1
|
Chehrazi E. Molecular Dynamics Simulations of Gas Transport Properties in Cross-Linked Polyamide Membranes: Tracing the Morphology and Addition of Silicate Nanotubes. ACS OMEGA 2024; 9:33425-33436. [PMID: 39130576 PMCID: PMC11307296 DOI: 10.1021/acsomega.3c10108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/12/2024] [Accepted: 07/17/2024] [Indexed: 08/13/2024]
Abstract
This study employs molecular dynamics (MD) simulations to fundamentally provide insight into the role of cross-link density in the CO2 separation properties of interfacially polymerized polyamide (PA) membranes. For this purpose, two atomistic models of pure polyamide membranes with different cross-link densities are constructed by MD simulations to conceptually determine how the fractional free volume of polyamide affects the gas separation performance of the membrane. The PA membrane with a lower cross-link density (LCPA) shows a higher gas diffusion coefficient, a lower gas solubility coefficient, and a higher gas permeability than the PA membrane with a higher cross-link density (HCPA). Moreover, the pristine and modified silicate nanotubes (SNTs) as the fast gas transport channels are incorporated into the polyamide membranes to assess the effect of the SNT/PA interface chemistry on the CO2 separation properties of the membranes. SNTs are systematically modified by three modifying agents with different CO2-philic groups and different interfacial interaction energies with the polyamide matrix. The results of MD simulations demonstrate that the incorporation of silicate nanotubes into the PA matrix increases the gas diffusivity and permeability and decreases the CO2/gas selectivity. Moreover, the membranes containing modified SNTs possessing high CO2-philicity and high SNTs/PA interfacial interactions show a high CO2 separation performance.
Collapse
Affiliation(s)
- Ehsan Chehrazi
- Department of Polymer Chemistry
and Materials, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran 1983969411, Iran
| |
Collapse
|
2
|
Qiu Z, Chen J, Zeng J, Dai R, Wang Z. A review on artificial water channels incorporated polyamide membranes for water purification: Transport mechanisms and performance. WATER RESEARCH 2023; 247:120774. [PMID: 37898000 DOI: 10.1016/j.watres.2023.120774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/30/2023]
Abstract
While thin-film composite (TFC) polyamide (PA) membranes are advanced for removing salts and trace organic contaminants (TrOCs) from water, TFC PA membranes encounter a water permeance-selectivity trade-off due to PA layer structural characteristics. Drawing inspiration from the excellent water permeance and solute rejection of natural biological channels, the development of analogous artificial water channels (AWCs) in TFC PA membranes (abbreviated as AWCM) promises to achieve superior mass transfer efficiency, enabling breaking the upper bound of water permeance and selectivity. Herein, we first discussed the types and structural characteristics of AWCs, followed by summarizing the methods for constructing AWCM. We discussed whether the AWCs acted as the primary mass transfer channels in AWCM and emphasized the important role of the AWCs in water transport and ion/TrOCs rejection. We thoroughly summarized the molecular-level mechanisms and structure-performance relationship of water molecules, ions, and TrOCs transport in the confined nanospace of AWCs, which laid the foundation for illustrating the enhanced water permeance and salt/TrOCs selectivity of AWCM. Finally, we discussed the challenges encountered in the field of AWCM and proposed future perspectives for practical applications. This review is expected to offer guidance for understanding the transport mechanisms of AWCM and developing next-generation membrane for effective water treatment.
Collapse
Affiliation(s)
- Zhiwei Qiu
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jiansuxuan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jin Zeng
- School of Software Engineering, Tongji University, Shanghai 201804, PR China
| | - Ruobin Dai
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
3
|
Yasir AT, Benamor A, Hawari AH, Mahmoudi E. Poly (amido amine) dendrimer based membranes for wastewater treatment – A critical review. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
4
|
Tayel A, Abdelaal AB, Esawi AMK, Ramadan AR. Thin-Film Nanocomposite (TFN) Membranes for Water Treatment Applications: Characterization and Performance. MEMBRANES 2023; 13:membranes13050477. [PMID: 37233538 DOI: 10.3390/membranes13050477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023]
Abstract
Thin-film nanocomposite (TFN) membranes have been widely investigated for water treatment applications due to their promising performance in terms of flux, salt rejection, and their antifouling properties. This review article provides an overview of the TFN membrane characterization and performance. It presents different characterization techniques that have been used to analyze these membranes and the nanofillers within them. The techniques comprise structural and elemental analysis, surface and morphology analysis, compositional analysis, and mechanical properties. Additionally, the fundamentals of membrane preparation are also presented, together with a classification of nanofillers that have been used so far. The potential of TFN membranes to address water scarcity and pollution challenges is significant. This review also lists examples of effective TFN membrane applications for water treatment. These include enhanced flux, enhanced salt rejection, antifouling, chlorine resistance, antimicrobial properties, thermal stability, and dye removal. The article concludes with a synopsis of the current status of TFN membranes and future perspectives.
