1
|
Wang W, Wang C, Huang R, Hong G, Zhang Y, Zhang X, Shao L. Boosting lithium/magnesium separation performance of selective electrodialysis membranes regulated by enamine reaction. WATER RESEARCH 2024; 268:122729. [PMID: 39531798 DOI: 10.1016/j.watres.2024.122729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/08/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Monovalent cation exchange membranes (MCEMs) have progressively played an important role in the field of ion separation. However, according to transition state theory (TST), synchronously tuning the enthalpy barrier (△H) and entropy barrier (△S) for cation transport to improve ion separation performance is challenging. Here, the enamine reaction between the -NH- and -CHO groups is applied to regulate the subsequent Schiff-base reaction between the -CHO and -NH2 groups, which reduces the positive charges of the selective layer but increases the steric hindrance. The increased -T△S (△S term) for cation transport plays an important role in improving Li+/Mg2+ separation performance. The optimal positively-charged glutaraldehyde@piperazine/polyethyleneimine assembled membrane (M-Glu@PIP/PEI) has a perm-selectivity (Li+/Mg2+) of 31.83 with a Li+ flux of 1.87 mol·m-2·h-1, surpassing the Li+/Mg2+ separation performance of state-of-the-art monovalent ion selective membranes (MISMs). Most importantly, the selective electrodialysis (S-ED) process with M-Glu@PIP/PEI can be directly applied to treat simulated salt-lake brines (SLBs), and its superior Li+/Mg2+ separation performance and operational stability enables 74.44 % of the lithium resources with a Li+ purity of 34.02 % to be recovered. This study presents new insights into the design of high-performance MCEMs for energy-efficient resource recovery.
Collapse
Affiliation(s)
- Wenguang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Chao Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Renyao Huang
- Beijing OriginWater Membrane Technology Co., Ltd, Beijing 101400, China
| | - Guanghui Hong
- Center for Analysis, Measurement and Computing, Harbin Institute of Technology, Harbin 150001, China
| | - Yanqiu Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Xigui Zhang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China.
| | - Lu Shao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
2
|
Han B, Sun X, Fan Z, Jiang H, Wang Z, Zhang W, He M, Ma J. Enhanced Mono/Divalent Ion Separation via Charged Interlayer Channels in Montmorillonite-Based Membranes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4415-4427. [PMID: 38373279 DOI: 10.1021/acs.est.3c08853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Efficient mono- and divalent ion separation is pivotal for environmental conservation and energy utilization. Two-dimensional (2D) materials featuring interlayer nanochannels exhibit unique water and ion transport properties, rendering them highly suitable for water treatment membranes. In this work, we incorporated polydopamine/polyethylenimine (PDA/PEI) copolymers into 2D montmorillonite (MMT) nanosheet interlayer channels through electrostatic interactions and bioinspired bonding. A modified laminar structure was formed on the substrate surface via a straightforward vacuum filtration. The electrodialysis experiments reveal that these membranes could achieve monovalent permselectivity of 11.06 and Na+ flux of 2.09 × 10-8 mol cm-2 s-1. The enhanced permselectivity results from the synergistic effect of electrostatic and steric hindrance effect. In addition, the interaction between the PDA/PEI copolymer and the MMT nanosheet ensures the long-term operational stability of the membranes. Theoretical simulations reveal that Na+ has a lower migration energy barrier and higher migration rate for the modified MMT-based membrane compared to Mg2+. This work presents a novel approach for the development of monovalent permselective membranes.
