1
|
Li Z, Zhai M, Wang X, Wu X, Gao Z, Chen Z, Song L. Incorporation of Graphene Oxide Quantum Dots in Gradient Layers of Polyethersulphone Nanofiltration Membranes for Nitrate Rejection from Aqueous Solution. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39365920 DOI: 10.1021/acsami.4c12144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Graphene oxide quantum dots (GOQDs) have been widely used to prepare nanofiltration membranes due to the merits of excellent dispersity, ultrasmall size, and unique properties related to graphene. In this study, we first prepared the polyethersulphone-based nanofiltration (PES-NF) membrane via an interfacial polymerization process using a piperazine and m-phenylenediamine mixed solution as the aqueous phase. Then GOQDs were incorporated into the top-down gradient structured layers (i.e., ultrathin layer, interlayer, and substrate membrane layer) of the nanofiltration membrane, and subsequently the effect of GOQD addition on the nitrate rejection was evaluated. Compared with the pristine PES-NF membrane without the incorporation of GOQDs, the fabricated NF membrane (GOQD/PES-NF-2) incorporating GOQDs at both the ultrathin layer and interlayer exhibits more remarkable performances (an acceptable permeation flux of 52.2 L m-1 h-1 and excellent nitrate rejection of 96.3% at 0.6 MPa), the permeation flux of this membrane increases by nearly 2.4 times, and its nitrate rejection also shows a slight enhancement (∼7.6%) compared with those of PES-NF. Remarkably, at the operating pressure much lower than that required by reverse osmosis membranes, the GOQD/PES-NF-2 membrane possesses an equivalent monovalent ion rejection to reverse osmosis membranes but a higher permeation flux. Furthermore, the result of a 7 day continuous stability test validates the excellent durability of the GOQD/PES-NF-2 membrane, and its antifouling and chlorine resistance performances also outperform those of the PES-NF membrane.
Collapse
Affiliation(s)
- Zeya Li
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Mingyu Zhai
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Xiuli Wang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Xin Wu
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Zan Gao
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Zeying Chen
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Laizhou Song
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
2
|
Can the NF membrane directly obtained by the interfacial polymerization of MPD and TMC? J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Ultrathin polyamide nanofiltration membrane prepared by triazine-based porous organic polymer as interlayer for dye removal. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Cheng W, Xu H, Wang P, Wang L, Szymczyk A, Croué JP, Zhang T. Modification Mechanism of Polyamide Reverse Osmosis Membrane by Persulfate: Roles of Hydroxyl and Sulfate Radicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8864-8874. [PMID: 35622994 DOI: 10.1021/acs.est.2c00952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Oxidative modification is a facile method to improve the desalination performance of thin-film composite membranes. In this study, we comparatively investigated the modification mechanisms induced by sulfate radical (SO4• -) and hydroxyl radical (HO•) for polyamide reverse osmosis (RO) membrane. The SO4• -- and HO•-based membrane modifications were manipulated by simply adjusting the pH of the thermal-activated persulfate solution. Although both of them improved the water permeability of the RO membrane under certain conditions, the SO4• --modified membrane notably prevailed over the HO•-modified one due to higher permeability, more consistent salt rejection rates over wide pH and salinity ranges, and better stability when exposed to high doses of chlorine. The differences of the membranes modified by the two radical species probably can be related to their distinct surface properties in terms of morphology, hydrophilicity, surface charge, and chemical composition. Further identification of the transformation products of a model polyamide monomer using high-resolution mass spectrometry demonstrated that SO4• - initiated polymerization reactions and produced hydroquinone/benzoquinone and polyaromatic structures; whereas the amide group of the monomer was degraded by HO•, generating hydroxyl, carboxyl, and nitro groups. The results will enlighten effective ways for practical modification of polyamide RO membranes to improve desalination performances and the development of sustainable oxidation-combined membrane processes.
