1
|
Feng Y, Park Y, Hao S, Fang Z, Terlier T, Zhang X, Qiu C, Zhang S, Chen F, Zhu P, Nguyen Q, Wang H, Biswal SL. Three-chamber electrochemical reactor for selective lithium extraction from brine. Proc Natl Acad Sci U S A 2024; 121:e2410033121. [PMID: 39527732 PMCID: PMC11601325 DOI: 10.1073/pnas.2410033121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
Efficient lithium recovery from geothermal brines is crucial for the battery industry. Current electrochemical separation methods struggle with the simultaneous presence of Na+, K+, Mg2+, and Ca2+ because these cations are similar to Li+, making it challenging to separate effectively. We address these challenges with a three-chamber reactor featuring a polymer porous solid electrolyte in the middle layer. This design improves the transference number of Li+ (tLi+) by 2.1 times compared to the two-chamber reactor and also reduces the chlorine evolution reaction, a common side reaction in electrochemical lithium extraction, to only 6.4% in Faradaic Efficiency. Employing a lithium-ion conductive glass ceramic (LICGC) membrane, the reactor achieved high tLi+ of 97.5% in LiOH production from simulated brine, while the concentrations of Na+ K+, Mg2+, and Ca2+ are below the detection limit. Electrochemical experiments and surface analysis elucidated the cation transport mechanism, highlighting the impact of Na+ on Li+ migration at the LICGC interface.
Collapse
Affiliation(s)
- Yuge Feng
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX77005
| | - Yoon Park
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX77005
| | - Shaoyun Hao
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX77005
| | - Zhiwei Fang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX77005
| | - Tanguy Terlier
- Secondary Ion Mass Spectrometry laboratory, Shared Equipment Authority, Rice University, Houston, TX77005
| | - Xiao Zhang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX77005
| | - Chang Qiu
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX77005
| | - Shoukun Zhang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX77005
| | - Fengyang Chen
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX77005
| | - Peng Zhu
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX77005
| | - Quan Nguyen
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX77005
| | - Haotian Wang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX77005
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX77005
- Department of Chemistry, Rice University, Houston, TX77005
- Rice Advanced Material Institute, Rice University, Houston, TX77005
| | - Sibani Lisa Biswal
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX77005
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX77005
- Rice Advanced Material Institute, Rice University, Houston, TX77005
| |
Collapse
|
2
|
Zavahir S, Riyaz NS, Elmakki T, Tariq H, Ahmad Z, Chen Y, Park H, Ho YC, Shon HK, Han DS. Ion-imprinted membranes for lithium recovery: A review. CHEMOSPHERE 2024; 354:141674. [PMID: 38462186 DOI: 10.1016/j.chemosphere.2024.141674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
This review critically examines the effectiveness of ion-imprinted membranes (IIMs) in selectively recovering lithium (Li) from challenging sources such as seawater and brine. These membranes feature customized binding sites that specifically target Li ions, enabling selective separation from other ions, thanks to cavities shaped with crown ether or calixarene for improved selectivity. The review thoroughly investigates the application of IIMs in Li extraction, covering extensive sections on 12-crown-4 ether (a fundamental crown ether for Li), its modifications, calixarenes, and other materials for creating imprinting sites. It evaluates these systems against several criteria, including the source solution's complexity, Li+ concentration, operational pH, selectivity, and membrane's ability for regeneration and repeated use. This evaluation places IIMs as a leading-edge technology for Li extraction, surpassing traditional methods like ion-sieves, particularly in high Mg2+/Li+ ratio brines. It also highlights the developmental challenges of IIMs, focusing on optimizing adsorption, maintaining selectivity across varied ionic solutions, and enhancing permselectivity. The review reveals that while the bulk of research is still exploratory, only a limited portion has progressed to detailed lab verification, indicating that the application of IIMs in Li+ recovery is still at an embryonic stage, with no instances of pilot-scale trials reported. This thorough review elucidates the potential of IIMs in Li recovery, cataloging advancements, pinpointing challenges, and suggesting directions for forthcoming research endeavors. This informative synthesis serves as a valuable resource for both the scientific community and industry professionals navigating this evolving field.
