1
|
Lee MT. Functionalized Triblock Copolymers with Tapered Design for Anion Exchange Membrane Fuel Cells. Polymers (Basel) 2024; 16:2382. [PMID: 39204600 PMCID: PMC11359524 DOI: 10.3390/polym16162382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Triblock copolymers such as styrene-b-(ethylene-co-butylene)-b-styrene (SEBS) have been widely used as an anion exchange membrane for fuel cells due to their phase separation properties. However, modifying the polymer architecture for optimized membrane properties is still challenging. This research develops a strategy to control the membrane morphology based on quaternized SEBS (SEBS-Q) by dual-tapering the interfacial block sequences. The structural and transport properties of SEBS-Q with various tapering styles at different hydration levels are systematically investigated by coarse-grained molecular simulations. The results show that the introduction of the tapered regions induces the formation of a bicontinuous water domain and promotes the diffusivity of the mobile components. The interplay between the solvation of the quaternary groups and the tapered fraction determines the conformation of polymer chains among the hydrophobic-hydrophilic subdomains. The strategy presented here provides a new path to fabricating fuel cell membranes with controlled microstructures.
Collapse
Affiliation(s)
- Ming-Tsung Lee
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| |
Collapse
|
2
|
Ma W, Tian L, Zhu Q, Zhang S, Wang F, Zhu H. Highly Hydrophilic Zirconia Composite Anion Exchange Membrane for Water Electrolysis and Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11849-11859. [PMID: 38411114 DOI: 10.1021/acsami.3c16283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
To prepare anion exchange membranes with high water electrolysis and single fuel cell performance, an inorganic-organic composite (IOC) strategy with click cross-linked membranes coated with different contents of hydrophilic polar nanozirconia is proposed to fabricate composite membranes (CM) PBP-SH-Zrx. The performance test results showed that the CM PBP-SH-Zr4 not only has good through-plane ionic conductivity (167.7 mS cm-1, 80 °C), but also exhibits satisfactory dimensional stability (SR 16.5%, WU 206.4%, 80 °C), especially demonstrating excellent alkaline stability with only 16% degradation (2 M NaOH for 2200 h). In water electrolysis, the "microgap" between the membrane and catalyst layer (solid-solid interface) is alleviated, and the membrane electrode assembly (MEA) interfacial compatibility (liquid-solid-solid interface) is enhanced. The CM PBP-SH-Zr4 showed the lowest charge transfer resistance (Rct, 0.037 Ω cm2) and a high current density of 2.5 A cm-2 at 2.2 V, while the voltage drop was 0.361 mV h-1 after 360 h of endurance (six start-stop cycles) at 60 °C and 500 mA cm-2, proving a good water electrolysis durability. Moreover, an acceptable peak power density of 0.464 W cm-2 at 80 °C is achieved in a H2/O2 fuel cell with a PBP-SH-Zr4-AEM. Therefore, the IOC strategy can enhance the membrane's comprehensive performance and interface compatibility of MEA and may promote the development of anion exchange membranes (AEMs) for water electrolysis and fuel cells.
Collapse
Affiliation(s)
- Wenli Ma
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lin Tian
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qingqing Zhu
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuhuan Zhang
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fanghui Wang
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hong Zhu
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
3
|
Roggi A, Guazzelli E, Resta C, Agonigi G, Filpi A, Martinelli E. Vinylbenzyl Chloride/Styrene-Grafted SBS Copolymers via TEMPO-Mediated Polymerization for the Fabrication of Anion Exchange Membranes for Water Electrolysis. Polymers (Basel) 2023; 15:polym15081826. [PMID: 37111973 PMCID: PMC10144011 DOI: 10.3390/polym15081826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
In this work, a commercial SBS was functionalized with the 2,2,6,6-tetramethylpiperidin-N-oxyl stable radical (TEMPO) via free-radical activation initiated with benzoyl peroxide (BPO). The obtained macroinitiator was used to graft both vinylbenzyl chloride (VBC) and styrene/VBC random copolymer chains from SBS to create g-VBC-x and g-VBC-x-co-Sty-z graft copolymers, respectively. The controlled nature of the polymerization as well as the use of a solvent allowed us to reduce the extent of the formation of the unwanted, non-grafted (co)polymer, thereby facilitating the graft copolymer's purification. The obtained graft copolymers were used to prepare films via solution casting using chloroform. The -CH2Cl functional groups of the VBC grafts were then quantitatively converted to -CH2(CH3)3N+ quaternary ammonium groups via reaction with trimethylamine directly on the films, and the films, therefore, were investigated as anion exchange membranes (AEMs) for potential application in a water electrolyzer (WE). The membranes were extensively characterized to assess their thermal, mechanical, and ex situ electrochemical properties. They generally presented ionic conductivity comparable to or higher than that of a commercial benchmark as well as higher water uptake and hydrogen permeability. Interestingly, the styrene/VBC-grafted copolymer was found to be more mechanically resistant than the corresponding graft copolymer not containing the styrene component. For this reason, the copolymer g-VBC-5-co-Sty-16-Q with the best balance of mechanical, water uptake, and electrochemical properties was selected for a single-cell test in an AEM-WE.
