1
|
Wang X, Kong W, Zhai X, Wang Z, Epsztein R, Li X. Direct Quantification of Ion Partitioning and Diffusion Resistances in Reverse Osmosis Membranes via Electrochemical Impedance Spectroscopy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:11353-11364. [PMID: 40434163 DOI: 10.1021/acs.est.5c01683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
Polyamide (PA) reverse osmosis (RO) membranes are crucial for water desalination and purification, where salt ion transport is governed by partitioning and diffusion through the PA film. Despite extensive research, decoupling these two steps and quantifying their relative contributions remain challenging due to the lack of reliable characterization methods. Here, we develop a rapid, reproducible electrochemical impedance spectroscopy (EIS) protocol incorporating advanced electrical equivalent circuits to directly quantify partitioning and diffusion resistance. Its validity is verified through membrane filtration experiments and activation energy analysis. Our findings reveal that diffusion dominates ion transport resistance, with values 4.5 to 6.0 times higher than partitioning resistance across diverse monovalent cations. However, we discovered a critical concentration-dependent behavior where partitioning resistance becomes increasingly significant at lower electrolyte concentrations, eventually equaling diffusion resistance near 0.1 mM. We also uncovered that the anomalously low rejection of NH4+ of RO membranes stemmed from significantly reduced diffusion resistance, likely due to moderate hydrogen-bonding interactions with membrane pores or its tetrahedral geometry. This quantitative insight into transport resistance mechanisms establishes new design principles for next-generation RO membranes, enabling tailored strategies for applications ranging from high-salinity desalination to the removal of low-concentration micropollutants.
Collapse
Affiliation(s)
- Xueye Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wanting Kong
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaohu Zhai
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Razi Epsztein
- Faculty of Civil and Environmental Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Xuesong Li
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
2
|
Shaligram S, Shevate R, Paul S, Shaffer DL. Highly Permselective Contorted Polyamide Desalination Membranes with Enhanced Free Volume Fabricated by mLbL Assembly. ACS APPLIED MATERIALS & INTERFACES 2025; 17:9716-9727. [PMID: 39876064 DOI: 10.1021/acsami.4c14332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
The permeability-selectivity trade-off in polymeric desalination membranes limits the efficiency and increases the costs of reverse osmosis and nanofiltration systems. Ultrathin contorted polyamide films with enhanced free volume demonstrate an impressive 8-fold increase in water permeance while maintaining equivalent salt rejection compared to conventional polyamide membranes made with m-phenylenediamine and trimesoyl chloride monomers. The solution-based molecular layer-by-layer (mLbL) deposition technique employed for membrane fabrication sequentially reacts a shape-persistent contorted diamine monomer with a trimesoyl chloride monomer, forming highly cross-linked, dense polyamide networks while avoiding the kinetic and mass transfer limitations of traditional interfacial polymerization. The mLbL process allows precise nanoscale control over polyamide selective layer thickness, network structure, and surface roughness. The resulting controlled film thicknesses enable direct measurements of water and NaCl permeabilities. The permselectivities of contorted polyamide membranes surpass those of commercial desalination membranes and approach the reported polyamide upper bound. Solution-diffusion transport modeling indicates that this high permselectivity may be attributed to enhanced water transport pathways in the contorted polyamides that increase water diffusivity-permeability while maintaining high solute rejection through solubility-selectivity.