Collapse
Affiliation(s)
- Sifani Zavahir
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
| | | | - Tasneem Elmakki
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Haseeb Tariq
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha, Qatar
| | - Zubair Ahmad
- Qatar University Young Scientists Center (QUYSC), Qatar University, Doha, Qatar
| | - Yuan Chen
- School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia
| | - Hyunwoong Park
- School of Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yeek-Chia Ho
- Centre for Urban Resource Sustainability, Institute of Self-Sustainable Building, Civil and Environmental Engineering Department, Universiti Teknologi Petronas, Seri Iskandar 32610, Malaysia
| | - Ho Kyong Shon
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney (UTS), New South Wales, Australia
| | - Dong Suk Han
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar; Department of Chemical Engineering, College of Engineering, Qatar University, Doha, Qatar.
| |
Collapse
|
3
|
Sun Z, Ma C, Yu C, Li Z. Microplastic separation and enrichment in microchannels under derivative electric field gradient by bipolar electrode reactions. Sci Rep 2024; 14:4626. [PMID: 38409340 PMCID: PMC10897390 DOI: 10.1038/s41598-024-54921-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/18/2024] [Indexed: 02/28/2024] Open
Abstract
The decomposed plastic products in the natural environment evolve into tiny plastic particles with characteristics such as small size, lightweight, and difficulty in removal, resulting in a significant pollution issue in aquatic environments. Significant progress has been made in microplastic separation technology benefiting from microfluidic chips in recent years. Based on the mechanisms of microfluidic control technology, this study investigates the enrichment and separation mechanisms of polystyrene particles in an unbuffered solution. The Faraday reaction caused by the bipolar electrodes changes the electric field gradient and improves the separation efficiency. We also propose an evaluation scheme to measure the separation efficiency. Finite element simulations are conducted to parametrically analyze the influence of applied voltages, channel geometry, and size of electrodes on plastic particle separation. The numerical cases indicate that the electrode-installed microfluidic channels separate microplastic particles effectively and precisely. The electrodes play an important role in local electric field distribution and trigger violent chemical reactions. By optimizing the microchannel structure, applied voltages, and separation channel angle, an optimal solution for separating microplastic particles can be found. This study could supply some references to control microplastic pollution in the future.
Collapse
Affiliation(s)
- Zhenrong Sun
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Chicheng Ma
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Chengjiao Yu
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Zirui Li
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300401, China
| |
Collapse
|
4
|
Shen K, He Q, Ru Q, Tang D, Oo TZ, Zaw M, Lwin NW, Aung SH, Tan SC, Chen F. Flexible LATP composite membrane for lithium extraction from seawater via an electrochemical route. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
5
|
Dong Y, Liu Y, Li H, Zhu Q, Luo M, Zhang H, Ye B, Yang Z, Xu T. Crown ether-based Tröger's base membranes for efficient Li+/Mg2+ separation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Dezhkam R, Amiri HA, Collins DJ, Miansari M. Continuous Submicron Particle Separation Via Vortex-Enhanced Ionic Concentration Polarization: A Numerical Investigation. MICROMACHINES 2022; 13:2203. [PMID: 36557503 PMCID: PMC9786152 DOI: 10.3390/mi13122203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Separation and isolation of suspended submicron particles is fundamental to a wide range of applications, including desalination, chemical processing, and medical diagnostics. Ion concentration polarization (ICP), an electrokinetic phenomenon in micro-nano interfaces, has gained attention due to its unique ability to manipulate molecules or particles in suspension and solution. Less well understood, though, is the ability of this phenomenon to generate circulatory fluid flow, and how this enables and enhances continuous particle capture. Here, we perform a comprehensive study of a low-voltage ICP, demonstrating a new electrokinetic method for extracting submicron particles via flow-enhanced particle redirection. To do so, a 2D-FEM model solves the Poisson-Nernst-Planck equation coupled with the Navier-Stokes and continuity equations. Four distinct operational modes (Allowed, Blocked, Captured, and Dodged) were recognized as a function of the particle's charges and sizes, resulting in the capture or release from ICP-induced vortices, with the critical particle dimensions determined by appropriately tuning inlet flow rates (200-800 [µm/s]) and applied voltages (0-2.5 [V]). It is found that vortices are generated above a non-dimensional ICP-induced velocity of U*=1, which represents an equilibrium between ICP velocity and lateral flow velocity. It was also found that in the case of multi-target separation, the surface charge of the particle, rather than a particle's size, is the primary determinant of particle trajectory. These findings contribute to a better understanding of ICP-based particle separation and isolation, as well as laying the foundations for the rational design and optimization of ICP-based sorting systems.