Collapse
Affiliation(s)
- Wei Cheng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Haodan Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Peizhi Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Lihong Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Anthony Szymczyk
- Université de Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France
| | - Jean-Philippe Croué
- Institut de Chimie des Milieux et des Matériaux IC2MP UMR 7285 CNRS, Université de Poitiers, 86073 Poitiers, France
| | - Tao Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
5
|
Highly permeable reverse osmosis membranes incorporated with hydrophilic polymers of intrinsic microporosity via interfacial polymerization. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
6
|
Li LQ, Liu XH, Tang YJ, Xu ZL. How Does Alkali Etching Work on the Polyamide Membrane to Obtain an m-Phenylenediamine-Based NF Membrane? Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lan-Qian Li
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xu-Hong Liu
- Shanghai Sep-Bio Technology and Engineering Co., Ltd., 1288 Luoning Road, Shanghai 200949, China
| | - Yong-Jian Tang
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhen-Liang Xu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
7
|
Surface-tailoring chlorine resistant materials and strategies for polyamide thin film composite reverse osmosis membranes. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2109-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
8
|
Ji J, Mazinani S, Ahmed E, John Chew Y, Mattia D. Hydrophobic poly(vinylidene fluoride) / siloxene nanofiltration membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Wang JJ, Liang YQ, Fan BH, Zheng YZ, Zhang TL. Superhydrophilic modification of
APA‐TFC
membrane surface by grafting
QACs
and salicylaldehyde units with
PEG
chains as the spacers. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202100040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jia Jia Wang
- Department of Chemistry Changzhi University Changzhi People's Republic of China
| | - Ya Qin Liang
- Department of Chemistry Changzhi University Changzhi People's Republic of China
| | - Bian Hua Fan
- School of Environmental and Chemical Engineering Jiangsu Ocean University Lianyungang People's Republic of China
| | - Yi Zhong Zheng
- School of Environmental and Chemical Engineering Jiangsu Ocean University Lianyungang People's Republic of China
| | - Tian Lin Zhang
- School of Environmental and Chemical Engineering Jiangsu Ocean University Lianyungang People's Republic of China
| |
Collapse
|
10
|
Efficient and rapid multiscale approach of polymer membrane degradation and stability: Application to formulation of harmless non-oxidative biocide for polyamide and PES/PVP membranes. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Heichel DL, Vy NCH, Ward SP, Adamson DH, Burke KA. Controlled radical polymerization of hydrophilic and zwitterionic brush-like polymers from silk fibroin surfaces. J Mater Chem B 2020; 8:10392-10406. [PMID: 33112356 DOI: 10.1039/d0tb01990a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bombyx mori silk fibroin is a fibrous protein whose tunable properties and biocompatibility have resulted in its utility in a wide-variety of applications, including as drug delivery vehicles, wound dressings, and tissue engineering scaffolds. Control of protein and cell attachment is vital to the performance of biomaterials, but silk fibroin is mostly hydrophobic and interacts nonspecifically with cells and proteins. Silk functionalised with hydrophilic polymers reduces attachment, but the low number of reactive sites makes achieving a uniform conjugation a persistent challenge. This work presents a new approach to grow brush-like polymers from the surface of degradable silk films, where the films were enriched with hydroxyl groups, functionalised with an initiator, and finally reacted with acrylate monomers using atom transfer radical polymerisation. Two different routes to hydroxyl enrichment were investigated, one involving reaction with ethylene oxide (EO) and the other using a two-step photo-catalysed oxidation reaction. Both routes increased surface hydrophilicity, and hydrophilic monomers containing either uncharged (poly(ethylene glycol), PEG) pendant groups or zwitterionic pendant groups were polymerised from the surfaces. The initial processing of the films to induce beta sheet structures was found to impact the success of the polymerizations. Compared to the EO modified or unmodified silk surfaces, the oxidation reaction resulted in more polymer conjugation and the surfaces appear more uniform. Mesenchymal stem cell and protein attachment were the lowest on polymers grown from oxidised surfaces. PEG-containing brush-like polymers displayed lower protein attachment than surfaces conjugated with PEG using a previously reported "grafting to" method, but polymers containing zwitterionic side chains displayed both the lowest contact angles and the lowest cell and protein attachment. This finding may arise from the interactions of the zwitterionic pendant groups through their permanent dipoles and is an important finding because PEG is susceptible to oxidative damage that can reduce efficacy over time. These modified silk materials with lower cell and protein attachments are envisioned to find utility when enhanced diffusion around surfaces is required, such as in drug delivery implants.