Collapse
Affiliation(s)
- Andrea Roggi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56126 Pisa, Italy
| | - Elisa Guazzelli
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56126 Pisa, Italy
| | - Claudio Resta
- Enapter s.r.l., Crespina-Lorenzana (Pisa), 56040 Pisa, Italy
| | | | - Antonio Filpi
- Enapter s.r.l., Crespina-Lorenzana (Pisa), 56040 Pisa, Italy
| | - Elisa Martinelli
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56126 Pisa, Italy
| |
Collapse
|
4
|
Clemens AL, Jayathilake BS, Karnes JJ, Schwartz JJ, Baker SE, Duoss EB, Oakdale JS. Tuning Alkaline Anion Exchange Membranes through Crosslinking: A Review of Synthetic Strategies and Property Relationships. Polymers (Basel) 2023; 15:polym15061534. [PMID: 36987313 PMCID: PMC10051716 DOI: 10.3390/polym15061534] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023] Open
Abstract
Alkaline anion exchange membranes (AAEMs) are an enabling component for next-generation electrochemical devices, including alkaline fuel cells, water and CO2 electrolyzers, and flow batteries. While commercial systems, notably fuel cells, have traditionally relied on proton-exchange membranes, hydroxide-ion conducting AAEMs hold promise as a method to reduce cost-per-device by enabling the use of non-platinum group electrodes and cell components. AAEMs have undergone significant material development over the past two decades; however, challenges remain in the areas of durability, water management, high temperature performance, and selectivity. In this review, we survey crosslinking as a tool capable of tuning AAEM properties. While crosslinking implementations vary, they generally result in reduced water uptake and increased transport selectivity and alkaline stability. We survey synthetic methodologies for incorporating crosslinks during AAEM fabrication and highlight necessary precautions for each approach.
Collapse
Affiliation(s)
- Auston L. Clemens
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
- Correspondence: (A.L.C.); (J.S.O.)
| | | | - John J. Karnes
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Johanna J. Schwartz
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Sarah E. Baker
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Eric B. Duoss
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - James S. Oakdale
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
- Correspondence: (A.L.C.); (J.S.O.)
| |
Collapse
|
5
|
Liu R, Nie Y, Chen J, Shen C, Gao S. Anion exchange membranes based on poly (styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene) grafted poly (2,6‐dimethyl‐1,4‐phenylene oxide). J Appl Polym Sci 2022. [DOI: 10.1002/app.53579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Rui Liu
- School of Materials Science and Engineering Wuhan University of Technology Wuhan People's Republic of China
| | - Yiwen Nie
- School of Materials Science and Engineering Wuhan University of Technology Wuhan People's Republic of China
| | - Junjie Chen
- School of Materials Science and Engineering Wuhan University of Technology Wuhan People's Republic of China
| | - Chunhui Shen
- School of Materials Science and Engineering Wuhan University of Technology Wuhan People's Republic of China
| | - Shanjun Gao
- School of Materials Science and Engineering Wuhan University of Technology Wuhan People's Republic of China
| |
Collapse
|
6
|
Min K, Lee Y, Choi Y, Kwon OJ, Kim TH. High-performance anion exchange membranes achieved by crosslinking two aryl ether-free polymers: poly(bibenzyl N-methyl piperidine) and SEBS. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
7
|
Motoishi Y, Tanaka N, Fujigaya T. Postmodification of highly delocalized cations in an azide-based polymer via copper-catalyzed cycloaddition for anion exchange membranes. Polym J 2022. [DOI: 10.1038/s41428-022-00730-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Zhao Z, Zhang M, Du W, Xiao Y, Yang Z, Dong D, Zhang X, Fan M. Strong and Flexible High-Performance Anion Exchange Membranes with Long-Distance Interconnected Ion Transport Channels for Alkaline Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38132-38143. [PMID: 35971597 DOI: 10.1021/acsami.2c05872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Anion exchange membrane fuel cells (AEMFCs), which operate on a variety of green fuels, can achieve high power without emitting greenhouse gases. However, the lack of high ionic conductivity and long-term durability of anion-exchange membranes (AEMs) as their key components is a major obstacle hindering the commercial application of AEMFCs. Here, a series of homogeneous semi-interpenetrating network (semi-IPN) AEMs formed by cross-linking a copolymer