Collapse
Affiliation(s)
- Sayali Shaligram
- Civil and Environmental Engineering Department, University of Houston, 4226 Martin Luther King Blvd, Houston, Texas 77204, United States
| | - Rahul Shevate
- Civil and Environmental Engineering Department, University of Houston, 4226 Martin Luther King Blvd, Houston, Texas 77204, United States
| | - Siddhartha Paul
- Civil and Environmental Engineering Department, University of Houston, 4226 Martin Luther King Blvd, Houston, Texas 77204, United States
| | - Devin L Shaffer
- Civil and Environmental Engineering Department, University of Houston, 4226 Martin Luther King Blvd, Houston, Texas 77204, United States
| |
Collapse
|
3
|
Long L, Guo H, Zhang L, Gan Q, Wu C, Zhou S, Peng LE, Tang CY. Engraving Polyamide Layers by In Situ Self-Etchable CaCO 3 Nanoparticles Enhances Separation Properties and Antifouling Performance of Reverse Osmosis Membranes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6435-6443. [PMID: 38551393 DOI: 10.1021/acs.est.4c00164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Nanovoids within a polyamide layer play an important role in the separation performance of thin-film composite (TFC) reverse osmosis (RO) membranes. To form more extensive nanovoids for enhanced performance, one commonly used method is to incorporate sacrificial nanofillers in the polyamide layer during the exothermic interfacial polymerization (IP) reaction, followed by some post-etching processes. However, these post-treatments could harm the membrane integrity, thereby leading to reduced selectivity. In this study, we applied in situ self-etchable sacrificial nanofillers by taking advantage of the strong acid and heat generated in IP. CaCO3 nanoparticles (nCaCO3) were used as the model nanofillers, which can be in situ etched by reacting with H+ to leave void nanostructures behind. This reaction can further degas CO2 nanobubbles assisted by heat in IP to form more nanovoids in the polyamide layer. These nanovoids can facilitate water transport by enlarging the effective surface filtration area of the polyamide and reducing hydraulic resistance to significantly enhance water permeance. The correlations between the nanovoid properties and membrane performance were systematically analyzed. We further demonstrate that the nCaCO3-tailored membrane can improve membrane antifouling propensity and rejections to boron and As(III) compared with the control. This study investigated a novel strategy of applying self-etchable gas precursors to engrave the polyamide layer for enhanced membrane performance, which provides new insights into the design and synthesis of TFC membranes.
Collapse
Affiliation(s)
- Li Long
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR 999077, P R China
| | - Hao Guo
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR 999077, P R China
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P R China
| | - Lingyue Zhang
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR 999077, P R China
| | - Qimao Gan
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR 999077, P R China
| | - Chenyue Wu
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR 999077, P R China
| | - Shenghua Zhou
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR 999077, P R China
| | - Lu Elfa Peng
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR 999077, P R China
| | - Chuyang Y Tang
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR 999077, P R China
| |
Collapse
|
4
|
Perry LA, Chew NGP, Grzebyk K, Cay-Durgun P, Lind ML, Sitaula P, Soukri M, Coronell O. Correlating the Role of Nanofillers with Active Layer Properties and Performance of Thin-Film Nanocomposite Membranes. DESALINATION 2023; 550:116370. [PMID: 37274380 PMCID: PMC10237506 DOI: 10.1016/j.desal.2023.116370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Thin-film nanocomposite (TFN) membranes are emerging water-purification membranes that could provide enhanced water permeance with similar solute removal over traditional thin-film composite (TFC) membranes. However, the effects of nanofiller incorporation on active layer physico-chemical properties have not been comprehensively studied. Accordingly, we aimed to understand the correlation between nanofillers, active layer physico-chemical properties, and membrane performance by investigating whether observed performance differences between TFN and control TFC membranes correlated with observed differences in physico-chemical properties. The effects of nanofiller loading, surface area, and size on membrane performance, along with active layer physico-chemical properties, were characterized in TFN membranes incorporated with Linde Type A (LTA) zeolite and zeolitic imidazole framework-8 (ZIF-8). Results show that nanofiller incorporation up to ~0.15 wt% resulted in higher water permeance and unchanged salt rejection, above which salt rejection decreased 0.9-25.6% and 26.1-48.3% for LTA-TFN and ZIF-8-TFN membranes, respectively. Observed changes in active layer physico-chemical properties were generally unsubstantial and did not explain observed changes in TFN membrane performance. Therefore, increased water permeance in TFN membranes could be due to preferential water transport through porous structures of nanofillers or along polymer-nanofiller interfaces. These findings offer new insights into the development of high-performance TFN membranes for water/ion separations.
