1
|
Fan Z, Chen X, Shi J, Nie H, Zhang X, Zhou X, Xie X, Xue Z. Functionalized Separators Boosting Electrochemical Performances for Lithium Batteries. NANO-MICRO LETTERS 2025; 17:128. [PMID: 39907892 PMCID: PMC11799521 DOI: 10.1007/s40820-024-01596-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/08/2024] [Indexed: 02/06/2025]
Abstract
The growing demands for energy storage systems, electric vehicles, and portable electronics have significantly pushed forward the need for safe and reliable lithium batteries. It is essential to design functional separators with improved mechanical and electrochemical characteristics. This review covers the improved mechanical and electrochemical performances as well as the advancements made in the design of separators utilizing a variety of techniques. In terms of electrolyte wettability and adhesion of the coating materials, we provide an overview of the current status of research on coated separators, in situ modified separators, and grafting modified separators, and elaborate additional performance parameters of interest. The characteristics of inorganics coated separators, organic framework coated separators and inorganic-organic coated separators from different fabrication methods are compared. Future directions regarding new modified materials, manufacturing process, quantitative analysis of adhesion and so on are proposed toward next-generation advanced lithium batteries.
Collapse
Affiliation(s)
- Zixin Fan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Xiaoyu Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Jingjing Shi
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
- Shenzhen Senior Technology Material Co. Ltd., Shenzhen, 518000, People's Republic of China
| | - Hui Nie
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
| | - Xiaoming Zhang
- Shenzhen Senior Technology Material Co. Ltd., Shenzhen, 518000, People's Republic of China
| | - Xingping Zhou
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
| | - Xiaolin Xie
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Zhigang Xue
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
2
|
Lee H, Lee D. Composite Membrane Containing Titania Nanofibers for Battery Separators Used in Lithium-Ion Batteries. MEMBRANES 2023; 13:membranes13050499. [PMID: 37233560 DOI: 10.3390/membranes13050499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/20/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023]
Abstract
In order to improve the electrochemical performance of lithium-ion batteries, a new kind of composite membrane made using inorganic nanofibers has been developed via electrospinning and the solvent-nonsolvent exchange process. The resultant membranes present free-standing and flexible properties and have a continuous network structure of inorganic nanofibers within polymer coatings. Results show that polymer-coated inorganic nanofiber membranes have better wettability and thermal stability than those of a commercial membrane separator. The presence of inorganic nanofibers in the polymer matrix enhances the electrochemical properties of battery separators. This results in lower interfacial resistance and higher ionic conductivity, leading to the good discharge capacity and cycling performance of battery cells assembled using polymer-coated inorganic nanofiber membranes. This provides a promising solution via which to improve conventional battery separators for the high performance of lithium-ion batteries.
Collapse
Affiliation(s)
- Hun Lee
- Applied Chemistry, Division of Energy & Optical Technology Convergence, College of Engineering, Cheongju University, Cheongju 28503, Republic of Korea
| | - Deokwoo Lee
- Department of Computer Engineering, Keimyung University, Daegu 42601, Republic of Korea
| |
Collapse
|
3
|
Jiang FN, Cheng XB, Yang SJ, Xie J, Yuan H, Liu L, Huang JQ, Zhang Q. Thermoresponsive Electrolytes for Safe Lithium-Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209114. [PMID: 36609806 DOI: 10.1002/adma.202209114] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Exploring advanced strategies in alleviating the thermal runaway of lithium-metal batteries (LMBs) is critically essential. Herein, a novel electrolyte system with thermoresponsive characteristics is designed to largely enhance the thermal safety of 1.0 Ah LMBs. Specifically, vinyl carbonate (VC) with azodiisobutyronitrile is introduced as a thermoresponsive solvent to boost the thermal stability of both the solid electrolyte interphase (SEI) and electrolyte. First, abundant poly(VC) is formed in SEI with thermoresponsive electrolyte, which is more thermally stable against lithium hexafluorophosphate compared to the inorganic components widely acquired in routine electrolyte. This increases the critical temperature for thermal safety (the beginning temperature of obvious self-heating) from 71.5 to 137.4 °C. The remained VC solvents can be polymerized into poly(VC) as the battery temperature abnormally increases. The poly(VC) can not only afford as a barrier to prevent the direct contact between electrodes, but also immobilize the free liquid solvents, thereby reducing the exothermic reactions between electrodes and electrolytes. Consequently, the internal-short-circuit temperature and "ignition point" temperature (the starting temperature of thermal runaway) of LMBs are largely increased from 126.3 and 100.3 °C to 176.5 and 203.6 °C. This work provides novel insights for pursuing thermally stable LMBs with the addition of various thermoresponsive solvents in commercial electrolytes.