of styrene (St) and 4-vinylbenzyl chloride (VBC) with branched polyethylenimine (BPEI) were designed. The pure carbon copolymer skeleton without sulfone/ether bonds accompanied by the semi-IPN endows the AEMs with excellent chemical stability. Moreover, the cross-linking effect of flexible BPEI chains is supposed to promote the "strong-flexible" mechanical properties, while the presence of multiquaternary ammonium groups can boost the formation of microphase separation, thereby enhancing the ionic conductivity of these AEMs. Consequently, the optimized (S1V1)3Q AEM exhibits an excellent hydroxide conductivity of 106 mS cm-1 at 80 °C, as well as more than 81% residual conductivity after soaking in 1 M NaOH at 60 °C for 720 h. Furthermore, the H2/O2 fuel cell assembled with (S1V1)3Q AEM delivers a peak power density of 150.2 mW cm-2 at 60 °C and 40% relative humidity. All results indicate that the approach of combining a pure carbon backbone polymer with a semi-IPN structure may be a viable strategy for fabricating AEMs that can be used in AEMFCs for long-term applications.
Collapse
Affiliation(s)
- Zhixin Zhao
- Polymer Research Institute, Sichuan University, Chengdu 610065, People's Republic of China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Minghua Zhang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Wenhao Du
- Polymer Research Institute, Sichuan University, Chengdu 610065, People's Republic of China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Yafei Xiao
- Polymer Research Institute, Sichuan University, Chengdu 610065, People's Republic of China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Zhaojie Yang
- Polymer Research Institute, Sichuan University, Chengdu 610065, People's Republic of China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Dawei Dong
- Polymer Research Institute, Sichuan University, Chengdu 610065, People's Republic of China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Xi Zhang
- Polymer Research Institute, Sichuan University, Chengdu 610065, People's Republic of China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Minmin Fan
- Polymer Research Institute, Sichuan University, Chengdu 610065, People's Republic of China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| |
Collapse
|
9
|
Design, synthesis and characterization of SEBS anion exchange membranes with ultrahigh dimensional stability. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03115-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
Wang F, Cui Y, Sang J, Zhang H, Zhu H. Cross‐linked of poly(biphenyl pyridine) and poly(styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene) grafted with double cations for anion exchange membrane. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139770] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Sang J, Yang L, Li Z, Wang F, Wang Z, Zhu H. Comb-shaped SEBS-based anion exchange membranes with obvious microphase separation morphology. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Diamine crosslinked anion exchange membranes based on poly(vinyl benzyl methylpyrrolidinium) for alkaline water electrolysis. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119418] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Tang W, Yang Y, Liu X, Dong J, Li H, Yang J. Long side-chain quaternary ammonium group functionalized polybenzimidazole based anion exchange membranes and their applications. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138919] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Synergy effects of hindered phenol and diphosphite antioxidants on promoting alkali resistance of quaternary ammonium functionalized poly(4-vinylbenzyl chloride-styrene) anion exchange membranes. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138249] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Shi Y, Meng F, Zhao Z, Liu W, Zhang C. Hybrid anion exchange membranes with adjustable ion transport channels designed by compounding
SEBS
and homo‐polystyrene. J Appl Polym Sci 2021. [DOI: 10.1002/app.50540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yue Shi
- State Key Laboratory of Fine Chemicals School of Chemical Engineering, Dalian University of Technology Dalian China
| | - Fanzhi Meng
- State Key Laboratory of Fine Chemicals School of Chemical Engineering, Dalian University of Technology Dalian China
| | - Zhongfu Zhao
- State Key Laboratory of Fine Chemicals School of Chemical Engineering, Dalian University of Technology Dalian China
| | - Wei Liu
- State Key Laboratory of Fine Chemicals School of Chemical Engineering, Dalian University of Technology Dalian China
| | - Chunqing Zhang