Collapse
Affiliation(s)
- Danielle L Heichel
- Polymer Program, Institute of Materials Science, University of Connecticut, 97 North Eagleville Road Unit 3136, Storrs, CT 06269-3136, USA
| | - Ngoc Chau H Vy
- Polymer Program, Institute of Materials Science, University of Connecticut, 97 North Eagleville Road Unit 3136, Storrs, CT 06269-3136, USA
| | - Shawn P Ward
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road Unit 3060, Storrs, CT 06269-3060, USA
| | - Douglas H Adamson
- Polymer Program, Institute of Materials Science, University of Connecticut, 97 North Eagleville Road Unit 3136, Storrs, CT 06269-3136, USA and Department of Chemistry, University of Connecticut, 55 North Eagleville Road Unit 3060, Storrs, CT 06269-3060, USA
| | - Kelly A Burke
- Polymer Program, Institute of Materials Science, University of Connecticut, 97 North Eagleville Road Unit 3136, Storrs, CT 06269-3136, USA and Department of Chemical and Biomolecular Engineering, University of Connecticut, 191 Auditorium Road Unit 3222, Storrs, CT 06269-3222, USA. and Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road Unit 3247, Storrs, CT 06269-3247, USA
| |
Collapse
|
12
|
Chen Y, Qin J, Tong T, Zhou H, Cao X, Jin W. Study on the effect of crosslinking temperature on microporous polyamide membrane structure and its nitrogen/cyclohexane separation performance. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Li LQ, Zhan ZM, Huang BQ, Xue SM, Ji CH, Wang RZ, Tang YJ, Xu ZL. RO membrane fabricated via a facile modified heat-treating strategy for high-flux desalination. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118498] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Zhu C, Zhang X, Xu Z. Polyamide‐based membranes consisting of nanocomposite interlayers for high performance nanofiltration. J Appl Polym Sci 2020. [DOI: 10.1002/app.49940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Cheng‐Ye Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Xi Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Zhi‐Kang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| |
Collapse
|
15
|
Jahan Sajib MS, Wei Y, Mishra A, Zhang L, Nomura KI, Kalia RK, Vashishta P, Nakano A, Murad S, Wei T. Atomistic Simulations of Biofouling and Molecular Transfer of a Cross-linked Aromatic Polyamide Membrane for Desalination. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7658-7668. [PMID: 32460500 DOI: 10.1021/acs.langmuir.0c01308] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Reverse osmosis through a polyamide (PA) membrane is an important technique for water desalination and purification. In this study, molecular dynamics simulations were performed to study the biofouling mechanism (i.e., protein adsorption) and nonequilibrium steady-state water transfer of a cross-linked PA membrane. Our results demonstrated that the PA membrane surface's roughness is a key factor of surface's biofouling, as the lysozyme protein adsorbed on the surface's cavity site displays extremely low surface diffusivity, blocking water passage, and decreasing water flux. The adsorbed protein undergoes secondary structural changes, particularly in the pressure-driven flowing conditions, leading to strong protein-surface interactions. Our simulations were able to present water permeation close to the experimental conditions with a pressure difference as low as 5 MPa, while all the electrolytes, which are tightly surrounded by hydration water, were effectively rejected at the membrane surfaces. The analysis of the self-intermediate scattering function demonstrates that the dynamics of water molecules coordinated with hydrogen bonds is faster inside the pores than during the translation across the pores. The pressure difference applied shows a negligible effect on the water structure and content inside the membrane but facilitates the transportation of hydrogen-bonded water molecules through the membrane's sub-nanopores with a reduced coordination number. The linear relationship between the water flux and the pressure difference demonstrates the applicability of continuum hydrodynamic principles and thus the stability of the membrane structure.