Collapse
Affiliation(s)
- Rasool Dezhkam
- Micro+Nanosystems and Applied Biophysics Laboratory, Department of Mechanical Engineering, Babol Noshirvani University of Technology, Babol 4714873113, Iran
- Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Isar 11, Babol 4713818983, Iran
- Department of Mechanical Engineering, Sharif University of Technology, Tehran 113658639, Iran
| | - Hoseyn A. Amiri
- Micro+Nanosystems and Applied Biophysics Laboratory, Department of Mechanical Engineering, Babol Noshirvani University of Technology, Babol 4714873113, Iran
- Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Isar 11, Babol 4713818983, Iran
| | - David J. Collins
- Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC 3010, Australia
- The Graeme Clark Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Morteza Miansari
- Micro+Nanosystems and Applied Biophysics Laboratory, Department of Mechanical Engineering, Babol Noshirvani University of Technology, Babol 4714873113, Iran
- Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Isar 11, Babol 4713818983, Iran
| |
Collapse
|
7
|
Raggam S, Mohammad M, Choo Y, Danasamy G, Zargar M, Kyong Shon H, Razmjou A. Advances in metal organic framework (MOF) – based membranes and adsorbents for Lithium-ion extraction. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Aljarrah S, Alsabbagh A, Almahasneh M. Selective Recovery of Lithium from Dead Sea End Brines Using
UBK10
Ion Exchange Resin. CAN J CHEM ENG 2022. [DOI: 10.1002/cjce.24559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sewar Aljarrah
- Chemical Engineering Department Jordan University of Science and Technology Irbid Jordan
| | - Ahmad Alsabbagh
- Nuclear Engineering Department Jordan University of Science and Technology Irbid Jordan
| | - Majdi Almahasneh
- Chemical Engineering Department Jordan University of Science and Technology Irbid Jordan
| |
Collapse
|
9
|
Christopher Barksdale A, Yoon J, Kwon HJ, Han J. Refinement of brine for lithium extraction using ion concentration polarization. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Krishnamurthy A, Anand RK. Recent advances in microscale extraction driven by ion concentration polarization. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Zhang D, Zhang X, Xing L, Li Z. Numerical Simulation of Continuous Extraction of Li + from High Mg 2+/Li + Ratio Brines Based on Free Flow Ion Concentration Polarization Microfluidic System. MEMBRANES 2021; 11:membranes11090697. [PMID: 34564514 PMCID: PMC8472120 DOI: 10.3390/membranes11090697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 11/30/2022]
Abstract
Ion concentration polarization (ICP) is a promising mechanism for concentrating and/or separating charged molecules. This work simulates the extraction of Li+ ions in a diluted high Mg2+/Li+ ratio salt lake brines based on free flow ICP focusing (FF-ICPF). The model solution of diluted brine continuously flows through the system with Li+ slightly concentrated and Mg2+ significantly removed by ICP driven by external pressure and perpendicular electric field. In a typical case, our results showed that this system could focus Li+ concentration by ~1.28 times while decreasing the Mg2+/Li+ ratio by about 85% (from 40 to 5.85). Although Li+ and Mg2+ ions are not separated as an end product, which is preferably required by the lithium industry, this method is capable of decreasing the Mg2+/Li+ ratio significantly and has great potential as a preprocessing technology for lithium extraction from salt lake brines.
Collapse
Affiliation(s)
- Dongxiang Zhang
- College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 325000, China;
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China;
- National Engineering Research Center for Technological Innovation Method and Tool, Tianjin 300401, China
| | - Xianglei Zhang
- College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 325000, China;
- Correspondence: (X.Z.); (Z.L.)
| | - Leilei Xing
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China;
- National Engineering Research Center for Technological Innovation Method and Tool, Tianjin 300401, China
| | - Zirui Li
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China;
- National Engineering Research Center for Technological Innovation Method and Tool, Tianjin 300401, China
- Correspondence: (X.Z.); (Z.L.)