Collapse
Affiliation(s)
- Amr Tayel
- Department of Chemistry, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
| | - Ahmed B Abdelaal
- Department of Chemistry, McGill University, 845 Rue Sherbrooke O, Montreal, QC H3A 0G4, Canada
| | - Amal M K Esawi
- Department of Mechanical Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
| | - Adham R Ramadan
- Department of Chemistry, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
| |
Collapse
|
5
|
Aguiar AO, Yi H, Asatekin A. Fouling-resistant membranes with zwitterion-containing ultra-thin hydrogel selective layers. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
6
|
Atashgar A, Emadzadeh D, Akbari S, Kruczek B. Incorporation of Functionalized Halloysite Nanotubes (HNTs) into Thin-Film Nanocomposite (TFN) Nanofiltration Membranes for Water Softening. MEMBRANES 2023; 13:245. [PMID: 36837748 PMCID: PMC9958727 DOI: 10.3390/membranes13020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Incorporating nanoparticles (NPs) into the selective layer of thin-film composite (TFC) membranes is a common approach to improve the performance of the resulting thin-film nanocomposite (TFN) membranes. The main challenge in this approach is the leaching out of NPs during membrane operation. Halloysite nanotubes (HNTs) modified with the first generation of poly(amidoamine) (PAMAM) dendrimers (G1) have shown excellent stability in the PA layer of TFN reverse-osmosis (RO) membranes. This study explores, for the first time, using these NPs to improve the properties of TFN nanofiltration (NF) membranes. Membrane performance was evaluated in a cross-flow nanofiltration (NF) system using 3000 ppm aqueous solutions of MgCl2, Na2SO4 and NaCl, respectively, as feed at 10 bar and ambient temperature. All membranes showed high rejection of Na2SO4 (around 97-98%) and low NaCl rejection, with the corresponding water fluxes greater than 100 L m-2 h-1. The rejection of MgCl2 (ranging from 82 to 90%) was less than that for Na2SO4. However, our values are much greater than those reported in the literature for other TFN membranes. The remarkable rejection of MgCl2 is attributed to positively charged HNT-G1 nanoparticles incorporated in the selective polyamide (PA) layer of the TFN membranes.
Collapse
Affiliation(s)
- Amirsajad Atashgar
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Daryoush Emadzadeh
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Somaye Akbari
- Textile Engineering Department, Amirkabir University of Technology, 424 Hafez Ave., Tehran P.O. Box 15875-4413, Iran
| | - Boguslaw Kruczek
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
7
|
Xu Y, Zhu Y, Qiu Q, Qi Z, Liu S, Weng J, Shen J. Development of Mixed-Dimensional Membranes Comprising Halloysite Nanotubes and Kevlar Aramid Nanofiber for Enhanced Small-Molecule Dye/Salt Separation. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Yanqing Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou310014, China
| | - Yuying Zhu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou310014, China
| | - Qite Qiu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou310014, China
| | - Zhifu Qi
- Zhejiang Energy Group R & D Co., Ltd, Hangzhou311121, China
| | - Shenghui Liu
- Zhejiang Energy Group R & D Co., Ltd, Hangzhou311121, China
| | - Jianquan Weng
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou310014, China
| | - Jiangnan Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou310014, China
| |
Collapse
|
8
|
Shahbabaei M, Tang T. Molecular modeling of thin-film nanocomposite membranes for reverse osmosis water desalination. Phys Chem Chem Phys 2022; 24:29298-29327. [PMID: 36453147 DOI: 10.1039/d2cp03839k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The scarcity of freshwater resources is a major global challenge causedby population and economic growth. Water desalination using a reverse osmosis (RO) membrane is a promising technology to supply potable water from seawater and brackish water. The advancement of RO desalination highly depends on new membrane materials. Currently, the RO technology mainly relies on polyamide thin-film composite (TFC) membranes, which suffer from several drawbacks (e.g., low water permeability, permeability-selectivity tradeoff, and low fouling resistance) that hamper their real-world applications. Nanoscale fillers with specific characteristics can be used to improve the properties of TFC membranes. Embedding nanofillers into TFC membranes using interfacial polymerization allows the creation of thin-film nanocomposite (TFNC) membranes, and has become an emerging strategy in the fabrication of high-performance membranes for advanced RO water desalination. To achieve optimal design, it is indispensable to search for reliable methods that can provide fast and accurate predictions of the structural and transport properties of the TFNC membranes. However, molecular understanding of permeability-selectivity characteristics of nanofillers remains limited, partially due to the challenges in experimentally exploring microscopic behaviors of water and salt ions in confinement. Molecular modeling and simulations can fill this gap by generating molecular-level insights into the effects of nanofillers' characteristics (e.g., shape, size, surface chemistry, and density) on water permeability and ion selectivity. In this review, we summarize molecular simulations of a diverse range of nanofillers including nanotubes (carbon nanotubes, boron nitride nanotubes, and aquaporin-mimicking nanochannels) and nanosheets (graphene, graphene oxide, boron nitride sheets, molybdenum disulfide, metal and covalent organic frameworks) for water desalination applications. These simulations reveal that water permeability and salt rejection, as the major factors determining the desalination performance of TFNC membranes, significantly depend on the size, topology, density, and chemical modifications of the nanofillers. Identifying their influences and the physicochemical processes behind, via molecular modeling, is expected to yield important insights for the fabrication and optimization of the next generation high-performance TFNC membranes for RO water desalination.