Collapse
Affiliation(s)
- Bo Han
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, People's Republic of China
| | - Xuejin Sun
- North China Municipal Engineering Design & Research Institute Company, Limited, Tianjin 300110, People's Republic of China
| | - Zuoming Fan
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, People's Republic of China
| | - Haicheng Jiang
- School of Environmental and Material Engineering, Yantai University, Yantai, Shandong 264005, People's Republic of China
| | - Ziyue Wang
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, People's Republic of China
| | - Wenjuan Zhang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, People's Republic of China
| | - Mingrui He
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, People's Republic of China
| | - Jun Ma
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, People's Republic of China
| |
Collapse
|
3
|
Wang R, Lin S. Membrane Design Principles for Ion-Selective Electrodialysis: An Analysis for Li/Mg Separation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38324772 PMCID: PMC10882969 DOI: 10.1021/acs.est.3c08956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Selective electrodialysis (ED) is a promising membrane-based process to separate Li+ from Mg2+, which is the most critical step for Li extraction from brine lakes. This study theoretically compares the ED-based Li/Mg separation performance of different monovalent selective cation exchange membranes (CEMs) and nanofiltration (NF) membranes at the coupon scale using a unified mass transport model, i.e., a solution-friction model. We demonstrated that monovalent selective CEMs with a dense surface thin film like a polyamide film are more effective in enhancing the Li/Mg separation performance than those with a loose but highly charged thin film. Polyamide film-coated CEMs when used in ED have a performance similar to that of polyamide-based NF membranes when used in NF. NF membranes, when expected to replace monovalent selective CEMs in ED for Li/Mg separation, will require a thin support layer with low tortuosity and high porosity to reduce the internal concentration polarization. The coupon-scale performance analysis and comparison provide new insights into the design of composite membranes used for ED-based selective ion-ion separation.
Collapse
Affiliation(s)
- Ruoyu Wang
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
| | - Shihong Lin
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
| |
Collapse
|
4
|
Tekinalp Ö, Zimmermann P, Holdcroft S, Burheim OS, Deng L. Cation Exchange Membranes and Process Optimizations in Electrodialysis for Selective Metal Separation: A Review. MEMBRANES 2023; 13:566. [PMID: 37367770 DOI: 10.3390/membranes13060566] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023]
Abstract
The selective separation of metal species from various sources is highly desirable in applications such as hydrometallurgy, water treatment, and energy production but also challenging. Monovalent cation exchange membranes (CEMs) show a great potential to selectively separate one metal ion over others of the same or different valences from various effluents in electrodialysis. Selectivity among metal cations is influenced by both the inherent properties of membranes and the design and operating conditions of the electrodialysis process. The research progress and recent advances in membrane development and the implication of the electrodialysis systems on counter-ion selectivity are extensively reviewed in this work, focusing on both structure-property relationships of CEM materials and influences of process conditions and mass transport characteristics of target ions. Key membrane properties, such as charge density, water uptake, and polymer morphology, and strategies for enhancing ion selectivity are discussed. The implications of the boundary layer at the membrane surface are elucidated, where differences in the mass transport of ions at interfaces can be exploited to manipulate the transport ratio of competing counter-ions. Based on the progress, possible future R&D directions are also proposed.
Collapse
Affiliation(s)
- Önder Tekinalp
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Pauline Zimmermann
- Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Steven Holdcroft
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Odne Stokke Burheim
- Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Liyuan Deng
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| |
Collapse
|
5
|
Designing an energy-efficient multi-stage selective electrodialysis process based on high-performance materials for lithium extraction. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
6
|
Ionic liquid-based pore-filling anion-exchange membranes enable fast large-sized metallic anion migration in electrodialysis. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121348] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
7
|
Wang W, Zhang Y, Tan M, Xue C, Zhou W, Bao H, Hon Lau C, Yang X, Ma J, Shao L. Recent advances in monovalent ion selective membranes towards environmental remediation and energy harvesting. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Mussel-inspired polyphenol/polyethyleneimine assembled membranes with highly positive charged surface for unprecedented high cation perm-selectivity. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120703] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Tao L, Wang X, Wu F, Wang B, Gao C, Gao X. Highly efficient Li+/Mg2+ separation of monovalent cation permselective membrane enhanced by 2D metal organic framework nanosheets. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