Collapse
Affiliation(s)
- Feng-Ni Jiang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China
| | - Xin-Bing Cheng
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Shi-Jie Yang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Jin Xie
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Hong Yuan
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Lei Liu
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China
| | - Jia-Qi Huang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
4
|
Gao T, Tian P, Xu Q, Pang H, Ye J, Ning G. Class of Boehmite/Polyacrylonitrile Membranes with Different Thermal Shutdown Temperatures for High-Performance Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2112-2123. [PMID: 36577088 DOI: 10.1021/acsami.2c18058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nowadays, lithium-ion batteries are required to have a higher energy density and safety because of their wide applications. Current commercial separators have poor wettability and thermal stability, which significantly impact the performance and safety of batteries. In this study, a class of boehmite particles with different grain sizes was synthesized by adjusting hydrothermal temperatures and used to fabricate boehmite/polyacrylonitrile (BM/PAN) membranes. All of these BM/PAN membranes can not only maintain excellent thermal dimensional stability above 200 °C but also have good electrolyte wettability and high porosity. More interestingly, the BM/PAN membranes' thermal shutdown temperature can be adjusted by changing the grain size of boehmite particles. The lithium-ion batteries assembled with BM/PAN separators exhibit different thermal stability phenomena at 150 °C and have excellent rate performance and cycle stability at room temperature. After 120 cycles at 1C, the LiFePO4 half-cell assembled by the best BM/PAN separator has almost unchanged discharge capacity, whereas the capacity retention of Celgard 2325 is only about 85%. Meanwhile, the NCM523 half-cell assembled with the best BM/PAN separator shows superb cycle stability after 500 cycles at 8C, with a capacity retention of 79% compared with 56% for Celgard 2325.
Collapse
Affiliation(s)
- Tingting Gao
- Dalian University of Technology-Baohong Technology Lithium Battery New Materials Joint Research Center, School of Chemical Engineering, Dalian University of Technology, Dalian116024, Liaoning, P. R. China
| | - Peng Tian
- Dalian University of Technology-Baohong Technology Lithium Battery New Materials Joint Research Center, School of Chemical Engineering, Dalian University of Technology, Dalian116024, Liaoning, P. R. China
- Innovation Institute, Jiangxi Baohtch Nano Science Co Ltd, Yichun336000, Jiangxi, P. R. China
| | - Qianjin Xu
- Innovation Institute, Jiangxi Baohtch Nano Science Co Ltd, Yichun336000, Jiangxi, P. R. China
| | - Hongchang Pang
- Dalian University of Technology-Baohong Technology Lithium Battery New Materials Joint Research Center, School of Chemical Engineering, Dalian University of Technology, Dalian116024, Liaoning, P. R. China
| | - Junwei Ye
- Dalian University of Technology-Baohong Technology Lithium Battery New Materials Joint Research Center, School of Chemical Engineering, Dalian University of Technology, Dalian116024, Liaoning, P. R. China
| | - Guiling Ning
- Dalian University of Technology-Baohong Technology Lithium Battery New Materials Joint Research Center, School of Chemical Engineering, Dalian University of Technology, Dalian116024, Liaoning, P. R. China
| |
Collapse
|
5
|
Xie X, Sheng L, Xu R, Gao X, Yang L, Gao Y, Bai Y, Liu G, Dong H, Fan X, Wang T, Huang X, He J. In situ mineralized Ca3(PO4)2 inorganic coating modified polyethylene separator for high-performance lithium-ion batteries. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Li Z, Aboalsaud AM, Liu X, Thankamony RL, Chen IC, Li Y, Lai Z. Scalable fabrication of Solvent-Free composite solid electrolyte by a continuous Thermal-Extrusion process. J Colloid Interface Sci 2022; 628:64-71. [PMID: 35908432 DOI: 10.1016/j.jcis.2022.07.099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/09/2022] [Accepted: 07/17/2022] [Indexed: 10/17/2022]
Abstract