Collapse
Affiliation(s)
- Majid Shahbabaei
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada.
| | - Tian Tang
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
9
|
Preparation and characterization of carvacrol essential oil-loaded halloysite nanotubes and their application in antibacterial packaging. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
10
|
Saleem H, Goh PS, Saud A, Khan MAW, Munira N, Ismail AF, Zaidi SJ. Graphene Quantum Dot-Added Thin-Film Composite Membrane with Advanced Nanofibrous Support for Forward Osmosis. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12234154. [PMID: 36500777 PMCID: PMC9735732 DOI: 10.3390/nano12234154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/01/2022] [Accepted: 11/10/2022] [Indexed: 05/17/2023]
Abstract
Forward osmosis (FO) technology for desalination has been extensively studied due to its immense benefits over conventionally used reverse osmosis. However, there are some challenges in this process such as a high reverse solute flux (RSF), low water flux, and poor chlorine resistance that must be properly addressed. These challenges in the FO process can be resolved through proper membrane design. This study describes the fabrication of thin-film composite (TFC) membranes with polyethersulfone solution blown-spun (SBS) nanofiber support and an incorporated selective layer of graphene quantum dots (GQDs). This is the first study to sustainably develop GQDs from banyan tree leaves for water treatment and to examine the chlorine resistance of a TFC FO membrane with SBS nanofiber support. Successful GQD formation was confirmed with different characterizations. The performance of the GQD-TFC-FO membrane was studied in terms of flux, long-term stability, and chlorine resistance. It was observed that the membrane with 0.05 wt.% of B-GQDs exhibited increased surface smoothness, hydrophilicity, water flux, salt rejection, and chlorine resistance, along with a low RSF and reduced solute flux compared with that of neat TFC membranes. The improvement can be attributed to the presence of GQDs in the polyamide layer and the utilization of SBS nanofibrous support in the TFC membrane. A simulation study was also carried out to validate the experimental data. The developed membrane has great potential in desalination and water treatment applications.
Collapse
Affiliation(s)
- Haleema Saleem
- UNESCO Chair on Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Asif Saud
- UNESCO Chair on Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| | - Mohammad Aquib Wakeel Khan
- UNESCO Chair on Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| | - Nazmin Munira
- UNESCO Chair on Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Syed Javaid Zaidi
- UNESCO Chair on Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
- Correspondence: ; Tel.: +974-4403-7723
| |
Collapse
|
11
|
A critical review on thin-film nanocomposite membranes enabled by nanomaterials incorporated in different positions and with diverse dimensions: Performance comparison and mechanisms. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Burts KS, Plisko TV, Prozorovich VG, Melnikova GB, Ivanets AI, Bildyukevich AV. Modification of Thin Film Composite PVA/PAN Membranes for Pervaporation Using Aluminosilicate Nanoparticles. Int J Mol Sci 2022; 23:ijms23137215. [PMID: 35806220 PMCID: PMC9266310 DOI: 10.3390/ijms23137215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/26/2022] [Accepted: 06/26/2022] [Indexed: 02/04/2023] Open
Abstract
The effect of the modification of the polyvinyl alcohol (PVA) selective layer of thin film composite (TFC) membranes by aluminosilicate (Al2O3·SiO2) nanoparticles on the structure and pervaporation performance was studied. For the first time, PVA-Al2O3·SiO2/polyacrylonitrile (PAN) thin film nanocomposite (TFN) membranes for pervaporation separation of ethanol/water mixture were developed via the formation of the selective layer in dynamic mode. Selective layers of PVA/PAN and PVA-Al2O3·SiO2/PAN membranes were formed via filtration of PVA aqueous solutions or PVA-Al2O3·SiO2 aqueous dispersions through the ultrafiltration PAN membrane for 10 min at 0.3 MPa in dead-end mode. Average particle size and zeta potential of aluminosilicate nanoparticles in PVA aqueous solution were analyzed using the dynamic light scattering technique. Structure and surface properties of membranes were studied using scanning electron microscopy (SEM), atomic force microscopy (AFM) and water contact angle measurements. Membrane performance was investigated in pervaporation dehydration of ethanol/water mixtures in the broad concentration range. It was found that flux of TFN membranes decreased with addition of Al2O3·SiO2 nanoparticles into the selective layer due to the increase in selective layer thickness. However, ethanol/water separation factor of TFN membranes was found to be significantly higher compared to the reference TFC membrane in the whole range of studied ethanol/water feed mixtures with different concentrations, which is attributed to the increase in membrane hydrophilicity. It was found that developed PVA-Al2O3·SiO2/PAN TFN membranes were more stable in the dehydration of ethanol in the whole range of investigated concentrations as well as at different temperatures of the feed mixtures (25 °C, 35 °C, 50 °C) compared to the reference membrane which is due to the additional cross-linking of the selective layer by formation hydrogen and donor-acceptor bonds between aluminosilicate nanoparticles and PVA macromolecules.