- State Key Laboratory of Fine Chemicals School of Chemical Engineering, Dalian University of Technology Dalian China
| |
Collapse
|
16
|
|
17
|
Li X, Yu H, Kang X, Chen G, Zhu M, Xu J. Effect of injection molding on structure and properties of poly(styrene‐ethylene‐butylene‐styrene) and its nanocomposite with functionalized montmorillonite. J Appl Polym Sci 2021. [DOI: 10.1002/app.49633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaoyan Li
- School of Material Science and Engineering University of Shanghai for Science and Technology Shanghai China
| | - Hui Yu
- School of Material Science and Engineering University of Shanghai for Science and Technology Shanghai China
| | - Xiong Kang
- School of Material Science and Engineering University of Shanghai for Science and Technology Shanghai China
| | - Gang Chen
- School of Material Science and Engineering University of Shanghai for Science and Technology Shanghai China
| | - Ming Zhu
- School of Material Science and Engineering University of Shanghai for Science and Technology Shanghai China
| | - Jianjun Xu
- Department Technology and Characterization DSM Materials Science Center Geleen The Netherlands
| |
Collapse
|
18
|
Li H, Dong J, Cao X, Ren X, Hao Z, Yang J. Diamine crossklinked anion exchange membranes based on poly(vinyl benzyl methylpyrrolidinium). POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123156] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Preparation of Alkaline Polyelectrolyte Membrane Based on Quaternary Ammonium Salt-Modified Cellulose and Its Application in Zn-Air Flexible Battery. Polymers (Basel) 2020; 13:polym13010009. [PMID: 33375109 PMCID: PMC7792967 DOI: 10.3390/polym13010009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 11/17/2022] Open
Abstract
In this study, a type of alkaline solid polyelectrolyte (ASPE) membrane was developed via the introduction of microcrystalline cellulose (MCC) and its modified product (QMCC) into the polyvinyl alcohol (PVA) matrix. In this process, green NaOH/urea-based solvent was used to achieve a good dispersion of MCC in the PVA matrix; meanwhile, the OH- groups in the NaOH/urea-based solvent provided an alkaline environment for good ion conductivity. Compared to the MCC-incorporated ASPE, further improved conductivity was achieved when the MCC was modified with quantitative quaternary ammonium salt. TGA showed that the addition of QMCC improved the water retention of the matrix, which was beneficial to the OH- conduction in the system. Compared to the control (50 mS cm-1), a maximum conductivity of 238 mS cm-1 was obtained after the incorporation of QMCC in the PVA matrix. Moreover, the tensile strength of the polymer electrolyte were also significantly increased with the addition of QMCC. Finally, this developed ASPE membrane was used in assembling a flexible Zn-air battery and showed a promising potential in the development of flexible electronic devices.
Collapse
|
20
|
Crosslinked Pore-Filling Anion Exchange Membrane Using the Cylindrical Centrifugal Force for Anion Exchange Membrane Fuel Cell System. Polymers (Basel) 2020; 12:polym12112758. [PMID: 33238409 PMCID: PMC7700159 DOI: 10.3390/polym12112758] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 11/21/2022] Open
Abstract
In this study, novel crosslinked pore-filling membranes were fabricated by using a centrifugal force from the cylindrical centrifugal machine. For preparing these crosslinked pore-filling membranes, the poly(phenylene oxide) containing long side chains to improve the water management (hydrophilic), porous polyethylene support (hydrophobic) and crosslinker based on the diamine were used. The resulting membranes showed a uniform thickness, flexible and transparent because it is well filled. Among them, PF-XAc-PPO70_25 showed good mechanical properties (56.1 MPa of tensile strength and 781.0 MPa of Young’s modulus) and dimensional stability due to the support. In addition, it has a high hydroxide conductivity (87.1 mS/cm at 80 °C) and low area specific resistance (0.040 Ω·cm2), at the same time showing stable alkaline stability. These data outperformed the commercial FAA-3-50 membrane sold by Fumatech in Germany. Based on the optimized properties, membrane electrode assembly using XAc-PPO70_25 revealed excellent cell performance (maximum power density: 239 mW/cm2 at 0.49 V) than those of commercial FAA-3-50 Fumatech anion exchange membrane (maximum power density: 212 mW/cm2 at 0.54 V) under the operating condition of 60 °C and 100% RH as well. It was expected that PF-XAc-PPO70_25 could be an excellent candidate based on the results superior to those of commercial membranes in these essential characteristics of fuel cells.