| |
Collapse
|
12
|
Zhiyue M, Xichen Y, Li R, Yang Y, Huicheng F, Peng S. Recent advances in paper-based preconcentrators by utilizing ion concentration polarization. Electrophoresis 2021; 42:1340-1351. [PMID: 33768593 DOI: 10.1002/elps.202000291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/26/2021] [Accepted: 03/15/2021] [Indexed: 11/09/2022]
Abstract
One of the most cited limitations of biochemical detection is its poor sensitivity, owing to the relatively high complexity of micro-samples. Moreover, some samples cannot be easily self-replicated and their abundance cannot be increased through traditional technologies. Therefore, the preconcentration of low-abundance samples is a key requirement for microfluidic biological analysis. In recent years, the ion-concentration polarization phenomenon has aroused widespread interest in the application of microfluidic technology. In addition, paper-based materials are readily available, easy to modify, and exhibit good hydrophilicity. The study of the ion-concentration polarization preconcentration of micro-samples in paper-based microfluidic chips is of considerable significance. In this review, we discuss the development and applications of ion-concentration polarization paper-based preconcentrator in the past 5 years, with emphasis on key progresses in chip fabrication and performance optimization under different conditions. The current needs and development prospects in this field have also been discussed.
Collapse
Affiliation(s)
- Meng Zhiyue
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, P. R. China.,Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University, Xi'an, P. R. China
| | - Yuan Xichen
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, P. R. China.,Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, P. R. China.,Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University, Xi'an, P. R. China.,Yangtze River Delta Research Institute of Northwestern Polytechnical University, Taicang, P. R. China
| | - Ren Li
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, P. R. China.,Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, P. R. China.,Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University, Xi'an, P. R. China
| | - Yang Yang
- Ministry of Education Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Chongqing, P. R. China
| | - Feng Huicheng
- Unmanned System Research Institute, Northwestern Polytechnical University, Xi'an, P. R. China.,MOE Key Laboratory of Micro and Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an, P. R. China
| | - Shang Peng
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, P. R. China.,Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, P. R. China.,Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University, Xi'an, P. R. China
| |
Collapse
|
13
|
Sun Y, Wang Q, Wang Y, Yun R, Xiang X. Recent advances in magnesium/lithium separation and lithium extraction technologies from salt lake brine. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117807] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
14
|
Ouyang W, Han J. One‐Step Nucleic Acid Purification and Noise‐Resistant Polymerase Chain Reaction by Electrokinetic Concentration for Ultralow‐Abundance Nucleic Acid Detection. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Wei Ouyang
- Department of Electrical Engineering and Computer Science and Research Laboratory of ElectronicsMassachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Jongyoon Han
- Department of Electrical Engineering and Computer Science and Research Laboratory of ElectronicsMassachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
- Department of Biological EngineeringMassachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| |
Collapse
|
15
|
Ouyang W, Han J. One-Step Nucleic Acid Purification and Noise-Resistant Polymerase Chain Reaction by Electrokinetic Concentration for Ultralow-Abundance Nucleic Acid Detection. Angew Chem Int Ed Engl 2020; 59:10981-10988. [PMID: 32246546 PMCID: PMC7560970 DOI: 10.1002/anie.201915788] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/01/2020] [Indexed: 12/15/2022]
Abstract
Nucleic acid amplification tests (NAATs)integrated on a chip hold great promise for point-of-care diagnostics. Currently, nucleic acid (NA) purification remains time-consuming and labor-intensive, and it takes extensive efforts to optimize the amplification chemistry. Using selective electrokinetic concentration, we report one-step, liquid-phase NA purification that is simpler and faster than conventional solid-phase extraction. By further re-concentrating NAs and performing polymerase chain reaction (PCR) in a microfluidic chamber, our platform suppresses non-specific amplification caused by non-optimal PCR designs. We achieved the detection of 5 copies of M. tuberculosis genomic DNA (equaling 0.3 cell) in real biofluids using both optimized and non-optimal PCR designs, which is 10- and 1000-fold fewer than those of the standard bench-top method, respectively. By simplifying the workflow and shortening the development cycle of NAATs, our platform may find use in point-of-care diagnosis.