Collapse
Affiliation(s)
- Lamar A. Perry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
- Curriculum in Applied Sciences and Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
| | - Nick Guan Pin Chew
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
| | - Kasia Grzebyk
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
| | - Pinar Cay-Durgun
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287, USA
| | - Mary Laura Lind
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287, USA
| | - Paban Sitaula
- RTI International, 3040 East Cornwallis Road, Research Triangle Park, Durham, NC 27709-2194, USA
| | - Mustapha Soukri
- RTI International, 3040 East Cornwallis Road, Research Triangle Park, Durham, NC 27709-2194, USA
| | - Orlando Coronell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
| |
Collapse
|
5
|
Abedi F, Dubé MA, Emadzadeh D, Kruczek B. Improving nanofiltration performance using modified cellulose nanocrystal-based TFN membranes. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
6
|
Mahlangu OT, Motsa MM, Nkambule TI, Mamba BB. Rejection of trace organic compounds by membrane processes: mechanisms, challenges, and opportunities. REV CHEM ENG 2022. [DOI: 10.1515/revce-2021-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
This work critically reviews the application of various membrane separation processes (MSPs) in treating water polluted with trace organic compounds (TOrCs) paying attention to nanofiltration (NF), reverse osmosis (RO), membrane bioreactor (MBR), forward osmosis (FO), and membrane distillation (MD). Furthermore, the focus is on loopholes that exist when investigating mechanisms through which membranes reject/retain TOrCs, with the emphasis on the characteristics of the model TOrCs which would facilitate the identification of all the potential mechanisms of rejection. An explanation is also given as to why it is important to investigate rejection using real water samples, especially when aiming for industrial application of membranes with novel materials. MSPs such as NF and RO are prone to fouling which often leads to lower permeate flux and solute rejection, presumably due to cake-enhanced concentration polarisation (CECP) effects. This review demonstrates why CECP effects are not always the reason behind the observed decline in the rejection of TOrCs by fouled membranes. To mitigate for fouling, researchers have often modified the membrane surfaces by incorporating nanoparticles. This review also attempts to explain why nano-engineered membranes have not seen a breakthrough at industrial scale. Finally, insight is provided into the possibility of harnessing solar and wind energy to drive energy intensive MSPs. Focus is also paid into how low-grade energy could be stored and applied to recover diluted draw solutions in FO mode.
Collapse
Affiliation(s)
- Oranso T. Mahlangu
- College of Engineering, Science and Technology, Institute for Nanotechnology and Water Sustainability, University of South Africa, Florida Science Campus , Roodepoort 1709 , South Africa
| | - Machawe M. Motsa
- College of Engineering, Science and Technology, Institute for Nanotechnology and Water Sustainability, University of South Africa, Florida Science Campus , Roodepoort 1709 , South Africa
| | - Thabo I. Nkambule
- College of Engineering, Science and Technology, Institute for Nanotechnology and Water Sustainability, University of South Africa, Florida Science Campus , Roodepoort 1709 , South Africa
| | - Bhekie B. Mamba
- College of Engineering, Science and Technology, Institute for Nanotechnology and Water Sustainability, University of South Africa, Florida Science Campus , Roodepoort 1709 , South Africa
| |
Collapse
|
7
|
Multimodal confined water dynamics in reverse osmosis polyamide membranes. Nat Commun 2022; 13:2809. [PMID: 35589719 PMCID: PMC9120036 DOI: 10.1038/s41467-022-30555-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/02/2022] [Indexed: 11/29/2022] Open
Abstract
While polyamide (PA) membranes are widespread in water purification and desalination by reverse osmosis, a molecular-level understanding of the dynamics of both confined water and polymer matrix remains elusive. Despite the dense hierarchical structure of PA membranes formed by interfacial polymerization, previous studies suggest that water diffusion remains largely unchanged with respect to bulk water. Here, we employ neutron spectroscopy to investigate PA membranes under precise hydration conditions, and a series of isotopic contrasts, to elucidate water transport and polymer relaxation, spanning ps-ns timescales, and Å-nm lengthscales. We experimentally resolve, for the first time, the multimodal diffusive nature of water in PA membranes: in addition to (slowed down) translational jump-diffusion, we observe a long-range and a localized mode, whose geometry and timescales we quantify. The PA matrix is also found to exhibit rotational relaxations commensurate with the nanoscale confinement observed in water diffusion. This comprehensive ‘diffusion map’ can anchor molecular and nanoscale simulations, and enable the predictive design of PA membranes with tuneable performance. Polymeric membranes are extensively used in water desalination, but the effect of membrane nanostructure on water transport is still elusive. The authors, using quasi-elastic neutron scattering and contrast variation techniques, provide detailed insight into the dynamics of the polymer network and confined water across a wide range of length and timescales.