10
|
Zhao Z, Li X, Zhang H, Sheng F, Xu T, Zhu Y, Zhang H, Ge L, Xu T. Polyamide-Based Electronanofiltration Membranes for Efficient Anion Separation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhang Zhao
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Xingya Li
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Hao Zhang
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People’s Republic of China
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Fangmeng Sheng
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Tingting Xu
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Yanran Zhu
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Huacheng Zhang
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Liang Ge
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People’s Republic of China
- Applied Engineering Technology Research Center for Functional Membranes, Institute of Advanced Technology, University of Science and Technology of China, Hefei 230088, People’s Republic of China
| | - Tongwen Xu
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| |
Collapse
|
11
|
Yong H, He X, Merlitz H. Connection between Intrapore Free Energy, Molecule Permeation, and Selectivity of Nanofiltration Membranes. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Huaisong Yong
- Department of Polymer Materials and Engineering, School of New Energy and Materials, Southwest Petroleum University, 610500, Chengdu, China
- Institute Theory of Polymers, Leibniz-Institut für Polymerforschung Dresden e.V., D-01069, Dresden, Germany
| | - Xianru He
- Department of Polymer Materials and Engineering, School of New Energy and Materials, Southwest Petroleum University, 610500, Chengdu, China
| | - Holger Merlitz
- Institute Theory of Polymers, Leibniz-Institut für Polymerforschung Dresden e.V., D-01069, Dresden, Germany
| |
Collapse
|
12
|
Optimizing functional layer of cation exchange membrane by three-dimensional cross-linking quaternization for enhancing monovalent selectivity. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Wang W, Sun J, Zhang Y, Zhang Y, Hong G, Moutloali RM, Mamba BB, Li F, Ma J, Shao L. Mussel-inspired tannic acid/polyethyleneimine assembling positively-charged membranes with excellent cation permselectivity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:153051. [PMID: 35032526 DOI: 10.1016/j.scitotenv.2022.153051] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/24/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
The extraction of valuable target ions through monovalent cation exchange membranes (MCEMs) has been increasingly attracting in modern energy and environmental fields. However, the separation performance of MCEMs in terms of the permselectivity and cation fluxes, is typically restricted by membrane architecture and applied materials. Recently, mussel-inspired surface modification methods have been deployed in new membrane fabrications with special surface characteristics and functions. Herein, a facile layer-by-layer assembly method was designed to construct a series of de novo positively-charged tannic acid/polyethyleneimine (TA/PEI) membranes containing a negatively-charged support membrane and a TA/PEI selective layer. Notably, the peculiar support membrane with a much dense structure and abundant cation exchange groups can enable our TA/PEI membranes to possess high total cation fluxes. The selective layer with vast positive charges ensures mussel-inspired TA/PEI assembled positively-charged membranes to have a high permselectivity. Most importantly, compared with the separation performance of the state-of-the-art MCEMs, the superior separation performance of our developed new MCEMs at 5 mA·cm-2 and 10 mA·cm-2 is beyond the current "Upper Bound" plot between Na+ flux and the permselectivity (Na+/Mg2+), which opens new avenues for the construction of MCEMs. Furthermore, high purity of Li+ (95.37%) can be obtained through deploying mussel-inspired TA/PEI assembled positively-charged membranes with high permselectivity of Li+/Mg2+ (13.72), proving its great potentials in the field of resource recovery towards sustainability.
Collapse
Affiliation(s)
- Wenguang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jikun Sun
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yanqiu Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; School of Environmental Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Yang Zhang
- School of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Guanghui Hong
- Center for Analysis, Measurement and Computing, Harbin Institute of Technology, Harbin 150001, China
| | - Richard Motlhaletsi Moutloali
- Institute for Nanotechnology and Water Sustainability, College of Engineering, Science and Technology, University of South Africa, Florida Science Campus, 1709 Roodepoort, South Africa
| | - Bhekie B Mamba
- Institute for Nanotechnology and Water Sustainability, College of Engineering, Science and Technology, University of South Africa, Florida Science Campus, 1709 Roodepoort, South Africa
| | - Feiran Li
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing and School of Mechatronics Engineering, Harbin Institute of Technology, Xidazhi 92, Harbin 150001, PR China
| | - Jun Ma
- School of Environmental Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Lu Shao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Department of Chemical Engineering, Zhengzhou University, Zhengzhou 450002, China..