Collapse
Affiliation(s)
- Md Symon Jahan Sajib
- Chemical Engineering Department, Howard University, 2366 Sixth Street NW, Washington, District of Columbia 20059, United States
| | - Ying Wei
- School of Information Science and Technology, Xiamen University, Tan Kah Kee College, 422 Siming South Road, Zhangzhou, Fujian 363105, China
| | - Ankit Mishra
- Mork Family Department of Chemical Engineering & Materials Science, University of Southern California, 925 Bloom Walk, HED 216, Los Angeles, California 90007, United States
| | - Lin Zhang
- Engineering Research Center of Membrane and Water Treatment of MOE, College of Chemical and Biological Engineering, Zhejiang University, 38 Zhe Da Road, Hangzhou 310027, China
| | - Ken-Ichi Nomura
- Mork Family Department of Chemical Engineering & Materials Science, University of Southern California, 925 Bloom Walk, HED 216, Los Angeles, California 90007, United States
- Collaboratory for Advanced Computing and Simulations, University of Southern California, 3651 Watt Way, VHE 608, Los Angeles, California 90089, United States
| | - Rajiv K Kalia
- Mork Family Department of Chemical Engineering & Materials Science, University of Southern California, 925 Bloom Walk, HED 216, Los Angeles, California 90007, United States
- Collaboratory for Advanced Computing and Simulations, University of Southern California, 3651 Watt Way, VHE 608, Los Angeles, California 90089, United States
- Department of Physics & Astronomy, University of Southern California, 825 Bloom Walk, ACB 439, Los Angeles, California 90089, United States
- Department of Computer Science, University of Southern California, 941 Bloom Walk, Los Angeles, California 90089, United States
| | - Priya Vashishta
- Mork Family Department of Chemical Engineering & Materials Science, University of Southern California, 925 Bloom Walk, HED 216, Los Angeles, California 90007, United States
- Collaboratory for Advanced Computing and Simulations, University of Southern California, 3651 Watt Way, VHE 608, Los Angeles, California 90089, United States
- Department of Physics & Astronomy, University of Southern California, 825 Bloom Walk, ACB 439, Los Angeles, California 90089, United States
- Department of Computer Science, University of Southern California, 941 Bloom Walk, Los Angeles, California 90089, United States
| | - Aiichiro Nakano
- Mork Family Department of Chemical Engineering & Materials Science, University of Southern California, 925 Bloom Walk, HED 216, Los Angeles, California 90007, United States
- Collaboratory for Advanced Computing and Simulations, University of Southern California, 3651 Watt Way, VHE 608, Los Angeles, California 90089, United States
- Department of Physics & Astronomy, University of Southern California, 825 Bloom Walk, ACB 439, Los Angeles, California 90089, United States
- Department of Computer Science, University of Southern California, 941 Bloom Walk, Los Angeles, California 90089, United States
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, AHF 107, Los Angeles, California 90089, United States
| | - Sohail Murad
- Department of Chemical Engineering, Illinois Institute of Technology, 10 West 35th Street, Chicago, Illinois 60616, United States
| | - Tao Wei
- Chemical Engineering Department, Howard University, 2366 Sixth Street NW, Washington, District of Columbia 20059, United States
| |
Collapse
|
16
|
Facile dual-functionalization of polyamide reverse osmosis membrane by a natural polypeptide to improve the antifouling and chlorine-resistant properties. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118044] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Liu C, Wang W, Zhu L, Cui F, Xie C, Chen X, Li N. High-performance nanofiltration membrane with structurally controlled PES substrate containing electrically aligned CNTs. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118104] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Teng X, Guo Y, Liu D, Li G, Yu C, Dai J. A polydopamine-coated polyamide thin film composite membrane with enhanced selectivity and stability for vanadium redox flow battery. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117906] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Yang Z, Zhou Y, Feng Z, Rui X, Zhang T, Zhang Z. A Review on Reverse Osmosis and Nanofiltration Membranes for Water Purification. Polymers (Basel) 2019; 11:E1252. [PMID: 31362430 PMCID: PMC6723865 DOI: 10.3390/polym11081252] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/10/2019] [Accepted: 07/21/2019] [Indexed: 11/16/2022] Open
Abstract
Sustainable and affordable supply of clean, safe, and adequate water is one of the most challenging issues facing the world. Membrane separation technology is one of the most cost-effective and widely applied technologies for water purification. Polymeric membranes such as cellulose-based (CA) membranes and thin-film composite (TFC) membranes have dominated the industry since 1980. Although further development of polymeric membranes for better performance is laborious, the research findings and sustained progress in inorganic membrane development have grown fast and solve some remaining problems. In addition to conventional ceramic metal oxide membranes, membranes prepared by graphene oxide (GO), carbon nanotubes (CNTs), and mixed matrix materials (MMMs) have attracted enormous attention due to their desirable properties such as tunable pore structure, excellent chemical, mechanical, and thermal tolerance, good salt rejection and/or high water permeability. This review provides insight into synthesis approaches and structural properties of recent reverse osmosis (RO) and nanofiltration (NF) membranes which are used to retain dissolved species such as heavy metals, electrolytes, and inorganic salts in various aqueous solutions. A specific focus has been placed on introducing and comparing water purification performance of different classes of polymeric and ceramic membranes in related water treatment industries. Furthermore, the development challenges and research opportunities of organic and inorganic membranes are discussed and the further perspectives are analyzed.