Collapse
|
8
|
Nieuwendaal RC, Wilbur JD, Welsh D, Witherspoon V, Stafford CM. A method to quantify composition, purity, and cross-link density of the active polyamide layer in reverse osmosis composite membranes using 13C cross polarization magic angle spinning nuclear magnetic resonance spectroscopy. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Vickers R, Weigand TM, Miller CT, Coronell O. Molecular Methods for Assessing the Morphology, Topology, and Performance of Polyamide Membranes. J Memb Sci 2022; 644:120110. [PMID: 35082452 PMCID: PMC8786217 DOI: 10.1016/j.memsci.2021.120110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The molecular-scale morphology and topology of polyamide composite membranes determine the performance characteristics of these materials. However, molecular-scale simulations are computationally expensive and morphological and topological characterization of molecular structures are not well developed. Molecular dynamics simulation and analysis methods for the polymerization, hydration, and quantification of polyamide membrane structures were developed and compared to elucidate efficient approaches for producing and analyzing the polyamide structure. Polymerization simulations that omitted the reaction-phase solvent did not change the observed hydration, pore-size distribution, or water permeability, while improving the simulation efficiency. Pre-insertion of water into the aggregate pores (radius ≈ 4 Å) of dry domains enabled shorter hydration simulations and improved simulation scaling, without altering pore structure, properties, or performance. Medial axis and Minkowski functional methods were implemented to identify permeation pathways and quantify the polyamide morphology and topology, respectively. Better agreement between simulations and experimentally observed systems was accomplished by increasing the domain size rather than increasing the number of ensemble realizations of smaller systems. The largest domain hydrated was an order of magnitude larger by volume than the largest domain previously reported. This work identifies methods that can enable more efficient and meaningful fundamental modeling of membrane materials.
Collapse
Affiliation(s)
- Riley Vickers
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
| | - Timothy M. Weigand
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
| | - Cass T. Miller
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
| | - Orlando Coronell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
| |
Collapse
|
10
|
Li X, Wang Z, Han X, Liu Y, Wang C, Yan F, Wang J. Regulating the interfacial polymerization process toward high-performance polyamide thin-film composite reverse osmosis and nanofiltration membranes: A review. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119765] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
11
|
|
12
|
Foglia F, Clancy AJ, Berry-Gair J, Lisowska K, Wilding MC, Suter TM, Miller TS, Smith K, Demmel F, Appel M, Sakai VG, Sella A, Howard CA, Tyagi M, Corà F, McMillan PF. Aquaporin-like water transport in nanoporous crystalline layered carbon nitride. SCIENCE ADVANCES 2020; 6:eabb6011. [PMID: 32978165 PMCID: PMC7518864 DOI: 10.1126/sciadv.abb6011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Designing next-generation fuel cell and filtration devices requires the development of nanoporous materials that allow rapid and reversible uptake and directed transport of water molecules. Here, we combine neutron spectroscopy and first-principles calculations to demonstrate rapid transport of molecular H2O through nanometer-sized voids ordered within the layers of crystalline carbon nitride with a polytriazine imide structure. The transport mechanism involves a sequence of molecular orientation reversals directed by hydrogen-bonding interactions as the neutral molecules traverse the interlayer gap and pass through the intralayer voids that show similarities with the transport of water through transmembrane aquaporin channels in biological systems. The results suggest that nanoporous layered carbon nitrides can be useful for developing high-performance membranes.