Collapse
Affiliation(s)
- Katsiaryna S. Burts
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus; (K.S.B.); (A.V.B.)
| | - Tatiana V. Plisko
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus; (K.S.B.); (A.V.B.)
- Correspondence:
| | - Vladimir G. Prozorovich
- Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus; (V.G.P.); (A.I.I.)
| | - Galina B. Melnikova
- A. V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, 220072 Minsk, Belarus;
| | - Andrei I. Ivanets
- Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus; (V.G.P.); (A.I.I.)
| | - Alexandr V. Bildyukevich
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus; (K.S.B.); (A.V.B.)
| |
Collapse
|
13
|
Zhou H, Zhou S, Ji X, Zhao Y, Lv Y, Cheng Y, Tao Y, Lu J, Du J, Wang H. High-performance cellulose acetate-based gas barrier films via tailoring reduced graphene oxide nanosheets. Int J Biol Macromol 2022; 209:1450-1456. [PMID: 35469945 DOI: 10.1016/j.ijbiomac.2022.04.115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 11/05/2022]
Abstract
Improving the gas molecule barrier performance and structural stability of bio-plastic films dramatically contribute to packaging and protective fields. Herein, we proposed a novel nanocomposite film consisting of cellulose acetate (CA)/polyethyleneimine (PEI)/reduced graphene oxide (rGO)-NiCoFeOx) with high gas barrier property by applying "molecular glue" and "nano-patching" strategies. Systematical investigations demonstrated that the CA/rGO interfacial interaction was effectively enhanced due to the "molecular glue" role of PEI chains via physical/chemical bonds and the defective regions in rGO plane were nano-patched through hydrophilic interactions between edged oxygen-containing functional groups and ultrafine NiCoFeOx nanoparticles (~3 nm). As a result, the oxygen and moisture transmission rates of the prepared CA/PEI/rGO-NPs hybrid film were significantly reduced to 0.31 cm3 ∗ μm/(m2 ∗ d ∗ kPa) and 314.23 g/m2 ∗ 24 h, respectively, which were 99.60% and 54.69% lower than pristine CA films. Meanwhile, the tensile strength of hybrid film was increased from 25.90 MPa to 40.67 MPa. More importantly, the designed nanocomposite film possesses excellent structural stability without obvious GO layer shedding and hydrophobicity attenuation after persistent bending at least 100 times. The exceptional robust and high gas barrier film displays great promising application in food, agriculture, pharmaceuticals and electronic instruments packaging industry.
Collapse
Affiliation(s)
- Huimin Zhou
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Siying Zhou
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xingxiang Ji
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yali Zhao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yanna Lv
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yi Cheng
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yehan Tao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jie Lu
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jian Du
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Haisong Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
14
|
Vatanpour V, Jouyandeh M, Mousavi Khadem SS, Paziresh S, Dehqan A, Ganjali MR, Moradi H, Mirsadeghi S, Badiei A, Munir MT, Mohaddespour A, Rabiee N, Habibzadeh S, Mashhadzadeh AH, Nouranian S, Formela K, Saeb MR. Highly antifouling polymer-nanoparticle-nanoparticle/polymer hybrid membranes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152228. [PMID: 34890675 DOI: 10.1016/j.scitotenv.2021.152228] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/12/2021] [Accepted: 12/03/2021] [Indexed: 06/13/2023]
Abstract
We introduce highly antifouling Polymer-Nanoparticle-Nanoparticle/Polymer (PNNP) hybrid membranes as multi-functional materials for versatile purification of wastewater. Nitrogen-rich polyethylenimine (PEI)-functionalized halloysite nanotube (HNT-SiO2-PEI) nanoparticles were developed and embedded in polyvinyl chloride (PVC) membranes for protein and dye filtration. Bulk and surface characteristics of the resulting HNT-SiO2-PEI nanocomposites were determined using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). Moreover, microstructure and physicochemical properties of HNT-SiO2-PEI/PVC membranes were investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM), and attenuated total reflectance (ATR)-FTIR. Results of these analyses indicated that the overall porosity and mean pore size of nanocomposite membranes were enhanced, but the surface roughness was reduced. Additionally, surface hydrophilicity and flexibility of the original PVC membranes were significantly improved by incorporating HNT-SiO2-PEI nanoparticles. Based on pure water permeability and bovine serum albumin (BSA)/dye rejection tests, the highest nanoparticle-embedded membrane performance was observed at 2 weight percent (wt%) of HNT-SiO2-PEI. The nanocomposite incorporation in the PVC membranes further improved its antifouling performance and flux recovery ratio (96.8%). Notably, dye separation performance increased up to 99.97%. Overall, hydrophobic PVC membranes were successfully modified by incorporating HNT-SiO2-PEI nanomaterial and better-quality wastewater treatment performance was obtained.