Composite solid-state electrolytes (CSEs) are regarded as a promising alternative for the next-generation lithium-ion batteries because they integrate the advantages of inorganic electrolytes and organic electrolytes. However, there are two issues faced by current CSEs: 1) a green and feasible approach to prepare CSEs in large scales is desired; and 2) the trace solvents, remaining from the preparation processes, lead to some serious concerns, such as safety hazard issues, electrolyte-electrode interfacial issues, and reduced durability of batteries. Here, a continuous thermal-extrusion process is presented to realize the large-scale fabrication of solvent-free CSE. A 38.7-meter CSE membrane was prepared as a demonstration in this study. Thanks to the elimination of residual solvents, the electrolyte membrane exhibited a high tensile strength of 3.85 MPa, satisfactory lithium transference number (0.495), and excellent electrochemical stability (5.15 V). Excellent long-term stability was demonstrated by operating the symmetric lithium cell at a stable current density of 0.1 mA cm-2 for over 3700 h. Solvent-free CSE lithium metal batteries showed a discharge capacity of 155.7 - 25.17 mAh g-1 at 0.1 - 2.0C, and the discharge capacity remained 78.1% after testing for 380cycles.
Collapse
Affiliation(s)
- Zhen Li
- Advanced Membranes and Porous Materials Centre, Chemical Engineering Program, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Ammar M Aboalsaud
- Advanced Membranes and Porous Materials Centre, Chemical Engineering Program, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Xiaowei Liu
- Advanced Membranes and Porous Materials Centre, Chemical Engineering Program, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Roshni L Thankamony
- Advanced Membranes and Porous Materials Centre, Chemical Engineering Program, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - I-Chun Chen
- Advanced Membranes and Porous Materials Centre, Chemical Engineering Program, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Yangxing Li
- Watt Research Lab, Central Research Institute, Huawei Technologies Co. Ltd., Bantian, Longgang District, Shenzhen 518129, China
| | - Zhiping Lai
- Advanced Membranes and Porous Materials Centre, Chemical Engineering Program, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
7
|
Wang X, Cui W, Lin Z, Piao J, Qu X, Deng W, Gong G. Polyethylene porous microsphere coated coaxial fiber composite membrane for high safety lithium‐ion battery. J Appl Polym Sci 2022. [DOI: 10.1002/app.52184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xu Wang
- School of Material Science and Chemical Engineering Harbin University of Science and Technology Harbin China
| | - Weiwei Cui
- School of Material Science and Chemical Engineering Harbin University of Science and Technology Harbin China
| | - Zeyu Lin
- School of Material Science and Chemical Engineering Harbin University of Science and Technology Harbin China
| | - Jingxian Piao
- School of Material Science and Chemical Engineering Harbin University of Science and Technology Harbin China
| | - Xinyu Qu
- School of Material Science and Chemical Engineering Harbin University of Science and Technology Harbin China
| | - Wei Deng
- School of Material Science and Chemical Engineering Harbin University of Science and Technology Harbin China
| | - Guifen Gong
- School of Material Science and Chemical Engineering Harbin University of Science and Technology Harbin China
| |
Collapse
|
8
|
Kim SH, Kang SW. Thermally stable and highly porous separator based on cellulose acetate by glycolic acid. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Li M, Chen Z. Thermo‐responsive polymers for thermal regulation in electrochemical energy devices. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mingqian Li
- Department of NanoEngineering University of California San Diego La Jolla California USA
- Program of Chemical Engineering University of California San Diego La Jolla California USA
| | - Zheng Chen
- Department of NanoEngineering University of California San Diego La Jolla California USA
- Program of Chemical Engineering University of California San Diego La Jolla California USA
- Program of Materials Science and Engineering University of California San Diego La Jolla California USA
- Sustainable Power & Energy Center (SPEC) University of California San Diego La Jolla California USA
| |
Collapse
|
10
|