Collapse
|
21
|
Lu W, Yang Z, Huang H, Wei F, Li W, Yu Y, Gao Y, Zhou Y, Zhang G. Piperidinium-Functionalized Poly(Vinylbenzyl Chloride) Cross-linked by Polybenzimidazole as an Anion Exchange Membrane with a Continuous Ionic Transport Pathway. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04548] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wangting Lu
- Institute for Interdisciplinary Research, Jianghan University, No. 8, Sanjiaohu Road, Wuhan 430056, P. R. China
| | - Zhenzhen Yang
- School of Chemical and Environmental Engineering, Jianghan University, No. 8, Sanjiaohu Road, Wuhan 430056, P. R. China
| | - He Huang
- Fuel Cell System and Engineering Research Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Feng Wei
- Institute for Interdisciplinary Research, Jianghan University, No. 8, Sanjiaohu Road, Wuhan 430056, P. R. China
| | - Wenhui Li
- Institute for Interdisciplinary Research, Jianghan University, No. 8, Sanjiaohu Road, Wuhan 430056, P. R. China
| | - Yanhua Yu
- Institute for Interdisciplinary Research, Jianghan University, No. 8, Sanjiaohu Road, Wuhan 430056, P. R. China
| | - Yangguang Gao
- Institute for Interdisciplinary Research, Jianghan University, No. 8, Sanjiaohu Road, Wuhan 430056, P. R. China
| | - Youhua Zhou
- Institute for Interdisciplinary Research, Jianghan University, No. 8, Sanjiaohu Road, Wuhan 430056, P. R. China
| | - Geng Zhang
- Department of Chemistry, College of Science, Huazhong Agricultural University, No.1, Shizishan Street, Wuhan 430070, P. R. China
| |
Collapse
|
22
|
Li Z, Li C, Long C, Sang J, Tian L, Wang F, Wang Z, Zhu H. Elastic and durable multi‐cation‐crosslinked anion exchange membrane based on poly(styrene‐
b
‐(ethylene‐
co
‐butylene)‐
b
‐styrene). JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200290] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ziming Li
- State Key Laboratory of Chemical Resource Engineering, College of ChemistryBeijing University of Chemical Technology Beijing China
| | - Conghui Li
- State Key Laboratory of Chemical Resource Engineering, College of ChemistryBeijing University of Chemical Technology Beijing China
| | - Chuan Long
- State Key Laboratory of Chemical Resource Engineering, College of ChemistryBeijing University of Chemical Technology Beijing China
| | - Jing Sang
- State Key Laboratory of Chemical Resource Engineering, College of ChemistryBeijing University of Chemical Technology Beijing China
| | - Lin Tian
- State Key Laboratory of Chemical Resource Engineering, College of ChemistryBeijing University of Chemical Technology Beijing China
| | - Fanghui Wang
- State Key Laboratory of Chemical Resource Engineering, College of ChemistryBeijing University of Chemical Technology Beijing China
| | - Zhihua Wang
- State Key Laboratory of Chemical Resource Engineering, College of ChemistryBeijing University of Chemical Technology Beijing China
| | - Hong Zhu
- State Key Laboratory of Chemical Resource Engineering, College of ChemistryBeijing University of Chemical Technology Beijing China
| |
Collapse
|
23
|
Ma L, Qaisrani NA, Hussain M, Li L, Jia Y, Ma S, Zhou R, Bai L, He G, Zhang F. Cyclodextrin modified, multication cross-linked high performance anion exchange membranes for fuel cell application. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118190] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Zhang S, Wang Y, Liu P, Wang X, Zhu X. Photo-cross-linked poly(N-allylisatin biphenyl)-co-poly(alkylene biphenyl)s with pendant N-cyclic quaternary ammonium as anion exchange membranes for direct borohydride/hydrogen peroxide fuel cells. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104576] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Hydrophobic-hydrophilic comb-type quaternary ammonium-functionalized SEBS copolymers for high performance anion exchange membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117829] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
26
|
Olefin metathesis-crosslinked, bulky imidazolium-based anion exchange membranes with excellent base stability and mechanical properties. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117793] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Lee SB, Min CM, Jang J, Lee JS. Enhanced conductivity and stability of anion exchange membranes depending on chain lengths with crosslinking based on poly(phenylene oxide). POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122331] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
28
|
|
29
|
Zhang S, Wang Y, Gao X, Liu P, Wang X, Zhu X. Enhanced conductivity and stability via comb-shaped polymer anion exchange membrane incorporated with porous polymeric nanospheres. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117750] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
|
31
|
Chen N, Lu C, Li Y, Long C, Li Z, Zhu H. Tunable multi-cations-crosslinked poly(arylene piperidinium)-based alkaline membranes with high ion conductivity and durability. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.05.044] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
Zhang S, Zhu X, Jin C, Hu H. Pyridinium-functionalized crosslinked anion exchange membrane based on multication side chain tethered elastomeric triblock poly(styrene-b-(ethylene-co-butylene)-b-styrene). REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.02.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|