Collapse
Affiliation(s)
- Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran.
| | - Maryam Jouyandeh
- Center of Excellence in Electrochemistry, School of Chemistry, University of Tehran, Tehran 14176-14411, Iran
| | | | - Shadi Paziresh
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran
| | - Ahmad Dehqan
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, University of Tehran, Tehran 14176-14411, Iran; School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China; Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran 14117-13137, Iran
| | - Hiresh Moradi
- Research and Development Unit, Ghaffari Chemical Industries Corporation, Tehran, Iran
| | - Somayeh Mirsadeghi
- Endocrinology and Metabolism Center, Endocrinology and Metabolism Clinical Medical Institute, Tehran University of Medical Science, Tehran 14117-13137, Iran
| | - Alireza Badiei
- School of Chemistry, University of Tehran, Tehran 14176-14411, Iran
| | - Muhammad Tajammal Munir
- College of Engineering and Technology, American University of the Middle East, Egaila, Kuwait
| | - Ahmad Mohaddespour
- College of Engineering and Technology, American University of the Middle East, Egaila, Kuwait
| | - Navid Rabiee
- Department of Physics, Sharif University of Technology, Tehran 11155-9161, Iran
| | - Sajjad Habibzadeh
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 15916-34311, Iran
| | - Amin Hamed Mashhadzadeh
- Department of Mechanical and Aerospace Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Sasan Nouranian
- Department of Chemical Engineering, University of Mississippi, MS 38677, United States
| | - Krzysztof Formela
- Department of Polymer Technology, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | | |
Collapse
|
15
|
Zhao H, Li X, Ding X, Zhang L, Zhang Y. Performance improvement of thin film nanocomposite membranes by covalently bonding with Janus porous hollow nanoparticles for nanofiltration applications. J Appl Polym Sci 2022. [DOI: 10.1002/app.51695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hongyong Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes Tiangong University Tianjin China
- Tianjin Key Laboratory of Hollow Fiber Membrane Materials and Processes Tiangong University Tianjin China
- School of Chemistry and Chemical Engineering Tiangong University Tianjin China
| | - Xiaofeng Li
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes Tiangong University Tianjin China
- Tianjin Key Laboratory of Hollow Fiber Membrane Materials and Processes Tiangong University Tianjin China
- School of Material Science and Engineering Tiangong University Tianjin China
| | - Xiaoli Ding
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes Tiangong University Tianjin China
- Tianjin Key Laboratory of Hollow Fiber Membrane Materials and Processes Tiangong University Tianjin China
- School of Material Science and Engineering Tiangong University Tianjin China
| | - Liang Zhang
- School of Material Science and Engineering Tiangong University Tianjin China
| | - Yuzhong Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes Tiangong University Tianjin China
- Tianjin Key Laboratory of Hollow Fiber Membrane Materials and Processes Tiangong University Tianjin China
- School of Material Science and Engineering Tiangong University Tianjin China
| |
Collapse
|
16
|
Ding L, Yan N, Zhang S, Xu R, Wu T, Yang F, Cao Y, Xiang M. Low-Cost Mass Manufacturing Technique for the Shutdown-Functionalized Lithium-Ion Battery Separator Based on Al 2O 3 Coating Online Construction during the β-iPP Cavitation Process. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6714-6728. [PMID: 35089698 DOI: 10.1021/acsami.1c22080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A shutdown-functionalized lithium-ion battery separator plays a pivotal role in preventing thermal runaway as cells experience electrical abuse, overcharge, and external short circuit. In this article, the trilayer separator endowed with shutdown function was fabricated by ingenious co-extrusion and bidirectional drawing based on the nano-Al2O3 coating online construction during the β-iPP cavitation process. The middle layer composed of nano-Al2O3, polyethylene, and polypropylene offers a shutdown temperature of 130 °C, and skin polypropylene layers with nano-Al2O3 coating hold optimized dimensional stability below the meltdown temperature. Crystal structure measurement and pore structure diagnosis disclose that nano-Al2O3 thins coarse fibrils and makes the porous structure uniform. De-bonding of nano-Al2O3/β-iPP interfaces retains nano-Al2O3 not only on the top surface of the separator but also on the pore intine to realize nano-Al2O3 coating online construction, consequently strengthening tensile capacity, dimensional stability to heating, and electrolyte affinity. Electrochemical tests further disclose that nano-Al2O3 coating stabilizes solid electrolyte interphase germination and heightens lithium-ion migration numbers, confining cell resistances and granting optimal high-rate performance and cycling ability. The proposed approach features simple technics, environment-friendly, continuous fabrication, and coating online construction, which can offer new ideas for the mass fabricating of the high-end separator.