Feroze Gooty Saleha W, Nalajala N, Neergat M. Polyaryletherketone in energy conversion and storage devices – a highly tailorable material with versatile properties. POLYM INT 2021. [DOI: 10.1002/pi.6233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wasim Feroze Gooty Saleha
- Advanced Polymer Design & Development Research Laboratory (APDDRL), School for Advanced Research in Petrochemicals (SARP) Central Institute of Petrochemical Engineering and Technology (CIPET) Bengaluru India
| | | | - Manoj Neergat
- Department of Energy Science and Engineering (DESE) Indian Institute of Technology Bombay (IITB) Mumbai India
| |
Collapse
|
11
|
Su M, Huang G, Wang S, Wang Y, Wang H. High safety separators for rechargeable lithium batteries. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1011-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Shin SC, Kim J, Modigunta JKR, Murali G, Park S, Lee S, Lee H, Park SY, In I. Bio-mimicking organic-inorganic hybrid ladder-like polysilsesquioxanes as a surface modifier for polyethylene separator in lithium-ion batteries. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118886] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Abstract
Lithium-ion batteries (LiBs) are a proven technology for energy storage systems, mobile electronics, power tools, aerospace, automotive and maritime applications. LiBs have attracted interest from academia and industry due to their high power and energy densities compared to other battery technologies. Despite the extensive usage of LiBs, there is a substantial fire risk associated with their use which is a concern, especially when utilised in electric vehicles, aeroplanes, and submarines. This review presents LiB hazards, techniques for mitigating risks, the suppression of LiB fires and identification of shortcomings for future improvement. Water is identified as an efficient cooling and suppressing agent and water mist is considered the most promising technique to extinguish LiB fires. In the initial stages, the present review covers some relevant information regarding the material constitution and configuration of the cell assemblies, and phenomenological evolution of the thermal runaway reactions, which in turn can potentially lead to flaming combustion of cells and battery assemblies. This is followed by short descriptions of various active fire control agents to suppress fires involving LiBs in general, and water as a superior extinguishing medium in particular. In the latter parts of the review, the phenomena associated with water mist suppression of LiB fires are comprehensively reviewed.
Collapse
|
14
|
Jeong H, Kim S, Gil M, Song S, Kim TH, Lee KJ. Preparation of Poly-1-butene Nanofiber Mat and Its Application as Shutdown Layer of Next Generation Lithium Ion Battery. Polymers (Basel) 2020; 12:polym12102267. [PMID: 33019740 PMCID: PMC7601798 DOI: 10.3390/polym12102267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 11/16/2022] Open
Abstract
Nonwoven nanofiber webs from polyolefin show great potential in various fields such as nanofilters, high performance membranes and separators in lithium ion batteries (LiB). Although nonwoven microfiber webs can be obtained by the well-established melt-blown method, it is relatively difficult to produce nonwoven nanofiber web using polyolefin (polyethylene and polypropylene). There have been several reports on the preparation of polyolefin nanofibers by melt-electrospinning, although this approach presents several intrinsic disadvantages, i.e., high processing costs, the requirement of complex equipment, and poor control over pore size or fiber diameter. Solution-based electrospinning has the potential to overcome the drawbacks of melt-electrospinning, but the solubility of most polyolefin is poor. In this study, we found that poly-1-butene, a member of the poly(alpha-olefin) family, can be used in the electrospinning process. We set the concentration of the polymeric solution for electrospinning at 0.65–1.7 g/mL. Here, we report on the fabrication of nonwoven fiber webs composed of poly-1-butene and their copolymers. The diameter of the nonwoven fiber mat was 0.2–0.4 μm, which can be applicable for shutdown layer. As a representative application, we prepared a poly-1-butene nanofiber separator with an appropriate pore size by electrospinning for use as the shut-down layer of a next-generation LiB. The PB-based nanofiber mat provided shutdown ability at around 100 to 120 °C.