Collapse
Affiliation(s)
- Wei Ouyang
- Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Jongyoon Han
- Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| |
Collapse
|
16
|
Papadimitriou VA, Kruit SA, Segerink LI, Eijkel JCT. Droplet encapsulation of electrokinetically-focused analytes without loss of resolution. LAB ON A CHIP 2020; 20:2209-2217. [PMID: 32432628 DOI: 10.1039/d0lc00191k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Lab-on-chip electrokinetic focusing and separation techniques are widely used in several scientific fields. In a number of cases, these techniques have been combined with a selective analyte extraction for off-chip analysis. Nevertheless, the usability of the extracts is limited by diffusion which reduces the separation resolution. In this paper we propose the integration of a droplet generator capable of continuous or on-demand generation and extraction of electrokinetically separated and focused analytes. We demonstrate the selective droplet extraction of model analytes separated and concentrated via ion concentration polarization focusing (ICPF). We report extracted droplets with 1000-fold increased concentration. Importantly, the droplet generator does not interrupt the ICPF process making it suitable for integration with the majority of electrokinetic separation techniques.
Collapse
Affiliation(s)
- Vasileios A Papadimitriou
- BIOS-Lab on a Chip Group, MESA+ Institute of Nanotechnology, Technical Medical Centre, Max Planck Center for Complex Fluid Dynamics, University of Twente, The Netherlands.
| | | | | | | |
Collapse
|
17
|
Han W, Chen X. A review: applications of ion transport in micro‐nanofluidic systems based on ion concentration polarization. JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY 2020; 95:1622-1631. [DOI: 10.1002/jctb.6288] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 11/22/2019] [Indexed: 01/12/2025]
Abstract
AbstractLab‐on‐a‐chip has been used widely in rapid, high‐throughput and low‐consumption analysis of samples in biochemistry. The ion concentration polarization (ICP) produced by ion‐selective transport of nanochannels provides a novel solution for problems in ultra‐low concentration sample detection, systems biology and desalination. This paper reviews the applications of ion transport based on the principle of ICP in micro‐nanofluidic systems. First, the fundamental governing equations of ICP are described. Then, the applications of nano‐electrokinetic ion enrichment and ion current rectification (ICR) are introduced. Nano‐electrokinetic ion enrichment is used mainly in the fields of molecular enrichment, ultra‐low concentration sample detection and seawater desalination. ICR is applied mainly to the sensitive detection of analytical substances such as proteins, nucleic acids and small molecules. The application of ion transport based on ICP principle is summarized and the possible directions worthy of further research are proposed. © 2019 Society of Chemical Industry
Collapse
Affiliation(s)
- Wenbo Han
- Faculty of Mechanical Engineering and Automation Liaoning University of Technology Jinzhou China
| | - Xueye Chen
- Faculty of Mechanical Engineering and Automation Liaoning University of Technology Jinzhou China
| |
Collapse
|
18
|
Abstract
Electrokinetic separation techniques in microfluidics are a powerful analytical chemistry tool, although an inherent limitation of microfluidics is their low sample throughput. In this article we report a free-flow variant of an electrokinetic focusing method, namely ion concentration polarization focusing (ICPF). The analytes flow continuously through the system via pressure driven flow while they separate and concentrate perpendicularly to the flow by ICPF. We demonstrate free flow ion concentration polarization focusing (FF-ICPF) in two operating modes, namely peak and plateau modes. Additionally, we showed the separation resolution could be improved by the use of an electrophoretic spacer. We report a concentration factor of 10 in human blood plasma in continuous flow at a flow rate of 15 μL min-1.