Collapse
Affiliation(s)
- Lei Ding
- Shandong Key Laboratory of Chemical Energy Storage and New Battery Technology, School of Chemistry and Chemical Engineering, Liaocheng University, No. 1, Hunan Road, Liaocheng 252000, China
| | - Ning Yan
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Sihang Zhang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Ruizhang Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 1 Keyuan Road 4, Gaopeng Avenue, Chengdu 610041, China
| | - Tong Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Feng Yang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Ya Cao
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Ming Xiang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| |
Collapse
|
17
|
Li X, Wang Z, Han X, Liu Y, Wang C, Yan F, Wang J. Regulating the interfacial polymerization process toward high-performance polyamide thin-film composite reverse osmosis and nanofiltration membranes: A review. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119765] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
18
|
Delyanee M, Solouk A, Akbari S, Daliri M. Hemostatic Electrospun Nanocomposite Containing Poly(lactic acid)/Halloysite Nanotube Functionalized by Poly(amidoamine) Dendrimer for Wound Healing Application: In Vitro and In Vivo Assays. Macromol Biosci 2021; 22:e2100313. [PMID: 34644007 DOI: 10.1002/mabi.202100313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/16/2021] [Indexed: 11/09/2022]
Abstract
The main challenge in treating injuries is excessive bleeding whereas intervention is required if the body's hemostatic systems fail to control the bleeding. Herein, a novel nanocomposite consisting of poly(lactic acid) (PLA) and poly(amidoamine) (PAMAM) dendrimer functionalized halloysite nanotube (HNT) with a highly porous structure via electrospinning is developed. HNT is functionalized by PAMAM via divergent synthetic routes from zero to third-generation numbers. The effect of different percentages and generation numbers of PAMAM dendrimer (G1, G2, and G3) functionalized HNT on PLA is studied using physicochemical nanocomposite characteristics. These resultant nanocomposites provide a nanofibrous structure with appropriate physicochemical characteristics such as mechanical properties, surface wettability, and water permeability. The hemostatic assays indicate that nanocomposite with PAMAM G3 functionalized HNT have the quickest blood clotting time due to the abundant amino functional group. Furthermore, the nanocomposites with 10 wt% of nanoparticles significantly promote cellular behavior in vitro. The in vivo study demonstrates that PLA/PAMAM G3 functionalized HNT promotes angiogenesis, collagen deposition, and re-epithelialization in the wound sites of the rat model, as well as inhibiting inflammatory response. The findings indicate that nanofibrous structure and the presence of dendrimer functionalized HNT have a synergetic effect on the enhanced nanocomposite wound healing performance.
Collapse
Affiliation(s)
- Mahsa Delyanee
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Atefeh Solouk
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Somaye Akbari
- Textile Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Morteza Daliri
- Department of Animal and Marine Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
19
|
Improving permeability and anti-fouling performance in reverse osmosis application of polyamide thin film nanocomposite membrane modified with functionalized carbon nanospheres. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118828] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Taheri-Ledari R, Zhang W, Radmanesh M, Cathcart N, Maleki A, Kitaev V. Plasmonic photothermal release of docetaxel by gold nanoparticles incorporated onto halloysite nanotubes with conjugated 2D8-E3 antibodies for selective cancer therapy. J Nanobiotechnology 2021; 19:239. [PMID: 34380469 PMCID: PMC8359560 DOI: 10.1186/s12951-021-00982-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/28/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Applied nanomaterials in targeted drug delivery have received increased attention due to tangible advantages, including enhanced cell adhesion and internalization, controlled targeted release, convenient detection in the body, enhanced biodegradation, etc. Furthermore, conjugation of the biologically active ingredients with the drug-containing nanocarriers (nanobioconjugates) has realized impressive opportunities in targeted therapy. Among diverse nanostructures, halloysite nanotubes (NHTs) with a rolled multilayer structure offer great possibilities for drug encapsulation and controlled release. The presence of a strong hydrogen bond network between the rolled HNT layers enables the controlled release of the encapsulated drug molecules through the modulation of hydrogen bonding either in acidic conditions or at higher temperatures. The latter can be conveniently achieved through the photothermal effect via the incorporation of plasmonic nanoparticles. RESULTS The developed nanotherapeutic integrated natural halloysite nanotubes (HNTs) as a carrier; gold nanoparticles (AuNPs) for selective release; docetaxel (DTX) as a cytotoxic anticancer agent; human IgG1 sortilin 2D8-E3 monoclonal antibody (SORT) for selective targeting; and 3-chloropropyltrimethoxysilane as a linker for antibody attachment that also enhances the hydrophobicity of DTX@HNT/Au-SORT and minimizes DTX leaching in body's internal environment. HNTs efficiently store DTX at room temperature and release it at higher temperatures via disruption of interlayer hydrogen bonding. The role of the physical expansion and disruption of the interlayer hydrogen bonding in HNTs for the controlled DTX release has been studied by dynamic light scattering (DLS), electron microscopy (EM), and differential scanning calorimetry (DSC) at different pH conditions. HNT interlayer bond disruption has been confirmed to take place at a much lower temperature (44 °C) at low pH vs. 88 °C, at neutral pH thus enabling the effective drug release by DTX@HNT/Au-SORT through plasmonic photothermal therapy (PPTT) by light interaction with localized plasmon resonance (LSPR) of AuNPs incorporated into the HNT pores. CONCLUSIONS Selective ovarian tumor targeting was accomplished, demonstrating practical efficiency of the designed nanocomposite therapeutic, DTX@HNT/Au-SORT. The antitumor activity of DTX@HNT/Au-SORT (apoptosis of 90 ± 0.3%) was confirmed by in vitro experiments using a caov-4 (ATCC HTB76) cell line (sortilin expression > 70%) that was successfully targeted by the sortilin 2D8-E3 mAb, tagged on the DTX@HNT/Au.