Collapse
Affiliation(s)
- Zi Yang
- Department of Materials Science and Engineering, The Ohio State University, 2041 N. College Road, Columbus, OH 43210, USA.
| | - Yi Zhou
- Department of Materials Science and Engineering, The Ohio State University, 2041 N. College Road, Columbus, OH 43210, USA
| | - Zhiyuan Feng
- Department of Materials Science and Engineering, The Ohio State University, 2041 N. College Road, Columbus, OH 43210, USA
| | - Xiaobo Rui
- State Key Laboratory of Precision Measurement Technology and Instrument, Tianjin University, Tianjin 300072, China
| | - Tong Zhang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhien Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
20
|
Al Mayyahi A. Important Approaches to Enhance Reverse Osmosis (RO) Thin Film Composite (TFC) Membranes Performance. MEMBRANES 2018; 8:E68. [PMID: 30134581 PMCID: PMC6161033 DOI: 10.3390/membranes8030068] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/07/2018] [Accepted: 08/09/2018] [Indexed: 12/02/2022]
Abstract
Thin film composite (TFC) membrane, which consists of polyamide (PA) active film rests on porous support layer, has been the major type of reverse osmosis (RO) membrane since its development by Cadotte in the 1970s, and has been remarkably used to produce clean water for human consumption and domestic utilization. In the past 30 years, different approaches have been exploited to produce the TFC membrane with high water flux, excellent salt rejection, and better chlorine/fouling resistance. In this brief review, we classify the techniques that have been utilized to improve the RO-TFC membrane properties into four categories: (1) Using alternative monomers to prepare the active layer; (2) modification of membrane surface; (3) optimization of polymerization reactions; and (4) incorporation of nanoparticles (NPs) into the membrane PA layer. This review can provide insights to guide future research and further propel the RO TFN membrane.
Collapse
Affiliation(s)
- Ahmed Al Mayyahi
- Department of Chemical Engineering, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
21
|
Liu Y, Lin B, Liu W, Li J, Gao C, Pan Q. Preparation and characterization of a novel nanofiltration membrane with chlorine-tolerant property and good separation performance. RSC Adv 2018; 8:36430-36440. [PMID: 35558901 PMCID: PMC9088857 DOI: 10.1039/c8ra06755d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/16/2018] [Indexed: 11/21/2022] Open
Abstract
High water flux, good separation property and excellent chlorine resistance are crucial factors affecting the development of nanofiltration (NF) membranes. To obtain these properties, NF membranes were fabricated via interfacial polymerization using m-xylylenediamine (m-XDA) and polyethyleneimine (PEI) as aqueous monomers. By controlling the concentration ratio of m-XDA and PEI in the aqueous solution, it was found that the addition of PEI to the aqueous solution can increase the rejection of the NF membrane to magnesium chloride (MgCl2) and magnesium sulfate (MgSO4) from 18.3%, 54.5% to 84.4%, 94.1%, respectively. Meanwhile, the rejection to sodium sulphate (Na2SO4) and sodium chloride (NaCl) remain essentially unchanged. On the other hand, the addition of m-XDA to the aqueous solution can improve the chlorine resistance of the NF membrane, but it decreased the water flux of NF membrane. Sodium hypochlorite (NaClO) solution was used to evaluate chlorine resistance of NF membranes. After 10 000 ppm h NaClO immersion, the rejections to Na2SO4 of NF membranes prepared from the pure m-XDA and the blend of m-XDA and PEI were basically unchanged and the water flux increased. In conclusion, the obtained membranes not only exhibited good separation performance but also had good chlorine resistance. High water flux, good separation property and excellent chlorine resistance are crucial factors affecting the development of nanofiltration (NF) membranes.![]()
Collapse
Affiliation(s)
- Yi Liu
- The Second Institute of Oceanography of the State Oceanic Administration
- Hangzhou 310012
- China
- Hangzhou Water Treatment Technology Research and Development Center
- Hangzhou 310012
| | - Bo Lin
- The Second Institute of Oceanography of the State Oceanic Administration
- Hangzhou 310012
- China
- Hangzhou Water Treatment Technology Research and Development Center
- Hangzhou 310012
| | - Wenchao Liu
- Hangzhou Water Treatment Technology Research and Development Center
- Hangzhou 310012
- China
| | - Junjun Li
- Hangzhou Water Treatment Technology Research and Development Center
- Hangzhou 310012
- China
| | - Congjie Gao
- Hangzhou Water Treatment Technology Research and Development Center
- Hangzhou 310012
- China
- Center for Membrane Separation and Water Science & Technology
- Ocean College
| | - Qiaoming Pan
- Hangzhou Water Treatment Technology Research and Development Center
- Hangzhou 310012
- China
| |
Collapse
|