Collapse
Affiliation(s)
- Vasileios A Papadimitriou
- BIOS Lab on a Chip group, MESA+ Institute for Nanotechnology, Max Planck Centre for Complex Fluid Dynamics and Technical Medical Centre, University of Twente, Enschede 7500 AE, The Netherlands
| | - Loes I Segerink
- BIOS Lab on a Chip group, MESA+ Institute for Nanotechnology, Max Planck Centre for Complex Fluid Dynamics and Technical Medical Centre, University of Twente, Enschede 7500 AE, The Netherlands
| | - Jan C T Eijkel
- BIOS Lab on a Chip group, MESA+ Institute for Nanotechnology, Max Planck Centre for Complex Fluid Dynamics and Technical Medical Centre, University of Twente, Enschede 7500 AE, The Netherlands
| |
Collapse
|
19
|
Wu X, Liu H, Wei Y, Fei Y, Qi H. Negatively charged organic–inorganic hybrid silica nanofiltration membranes for lithium extraction. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2019.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
|
21
|
Han W, Chen X. A novel design of nanochannel structure in a micro–nanofluidic preconcentrator for electrokinetic ion enrichment. JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING 2020; 42:49. [DOI: 10.1007/s40430-019-2136-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 12/06/2019] [Indexed: 01/12/2025]
|
22
|
Han W, Chen X. Nano-electrokinetic ion enrichment in a micro-nanofluidic preconcentrator with nanochannel’s Cantor fractal wall structure. APPLIED NANOSCIENCE 2020; 10:95-105. [DOI: 10.1007/s13204-019-01049-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/02/2019] [Indexed: 01/19/2023]
|
23
|
Chen D, Li J, Chen H, Zhang L, Zhang H, Ma Y. Electroosmotic Flow Behavior of Viscoelastic LPTT Fluid in a Microchannel. MICROMACHINES 2019; 10:E881. [PMID: 31847473 PMCID: PMC6952799 DOI: 10.3390/mi10120881] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/26/2019] [Accepted: 12/10/2019] [Indexed: 12/27/2022]
Abstract
In many research works, the fluid medium in electroosmosis is considered to be a Newtonian fluid, while the polymer solutions and biological fluids used in biomedical fields mostly belong to the non-Newtonian category. Based on the finite volume method (FVM), the electroosmotic flow (EOF) of viscoelastic fluids in near-neutral (pH = 7.5) solution considering four ions (K+, Cl-, H+, OH-) is numerically studied, as well as the viscoelastic fluids' flow characteristics in a microchannel described by the Linear Phan-Thien-Tanner (LPTT) constitutive model under different conditions, including the electrical double layer (EDL) thickness, the Weissenberg number (Wi), the viscosity ratio and the polymer extensibility parameters. When the EDL does not overlap, the velocity profiles for both Newtonian and viscoelastic fluids are plug-like and increase sharply near the charged wall. Compared with Newtonian fluid at Wi = 3, the viscoelastic fluid velocity increases by 5 times and 9 times, respectively, under the EDL conditions of kH = 15 and kH = 250, indicating the shear thinning behavior of LPTT fluid. Shear stress obviously depends on the viscosity ratio and different Wi number conditions. The EOF is also enhanced by the increase (decrease) in polymer extensibility parameters (viscosity ratio). When the extensibility parameters are large, the contribution to velocity is gradually weakened.
Collapse
Affiliation(s)
- Dilin Chen
- School of Energy and Power Engineering, Wuhan University of Technology, Wuhan 430070, China; (D.C.); (H.C.); (L.Z.)
| | - Jie Li
- School of Energy and Power Engineering, Wuhan University of Technology, Wuhan 430070, China; (D.C.); (H.C.); (L.Z.)
| | - Haiwen Chen
- School of Energy and Power Engineering, Wuhan University of Technology, Wuhan 430070, China; (D.C.); (H.C.); (L.Z.)
| | - Lai Zhang
- School of Energy and Power Engineering, Wuhan University of Technology, Wuhan 430070, China; (D.C.); (H.C.); (L.Z.)
| | - Hongna Zhang
- Institut Franco-Chinois de l’Energie Nucléaire, Sun Yat-sen University, Zhuhai 519000, China
| | - Yu Ma
- Institut Franco-Chinois de l’Energie Nucléaire, Sun Yat-sen University, Zhuhai 519000, China
| |
Collapse
|
24
|
Li X, Mo Y, Qing W, Shao S, Tang CY, Li J. Membrane-based technologies for lithium recovery from water lithium resources: A review. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117317] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
25
|
A novel H1.6Mn1.6O4/reduced graphene oxide composite film for selective electrochemical capturing lithium ions with low concentration. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.05.082] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Papadimitriou VA, Segerink LI, Eijkel JCT. Continuous focusing, fractionation and extraction of anionic analytes in a microfluidic chip. LAB ON A CHIP 2019; 19:3238-3248. [PMID: 31475716 DOI: 10.1039/c9lc00434c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Electrokinetic focusing and separation methods, specifically ion concentration polarization focusing (ICPF), provide a very powerful and easy to use analytical tool for several scientific fields. Nevertheless, the concentrated and separated analytes are effectively trapped inside the chip in picoliter volumes. In this article we propose an ICPF device that allows continuous and selective extraction of the focused analytes. A theoretical background is presented to understand the dynamics of the system and a 1D model was developed that describes the general behavior of the system. We demonstrate the selective extraction of three fluorescent model anionic analytes and we report selective extraction of the analytes at a 300-fold increased concentration.