| |
Collapse
|
14
|
|
15
|
Wu MB, Ye H, Zhu ZY, Chen GT, Ma LL, Liu SC, Liu L, Yao J, Xu ZK. Positively-charged nanofiltration membranes constructed via gas/liquid interfacial polymerization for Mg2+/Li+ separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119942] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Jashni E, Hosseini SM, Shabanian M, Sadrzadeh M. Silane functionalized graphene oxide-bound polyelectrolyte layers for producing monovalent cation permselective membranes. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119583] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Wang X, Wu B, Afsar NU, Zhu Y, Xu T, Zhao Z, Li X, Ge L, Xu T. Soluble polymeric metal-organic frameworks toward crystalline membranes for efficient cation separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Zhao Z, Shehzad MA, Wu B, Wang X, Yasmin A, Zhu Y, Wang X, He Y, Ge L, Li X, Xu T. Spray-deposited thin-film composite MOFs membranes for dyes removal. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119475] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Preparation of monovalent cation perm-selective membranes by controlling surface hydration energy barrier. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118768] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
20
|
|
21
|
Xiao X, Shehzad MA, Yasmin A, Ge Z, Liang X, Sheng F, Ji W, Ge X, Wu L, Xu T. Anion permselective membranes with chemically-bound carboxylic polymer layer for fast anion separation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118553] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Sheng F, Afsar NU, Zhu Y, Ge L, Xu T. PVA-Based Mixed Matrix Membranes Comprising ZSM-5 for Cations Separation. MEMBRANES 2020; 10:membranes10060114. [PMID: 32486311 PMCID: PMC7344570 DOI: 10.3390/membranes10060114] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 01/17/2023]
Abstract
The traditional ion-exchange membranes face the trade-off effect between the ion flux and perm-selectivity, which limits their application for selective ion separation. Herein, we amalgamated various amounts of the ZSM-5 with the polyvinyl alcohol as ions transport pathways to improve the permeability of monovalent cations and exclusively reject the divalent cations. The highest contents of ZSM-5 in the mixed matrix membranes (MMMs) can be extended up to 60 wt% while the MMMs with optimized content (50 wt%) achieved high perm-selectivity of 34.4 and 3.7 for H+/Zn2+ and Li+/Mg2+ systems, respectively. The obtained results are high in comparison with the commercial CSO membrane. The presence of cationic exchange sites in the ZSM-5 initiated the fast transport of proton, while the microporous crystalline morphology restricted the active transport of larger hydrated cations from the solutions. Moreover, the participating sites and porosity of ZSM-5 granted continuous channels for ions electromigration in order to give high limiting current density to the MMMs. The SEM analysis further exhibited that using ZSM-5 as conventional fillers, gave a uniform and homogenous formation to the membranes. However, the optimized amount of fillers and the assortment of a proper dispersion phase are two critical aspects and must be considered to avoid defects and agglomeration of these enhancers during the formation of membranes.
Collapse
Affiliation(s)
- Fangmeng Sheng
- CAS Key Laboratory of Soft Matter Chemistry, iCHEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China; (F.S.); (N.U.A.); (Y.Z.)
| | - Noor Ul Afsar
- CAS Key Laboratory of Soft Matter Chemistry, iCHEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China; (F.S.); (N.U.A.); (Y.Z.)
| | - Yanran Zhu
- CAS Key Laboratory of Soft Matter Chemistry, iCHEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China; (F.S.); (N.U.A.); (Y.Z.)
| | - Liang Ge
- CAS Key Laboratory of Soft Matter Chemistry, iCHEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China; (F.S.); (N.U.A.); (Y.Z.)
- Applied Engineering Technology Research Center for Functional Membranes, Institute of Advanced Technology, University of Science and Technology of China, Hefei 230088, China
- Correspondence: (T.X.); (L.G.); Tel.: +86-551-63601581 (T.X.); Fax: +86-551-63602171 (T.X.)
| | - Tongwen Xu
- CAS Key Laboratory of Soft Matter Chemistry, iCHEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China; (F.S.); (N.U.A.); (Y.Z.)
- Correspondence: (T.X.); (L.G.); Tel.: +86-551-63601581 (T.X.); Fax: +86-551-63602171 (T.X.)
