of Polymer Science and Engineering, Sichuan University Chengdu China
| |
Collapse
|
9
|
Ghorai A, Roy S, Das S, Komber H, Ghangrekar MM, Voit B, Banerjee S. Chemically Stable Sulfonated Polytriazoles Containing Trifluoromethyl and Phosphine Oxide Moieties for Proton Exchange Membranes. ACS APPLIED POLYMER MATERIALS 2020; 2:2967-2979. [DOI: 10.1021/acsapm.0c00443] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | | | | | - Hartmut Komber
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany
| | | | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany
| | | |
Collapse
|
10
|
Kumar AG, Saha S, Komber H, Tiwari BR, Ghangrekar MM, Voit B, Banerjee S. Trifluoromethyl and benzyl ether side groups containing novel sulfonated co-poly(ether imide)s: Application in microbial fuel cell. Eur Polym J 2019; 118:451-464. [DOI: 10.1016/j.eurpolymj.2019.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
11
|
Fang Z, Xu H, Gao S, Wu Z, Yin Z, Wang J, Yang J, Zhu C. Synthesis of Sulfonated Poly(arylene ether)s in a One‐Pot Polymerization Process and Their Nafion‐Blend Membranes for Proton Exchange Membrane Fuel Cell Applications. ChemistrySelect 2019. [DOI: 10.1002/slct.201901230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhou Fang
- School of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 China
| | - Hulin Xu
- Beijing Qintian Science & Technology Development Co. Ltd. Beijing 100070 China
| | - Shuitao Gao
- School of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 China
| | - Zeyu Wu
- School of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 China
| | - Zhechang Yin
- School of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 China
| | - Jie Wang
- School of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 China
| | - Jun Yang
- School of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 China
| | - Changjin Zhu
- School of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 China
| |
Collapse
|
12
|
Han J, Kim K, Kim J, Kim S, Choi SW, Lee H, Kim JJ, Kim TH, Sung YE, Lee JC. Cross-linked highly sulfonated poly(arylene ether sulfone) membranes prepared by in-situ casting and thiol-ene click reaction for fuel cell application. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.02.048] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Lee H, Han J, Kim K, Kim J, Kim E, Shin H, Lee JC. Highly sulfonated polymer-grafted graphene oxide composite membranes for proton exchange membrane fuel cells. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.03.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Hairpin probes based click polymerization for label-free electrochemical detection of human T-lymphotropic virus types II. Anal Chim Acta 2019; 1059:86-93. [DOI: 10.1016/j.aca.2019.01.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/05/2019] [Accepted: 01/14/2019] [Indexed: 11/24/2022]
|
15
|
Munavalli BB, Kariduraganavar MY. Development of novel sulfonic acid functionalized zeolites incorporated composite proton exchange membranes for fuel cell application. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.11.056] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Arslan M, Acik G, Tasdelen MA. The emerging applications of click chemistry reactions in the modification of industrial polymers. Polym Chem 2019. [DOI: 10.1039/c9py00510b] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Click chemistry reactions have been applied to the modification of major industrial polymers by analysing the synthetic approaches and the resulting material properties.
Collapse
Affiliation(s)
- Mehmet Arslan
- Department of Polymer Engineering
- Faculty of Engineering
- Yalova University
- 77100 Yalova
- Turkey
| | - Gokhan Acik
- Department of Polymer Engineering
- Faculty of Engineering
- Yalova University
- 77100 Yalova
- Turkey
| | - Mehmet Atilla Tasdelen
- Department of Polymer Engineering
- Faculty of Engineering
- Yalova University
- 77100 Yalova
- Turkey
| |
Collapse
|
17
|
Wang C, Zhou Y, Shen B, Zhao X, Li J, Ren Q. Proton-conducting poly(ether sulfone ketone)s containing a high density of pendant sulfonic groups by a convenient and mild post-sulfonation. Polym Chem 2018. [DOI: 10.1039/c8py00996a] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A class of new poly(ether sulfone ketone)s containing a high density of pendant sulfonic groups on the sulfonated structural units were designed and the resulting membranes exhibited overall good performance at low IEC levels.
Collapse
Affiliation(s)
- Chenyi Wang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials
- School of Materials Science and Engineering
- Changzhou University
- Changzhou 213164
- China
| | - Yuanpeng Zhou
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials
- School of Materials Science and Engineering
- Changzhou University
- Changzhou 213164
- China
| | - Bin Shen
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials
- School of Materials Science and Engineering
- Changzhou University
- Changzhou 213164
- China
| | - Xiaoyan Zhao
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials
- School of Materials Science and Engineering
- Changzhou University
- Changzhou 213164
- China
| | - Jian Li
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials
- School of Materials Science and Engineering
- Changzhou University
- Changzhou 213164
- China
| | - Qiang Ren
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials
- School of Materials Science and Engineering
- Changzhou University
- Changzhou 213164
- China
| |
Collapse
|