Collapse
Affiliation(s)
- Hanjin Jeong
- Department of Chemical Engineering and Applied Chemistry, College of Engineering, Chungnam National University, 99 Daehak-ro (st), Yuseong-gu, Daejeon 305-764, Korea; (H.J.); (M.G.)
| | - Sohee Kim
- Center for Membranes, Korea Research Institute of Chemical Technology, 141, Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea;
- Department of Chemical and Biological Engineering, Seoul National University, Seoul 151-742, Korea
| | - Manjae Gil
- Department of Chemical Engineering and Applied Chemistry, College of Engineering, Chungnam National University, 99 Daehak-ro (st), Yuseong-gu, Daejeon 305-764, Korea; (H.J.); (M.G.)
| | - Sanghoon Song
- Institute of Technology, Ylemtechnology, 419-13, Sandanjungang-ro, Yeosu-si, Jeollanam-do 59613, Korea;
| | - Tae-Ho Kim
- Center for Membranes, Korea Research Institute of Chemical Technology, 141, Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea;
- Correspondence: (T.-H.K.); (K.J.L.)
| | - Kyung Jin Lee
- Department of Chemical Engineering and Applied Chemistry, College of Engineering, Chungnam National University, 99 Daehak-ro (st), Yuseong-gu, Daejeon 305-764, Korea; (H.J.); (M.G.)
- Correspondence: (T.-H.K.); (K.J.L.)
| |
Collapse
|
15
|
Chen Y, Qiu L, Ma X, Dong L, Jin Z, Xia G, Du P, Xiong J. Electrospun cellulose polymer nanofiber membrane with flame resistance properties for lithium-ion batteries. Carbohydr Polym 2020; 234:115907. [DOI: 10.1016/j.carbpol.2020.115907] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 01/20/2023]
|
16
|
A pore-controllable polyamine (PAI) layer-coated polyolefin (PE) separator for pouch lithium-ion batteries with enhanced safety. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-019-04488-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Zhang H, An X, Liu L, Lu Z, Liu H, Ni Y. Preparation of cellulose-based lithium ion battery membrane enhanced with alkali-treated polysulfonamide fibers and cellulose nanofibers. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117346] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Lithium-polymer battery with ionic liquid tethered nanoparticles incorporated P(VDF-HFP) nanocomposite gel polymer electrolyte. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.07.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
Cai H, Yang G, Meng Z, Yin X, Zhang H, Tang H. Water-Dispersed Poly(p-Phenylene Terephthamide) Boosting Nano-Al 2O 3-Coated Polyethylene Separator with Enhanced Thermal Stability and Ion Diffusion for Lithium-Ion Batteries. Polymers (Basel) 2019; 11:E1362. [PMID: 31426595 PMCID: PMC6723745 DOI: 10.3390/polym11081362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/11/2019] [Accepted: 07/24/2019] [Indexed: 11/17/2022] Open
Abstract
Polyethylene (PE) membranes coated with nano-Al2O3 have been improved with water-dispersed poly(p-phenylene terephthamide) (PPTA). From the scanning electron microscope (SEM) images, it can be seen that a layer with a honeycombed porous structure is formed on the membrane. The thus-formed composite separator imbibed with the electrolyte solution has an ionic conductivity of 0.474 mS/cm with an electrolyte uptake of 335%. At 175 °C, the assembled battery from the synthesized composite separator explodes at 3200 s, which is five times longer than the battery assembled from an Al2O3-coated polyethylene (PE) membrane. The open circuit voltage of the assembled battery using a composite separator drops to zero at 600 s at an operating temperature of 185 °C, while the explosion of the battery with Al2O3-coated PE occurs at 250 s. More importantly, the interface resistance of the cell assembled from the composite separator decreases to 65 Ω. Hence, as the discharge rate increases from 0.2 to 1.0 C, the discharge capacity of the battery using composite separator retains 93.5%. Under 0.5 C, the discharge capacity retention remains 99.4% of its initial discharge capacity after 50 charge-discharge cycles. The results described here demonstrate that Al2O3/PPTA-coated polyethylene membranes have superior thermal stability and ion diffusion.