| |
Collapse
|
23
|
Pang X, Tao Y, Xu Y, Pan J, Shen J, Gao C. Enhanced monovalent selectivity of cation exchange membranes via adjustable charge density on functional layers. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117544] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Sheng F, Hou L, Wang X, Irfan M, Shehzad MA, Wu B, Ren X, Ge L, Xu T. Electro-nanofiltration membranes with positively charged polyamide layer for cations separation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117453] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Zhang D, Jiang C, Li Y, Shehzad MA, Wang X, Wang Y, Xu T. Electro-Driven in Situ Construction of Functional Layer Using Amphoteric Molecule: The Role of Tryptophan in Ion Sieving. ACS APPLIED MATERIALS & INTERFACES 2019; 11:36626-36637. [PMID: 31512854 DOI: 10.1021/acsami.9b11163] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The permselective separation of monovalent ions from the solution with the coexistence of multivalent ions was required in the industry of the wastewater treatment and resource recycling. Here, in this work, a novel electro-driven in situ modification method was utilized in the positively charged tryptophan solution to prepare highly permselective cation exchange membrane (CEM). We have optimized the process conditions and discussed the modification mechanism by drawing upon the fouling phenomenon in the membrane separation processes. A series of conventional characterization methods such as scanning electron microscopy (SEM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), and electrochemical impedance spectroscopy (EIS) were used to investigate the structure and performance changes after the modification. The SEM-energy-dispersive X-ray (SEM-EDX) was introduced for analyzing the transfer of Na+ and Mg2+ in the functional modification layer and the membrane matrix, thus illustrating the sieving mechanism for the modified membranes. The resultant membranes were observed to have the changed interstructure and the multivalent-ion-repulsive modification layer. Due to the channel filling and electrostatic repulsion effect, the electro-driven tryptophan endowed the pristine CMX with superior monovalent cation permselectivity (PMg2+Na+: 6-35), which was higher than that of pristine CMX and the commercial Neosepta CIMS. It confirms that the proposed electro-driven tryptophan in situ modification method could effectively help improve the membrane permselectivity by structurally forming stable crystallization on and within the membrane, which provides a feasible choice for the cation exchange membrane modification.
Collapse
Affiliation(s)
- Dongyu Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science , University of Science and Technology of China , Hefei , Anhui 230026 , People's Republic of China
| | - Chenxiao Jiang
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science , University of Science and Technology of China , Hefei , Anhui 230026 , People's Republic of China
| | - Yuanyuan Li
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science , University of Science and Technology of China , Hefei , Anhui 230026 , People's Republic of China
| | - Muhammad Aamir Shehzad
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science , University of Science and Technology of China , Hefei , Anhui 230026 , People's Republic of China
| | - Xin Wang
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science , University of Science and Technology of China , Hefei , Anhui 230026 , People's Republic of China
| | - Yaoming Wang
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science , University of Science and Technology of China , Hefei , Anhui 230026 , People's Republic of China
| | - Tongwen Xu
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science , University of Science and Technology of China , Hefei , Anhui 230026 , People's Republic of China
| |
Collapse
|
26
|
Irfan M, Xu T, Ge L, Wang Y, Xu T. Zwitterion structure membrane provides high monovalent/divalent cation electrodialysis selectivity: Investigating the effect of functional groups and operating parameters. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117211] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
27
|
Nativ P, Fridman-Bishop N, Gendel Y. Ion transport and selectivity in thin film composite membranes in pressure-driven and electrochemical processes. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
Evaluation of the ideal selectivity and the performance of selectrodialysis by using TFC ion exchange membranes. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
29
|
Synthesis and characterization of a plat sheet potassium ion sieve membrane and its performances for separation potassium. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.11.079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
30
|
He Y, Ge L, Ge Z, Zhao Z, Sheng F, Liu X, Ge X, Yang Z, Fu R, Liu Z, Wu L, Xu T. Monovalent cations permselective membranes with zwitterionic side chains. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.05.068] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Mass Transfer Phenomena during Electrodialysis of Multivalent Ions: Chemical Equilibria and Overlimiting Currents. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8091566] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Electrodialysis is utilized for the deionization of saline streams, usually formed by strong electrolytes. Recently, interest in new applications involving the transport of weak electrolytes through ion-exchange membranes has increased. Clear examples of such applications are the recovery of valuable metal ions from industrial effluents, such as electronic wastes or mining industries. Weak electrolytes give rise to a variety of ions with different valence, charge sign and transport properties. Moreover, development of concentration polarization under the application of an electric field promotes changes in the chemical equilibrium, thus making more complex understanding of mass transfer phenomena in such systems. This investigation presents a set of experiments conducted with salts of multivalent metals with the aim to provide better understanding on the involved mass transfer phenomena. Chronopotentiometric experiments and current-voltage characteristics confirm that shifts in chemical equilibria can take place simultaneous to the activation of overlimiting mass transfer mechanisms, that is, electroconvection and water dissociation. Electroconvection has been proven to affect the type of precipitates formed at the membrane surface thus suppressing the simultaneous dissociation of water. For some electrolytes, shifts in the chemical equilibria forced by an imposed electric field generate new charge carriers at specific current regimes, thus reducing the system resistance.
Collapse
|