Collapse
Affiliation(s)
- Vasileios A Papadimitriou
- BIOS Lab on a Chip group, MESA+ Institute for Nanotechnology, Max Planck Centre for Complex Fluid Dynamics and Technical Medical Centre, University of Twente, The Netherlands.
| | | | | |
Collapse
|
27
|
Gong L, Li Z, Han J. Numerical simulation of continuous extraction of highly concentrated Li+ from high Mg2+/Li+ ratio brines in an ion concentration polarization-based microfluidic system. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.01.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
Bondarenko MP, Bruening ML, Yaroshchuk A. Highly Selective Current‐Induced Accumulation of Trace Ions at Micro‐/NanoPorous Interfaces. ADVANCED THEORY AND SIMULATIONS 2019. [DOI: 10.1002/adts.201900009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mykola P. Bondarenko
- Institute of Bio‐Colloid Chemistry National Academy of Sciences of Ukraine Vernadskiy ave.42 03142 Kyiv Ukraine
| | - Merlin L. Bruening
- Department of Chemical and Biomolecular Engineering University of Notre Dame Notre Dame IN 46556 USA
- Department of Chemistry and Biochemistry University of Notre Dame Notre Dame IN 46556 USA
| | - Andriy Yaroshchuk
- ICREA pg. L.Companys 23 08010 Barcelona Spain
- Department of Chemical Engineering Polytechnic University of Catalonia av. Diagonal 647 08028 Barcelona Spain
| |
Collapse
|
29
|
Ouyang W, Ye X, Li Z, Han J. Deciphering ion concentration polarization-based electrokinetic molecular concentration at the micro-nanofluidic interface: theoretical limits and scaling laws. NANOSCALE 2018; 10:15187-15194. [PMID: 29790562 PMCID: PMC6637655 DOI: 10.1039/c8nr02170h] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The electrokinetic molecular concentration (EMC) effect at the micro-nanofluidic interface, which enables million-fold preconcentration of biomolecules, is one of the most compelling yet least understood nanofluidic phenomena. Despite the tremendous interests in EMC and the substantial efforts devoted, the detailed mechanism of EMC remains an enigma so far owing to its high complexity, which gives rise to the significant scientific controversies outstanding for over a decade and leaves the precise engineering of EMC devices infeasible. We report a series of experimental and theoretical new findings that decipher the mechanism of EMC. We demonstrate the first elucidation of two separate operating regimes of EMC, and establish the first theoretical model that analytically yet concisely describes the system. We further unveil the dramatically different scaling behaviors of EMC in the two regimes, thereby clarifying the long-lasting controversies. We believe this work represents important progress towards the scientific understanding of EMC and related nano-electrokinetic systems, and would enable the rational design and optimization of EMC devices for a variety of applications.
Collapse
Affiliation(s)
- Wei Ouyang
- Department of Electrical Engineering and Computer Science
, Massachusetts Institute of Technology
,
Cambridge
, Massachusetts
02139
, USA
.
- Research Laboratory of Electronics
, Massachusetts Institute of Technology
,
Cambridge
, Massachusetts
02139
, USA
| | - Xinghui Ye
- Institute of Laser and Optoelectronic Intelligent Manufacturing
, College of Mechanical and Electrical Engineering
, Wenzhou University
,
Wenzhou
, 325035
, P.R. China
.
| | - Zirui Li
- Institute of Laser and Optoelectronic Intelligent Manufacturing
, College of Mechanical and Electrical Engineering
, Wenzhou University
,
Wenzhou
, 325035
, P.R. China
.
| | - Jongyoon Han
- Department of Electrical Engineering and Computer Science
, Massachusetts Institute of Technology
,
Cambridge
, Massachusetts
02139
, USA
.
- Research Laboratory of Electronics
, Massachusetts Institute of Technology
,
Cambridge
, Massachusetts
02139
, USA
- Institute of Laser and Optoelectronic Intelligent Manufacturing
, College of Mechanical and Electrical Engineering
, Wenzhou University
,
Wenzhou
, 325035
, P.R. China
.
- Department of Biological Engineering
, Massachusetts Institute of Technology
,
Cambridge
, Massachusetts
02139
, USA
| |
Collapse
|