Collapse
Affiliation(s)
- Haopeng Cai
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.
| | - Guoping Yang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Zihan Meng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Xue Yin
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Haining Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Haolin Tang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
20
|
Oxidative crosslinking of copolyimides at sub-Tg temperatures to enhance resistance against CO2-induced plasticization. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Waqas M, Ali S, Feng C, Chen D, Han J, He W. Recent Development in Separators for High-Temperature Lithium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901689. [PMID: 31116914 DOI: 10.1002/smll.201901689] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/30/2019] [Indexed: 06/09/2023]
Abstract
Lithium-ion batteries (LIBs) are promising energy storage devices for integrating renewable resources and high power applications, owing to their high energy density, light weight, high flexibility, slow self-discharge rate, high rate charging capability, and long battery life. LIBs work efficiently at ambient temperatures, however, at high-temperatures, they cause serious issues due to the thermal fluctuation inside batteries during operation. The separator is a key component of batteries and is crucial for the sustainability of LIBs at high-temperatures. The high thermal stability with minimum thermal shrinkage and robust mechanical strength are the prime requirements along with high porosity, ionic conductivity, and electrolyte uptake for highly efficient high-temperature LIBs. This Review deals with the recent studies and developments in separator technologies for high-temperature LIBs with respect to their structural layered formation. The recent progress in monolayer and multilayer separators along with the developed preparation methodologies is discussed in detail. Future challenges and directions toward the advancement in separator technology are also discussed for achieving remarkable performance of separators in a high-temperature environment.
Collapse
Affiliation(s)
- Muhammad Waqas
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, and Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, P. R. China
- School of Physics, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, P. R. China
- Department of Electrical Engineering, Sukkur IBA University, Sukkur, 65200, Pakistan
| | - Shamshad Ali
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, and Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, P. R. China
- School of Physics, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, P. R. China
| | - Chao Feng
- School of Physics, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, P. R. China
| | - Dongjiang Chen
- School of Physics, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, P. R. China
| | - Jiecai Han
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, and Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, P. R. China
| | - Weidong He
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, and Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, P. R. China
- School of Physics, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, P. R. China
| |
Collapse
|
22
|
Polypropylene Separators with Robust Mussel-inspired Coatings for High Lithium-ion Battery Performances. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2310-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Zhang X, Li N, Hu Z, Yu J, Wang Y, Zhu J. Poly(p-phenylene terephthalamide) modified PE separators for lithium ion batteries. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.03.071] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Zhang L, Feng G, Li X, Cui S, Ying S, Feng X, Mi L, Chen W. Synergism of surface group transfer and in-situ growth of silica-aerogel induced high-performance modified polyacrylonitrile separator for lithium/sodium-ion batteries. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.02.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
25
|
Zirconia fiber membranes based on PVDF as high-safety separators for lithium-ion batteries using a papermaking method. J Solid State Electrochem 2018. [DOI: 10.1007/s10008-018-4132-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|