Collapse
Affiliation(s)
- Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Wenjie Zhang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan, People's Republic of China
| | - Maral Radmanesh
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Nicole Cathcart
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, 75 University Ave. W., Waterloo, ON, Canada
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Vladimir Kitaev
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, 75 University Ave. W., Waterloo, ON, Canada.
| |
Collapse
|
21
|
Advanced thin-film nanocomposite membranes embedded with organic-based nanomaterials for water and organic solvent purification: A review. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118719] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Delyanee M, Solouk A, Akbari S, Daliri Joupari M. Engineered hemostatic bionanocomposite of poly(lactic acid) electrospun mat and amino‐modified halloysite for potential application in wound healing. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Mahsa Delyanee
- Biomedical Engineering Department Amirkabir University of Technology Tehran Iran
| | - Atefeh Solouk
- Biomedical Engineering Department Amirkabir University of Technology Tehran Iran
| | - Somaye Akbari
- Textile Engineering Department Amirkabir University of Technology Tehran Iran
| | - Morteza Daliri Joupari
- Department of Animal and Marine Biotechnology National Institute of Genetic Engineering and Biotechnology Tehran Iran
| |
Collapse
|
23
|
Chlorine-resistant TFN RO membranes containing modified poly(amidoamine) dendrimer-functionalized halloysite nanotubes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.119039] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Sharma U, Shalini S, Basu S, Saravanan P, Jang M. Active layer modification of commercial nanofiltration membrane using
CuBTC
/
PVA
matrix for improved surface and separation characteristics. J Appl Polym Sci 2021. [DOI: 10.1002/app.50508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Uttkarshni Sharma
- Environmental Nanotechnology Laboratory, Department of Environmental Science and Engineering Indian Institute of Technology (ISM) Dhanbad India
| | - Shweta Shalini
- Environmental Nanotechnology Laboratory, Department of Environmental Science and Engineering Indian Institute of Technology (ISM) Dhanbad India
| | - Subhankar Basu
- Department of Applied Science and Humanities National Institute of Foundry and Forge Technology Ranchi Jharkhand India
| | - Pichiah Saravanan
- Environmental Nanotechnology Laboratory, Department of Environmental Science and Engineering Indian Institute of Technology (ISM) Dhanbad India
| | - Min Jang
- Department of Environmental Engineering Kwangwoon University Seoul South Korea
| |
Collapse
|
25
|
Thin film nanocomposite RO membranes: Review on fabrication techniques and impacts of nanofiller characteristics on membrane properties. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2020.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Wang Y, Zhang H, Song C, Gao C, Zhu G. Effect of aminophend/formaldehyde resin polymeric nanospheres as nanofiller on polyamide thin film nanocomposite membranes for reverse osmosis application. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118496] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
27
|
Zhao DL, Japip S, Zhang Y, Weber M, Maletzko C, Chung TS. Emerging thin-film nanocomposite (TFN) membranes for reverse osmosis: A review. WATER RESEARCH 2020; 173:115557. [PMID: 32028249 DOI: 10.1016/j.watres.2020.115557] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 01/22/2020] [Accepted: 01/26/2020] [Indexed: 06/10/2023]
Abstract
Thin-film composite (TFC) membranes are the heart of reverse osmosis (RO) processes for desalination and water reuse. In recent years, nanomaterials with high permeability, selectivity and chemical resistance, and low fouling tendency have begun to emerge and be applied in many other fields. This has stimulated the research on novel RO membranes consisting of nanomaterials (non-porous and porous) in their selective layers. Encouraging results have been demonstrated. Herein, the state-of-the-art developments of polyamide thin-film nanocomposite (TFN) membranes for RO processes are summarized since the concept of TFN was introduced in 2007. While it is obvious that nanomaterials could impart exclusive properties, it should also be noted that significant challenges still exist for research and commercialization of TFN membranes, such as selection of proper nanomaterials, prevention of leaching of nanoparticles, and performance and cost analysis before large-scale RO membrane manufacturing. Future research directions are outlined to offer insights for the fabrication of much advanced TFN membranes with optimal interface morphology and separation performance.