Collapse
Affiliation(s)
- Fabrizia Foglia
- Department of Chemistry, Christopher Ingold Laboratory, University College London, 20 Gordon St., London WC1H 0AJ, UK
| | - Adam J Clancy
- Department of Chemistry, Christopher Ingold Laboratory, University College London, 20 Gordon St., London WC1H 0AJ, UK
| | - Jasper Berry-Gair
- Department of Chemistry, Christopher Ingold Laboratory, University College London, 20 Gordon St., London WC1H 0AJ, UK
| | - Karolina Lisowska
- Department of Chemistry, Christopher Ingold Laboratory, University College London, 20 Gordon St., London WC1H 0AJ, UK
| | - Martin C Wilding
- University of Manchester at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Theo M Suter
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Thomas S Miller
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Keenan Smith
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Franz Demmel
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Chilton OX11 0QX, UK
| | - Markus Appel
- Institut Laue Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble CEDEX 9, France
| | - Victoria García Sakai
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Chilton OX11 0QX, UK
| | - Andrea Sella
- Department of Chemistry, Christopher Ingold Laboratory, University College London, 20 Gordon St., London WC1H 0AJ, UK
| | - Christopher A Howard
- Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
| | - Madhusudan Tyagi
- NIST Center for Neutron Research (NCNR), National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| | - Furio Corà
- Department of Chemistry, Christopher Ingold Laboratory, University College London, 20 Gordon St., London WC1H 0AJ, UK
| | - Paul F McMillan
- Department of Chemistry, Christopher Ingold Laboratory, University College London, 20 Gordon St., London WC1H 0AJ, UK.
| |
Collapse
|
13
|
Ogieglo W, Idarraga-Mora JA, Husson SM, Pinnau I. Direct ellipsometry for non-destructive characterization of interfacially-polymerized thin-film composite membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Comparison of water and salt transport properties of ion exchange, reverse osmosis, and nanofiltration membranes for desalination and energy applications. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117998] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Mondal S, Griffiths IM, Ramon GZ. Forefronts in structure–performance models of separation membranes. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.06.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Zhang H, Wu MS, Zhou K, Law AWK. Molecular Insights into the Composition-Structure-Property Relationships of Polyamide Thin Films for Reverse Osmosis Desalination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:6374-6382. [PMID: 31079458 DOI: 10.1021/acs.est.9b02214] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A molecular-level understanding of the structure-property relationship of polyamide (PA) active layers in thin-film-composite membranes remains unclear. We developed an approach to build and hydrate the PA layer in molecular dynamics simulations and reproduced realistic membrane properties, which enabled us to examine the composition-structure-permeability relationships at the molecular level. We discovered the variation of pore size distributions in the dry PA structures at different monomer compositions, leading to different water cluster distributions and wetting properties of hydrated PA films. Membrane swelling was linearly dependent on the degree of cross-linking (DC), and higher water flux was obtained in the more swelling-prone PA films because of the transition in water transport mechanisms. Continuum-like and jumping transport both occurred in PA films with smaller DC, where visible and more persistent channels existed. In the denser films, water molecules relied only on the on-and-off channels to jump from one cavity to another; however, jumping transport was more pronounced even in the less dense PA films, and all the PA structures exhibited oscillations, which provided evidence for the solution-diffusion model rather than the pore-flow model. The results not only contribute to fundamental understanding but also provide insights into the molecule-level design for next-generation membranes.
Collapse
Affiliation(s)
- Hui Zhang
- Environment Process Modelling Centre, Nanyang Environment & Water Research Institute , Nanyang Technological University , 1 CleanTech Loop , Singapore 637141
| | - Mao See Wu
- School of Mechanical and Aerospace Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798
| | - Kun Zhou
- Environment Process Modelling Centre, Nanyang Environment & Water Research Institute , Nanyang Technological University , 1 CleanTech Loop , Singapore 637141
- School of Mechanical and Aerospace Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798
| | - Adrian Wing-Keung Law
- Environment Process Modelling Centre, Nanyang Environment & Water Research Institute , Nanyang Technological University , 1 CleanTech Loop , Singapore 637141
- School of Civil and Environmental Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798
| |
Collapse
|
17
|
Huang HH, Joshi RK, De Silva KKH, Badam R, Yoshimura M. Fabrication of reduced graphene oxide membranes for water desalination. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.10.085] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|