Collapse
Affiliation(s)
- Die Ling Zhao
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Susilo Japip
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Yu Zhang
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Martin Weber
- Advanced Materials and Systems Research, BASF SE, RAP/OUB - B1, 67056, Ludwigshafen, Germany
| | - Christian Maletzko
- Performance Materials, BASF SE, G-PMFSU-F206, 67056, Ludwigshafen, Germany
| | - Tai-Shung Chung
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| |
Collapse
|
28
|
Liu Y, Wang X, Gao X, Zheng J, Wang J, Volodin A, Xie YF, Huang X, Van der Bruggen B, Zhu J. High-performance thin film nanocomposite membranes enabled by nanomaterials with different dimensions for nanofiltration. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117717] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Ma Y, Dai J, Wang L, Yan Y, Gao M. Fabrication of porous molecularly imprinted polymer using halloysite nanotube as template for selective recognition and separation of chloramphenicol. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-019-01792-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Morales‐Cuevas JB, Pérez‐Sicairos S, Lin SW, Salazar‐Gastélum MI. Evaluation of a modified spray‐applied interfacial polymerization method for preparation of nanofiltration membranes. J Appl Polym Sci 2019. [DOI: 10.1002/app.48129] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- José Braulio Morales‐Cuevas
- Tecnológico Nacional de México/IT Tijuana/Centro de Graduados e Investigación en Química Blvd. Alberto Limón Padilla y Avenue ITR de Tijuana, S/N, CP. 22500, Tijuana Baja California Mexico
| | - Sergio Pérez‐Sicairos
- Tecnológico Nacional de México/IT Tijuana/Centro de Graduados e Investigación en Química Blvd. Alberto Limón Padilla y Avenue ITR de Tijuana, S/N, CP. 22500, Tijuana Baja California Mexico
| | - Shui Wai Lin
- Tecnológico Nacional de México/IT Tijuana/Centro de Graduados e Investigación en Química Blvd. Alberto Limón Padilla y Avenue ITR de Tijuana, S/N, CP. 22500, Tijuana Baja California Mexico
| | - Moisés Israel Salazar‐Gastélum
- Tecnológico Nacional de México/IT Tijuana/Centro de Graduados e Investigación en Química Blvd. Alberto Limón Padilla y Avenue ITR de Tijuana, S/N, CP. 22500, Tijuana Baja California Mexico
| |
Collapse
|
31
|
Shah AA, Cho YH, Choi HG, Nam SE, Kim JF, Kim Y, Park YI, Park H. Facile integration of halloysite nanotubes with bioadhesive as highly permeable interlayer in forward osmosis membranes. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.01.039] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Wang Y, Gao B, Li S, Jin B, Yue Q, Wang Z. Cerium oxide doped nanocomposite membranes for reverse osmosis desalination. CHEMOSPHERE 2019; 218:974-983. [PMID: 30609503 DOI: 10.1016/j.chemosphere.2018.11.207] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
Abstract
Cerium oxide (CeO2) nanoparticles (NPs) have indicated great potentials as nanofiller owing to its high surface area, antioxidant properties and low cost. In this paper, thin film nanocomposite (TFN) RO membranes were proposed to be prepared through incorporation of hydrophilic CeO2 NPs in polyamide (PA) selective layers via interfacial polymerization (IP). EDX, XPS, SEM, AFM, contact angle and zeta potential were used to examine the property and morphology of the prepared membranes. CeO2 NPs were successfully embedded in the PA network, which endowed the TFN membranes with rougher surfaces and thinner PA layers. The TFN membranes were fabricated with different CeO2 NPs contents (0, 50, 100, 150, 200, 400 mg/L). With increasing CeO2 NPs loading amount, the hydrophilicity improved from 85.4° to 65.7° and the surface charge declined from -19.4 to -34.2 mV. These characteristics contributed to a 50% enhancement in water flux of TFN-CeO2100 membrane (containing 100 mg/L of CeO2 NPs) without compromise the NaCl rejection (98%). Moreover, CeO2 embedded membrane exhibited an enhanced fouling resistance property through preventing the adhesion of hydrophobic foultants. This study demonstrated the desirable applicability of CeO2 NPs in synthesizing novel TFN membranes for desalination application.
Collapse
Affiliation(s)
- Yang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, Shandong, PR China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, Shandong, PR China.
| | - Shuya Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, Shandong, PR China
| | - Bo Jin
- University of Adelaide, School of Chemical Engineering, Adelaide, SA, 5005, Australia
| | - Qinyan Yue
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, Shandong, PR China
| | - Zhining Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, Shandong, PR China.
| |
Collapse
|
33
|
Ahmad AL, Otitoju TA, Ooi BS. Optimization of a high performance 3-aminopropyltriethoxysilane-silica impregnated polyethersulfone membrane using response surface methodology for ultrafiltration of synthetic oil-water emulsion. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.08.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|