1
|
Wang X, Guo Y, Li Y, Ma Z, Li Q, Wang Q, Xu D, Gao J, Gao X, Sun H. Molecular level unveils anion exchange membrane fouling induced by natural organic matter via XDLVO and molecular simulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170272. [PMID: 38266735 DOI: 10.1016/j.scitotenv.2024.170272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Membrane fouling, critically determined by the interplay of interfacial interaction between foulant and membrane, is a critical impediment that limits application extension of electrodialysis (ED) process. In this study, the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) model and molecular simulation were performed to quantify the interaction energy barrier for revealing anion exchange membranes (AEMs) fouling mechanisms of calcium ions coexisted with natural organic matter (NOM) (sodium alginate, humic acid, and bovine serum albumin). The insight gained from DMol3 module was also utilized to interpret the adhesion process of NOM at the molecular level. The interaction energy suggested that the presence of Ca-NOM complex magnify the adhesion on the surface cavities of AEMs structures. The molecular simulation and XDLVO presented a good agreement in predicting the fouling trajectory based on the experimental findings. The short-path acid-base interaction exerted a predominant influence on exploring the fouling formation process. In addition, the sodium alginate displayed more stable adhesion behavior through calcium ions bridges stimuli than humic acid and bovine serum albumin. In particular, the molecular simulation calculations exhibited a superior level of concurrence with colloid growth of membrane fouling. Combined XDLVO theory with DMol3 model proposed a new approach to understand membrane fouling mechanisms in ED process.
Collapse
Affiliation(s)
- Xiaomeng Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
| | - Yanyan Guo
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
| | - Yuanxin Li
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
| | - Zhun Ma
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China.
| | - Qing Li
- College of Chemistry and Chemical Engineering, De Zhou University, De Zhou 253023, Shandong, China
| | - Qun Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
| | - Dongmei Xu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China.
| | - Jun Gao
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
| | - Xueli Gao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| | - Hui Sun
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
2
|
Alkhadra M, Su X, Suss ME, Tian H, Guyes EN, Shocron AN, Conforti KM, de Souza JP, Kim N, Tedesco M, Khoiruddin K, Wenten IG, Santiago JG, Hatton TA, Bazant MZ. Electrochemical Methods for Water Purification, Ion Separations, and Energy Conversion. Chem Rev 2022; 122:13547-13635. [PMID: 35904408 PMCID: PMC9413246 DOI: 10.1021/acs.chemrev.1c00396] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Indexed: 02/05/2023]
Abstract
Agricultural development, extensive industrialization, and rapid growth of the global population have inadvertently been accompanied by environmental pollution. Water pollution is exacerbated by the decreasing ability of traditional treatment methods to comply with tightening environmental standards. This review provides a comprehensive description of the principles and applications of electrochemical methods for water purification, ion separations, and energy conversion. Electrochemical methods have attractive features such as compact size, chemical selectivity, broad applicability, and reduced generation of secondary waste. Perhaps the greatest advantage of electrochemical methods, however, is that they remove contaminants directly from the water, while other technologies extract the water from the contaminants, which enables efficient removal of trace pollutants. The review begins with an overview of conventional electrochemical methods, which drive chemical or physical transformations via Faradaic reactions at electrodes, and proceeds to a detailed examination of the two primary mechanisms by which contaminants are separated in nondestructive electrochemical processes, namely electrokinetics and electrosorption. In these sections, special attention is given to emerging methods, such as shock electrodialysis and Faradaic electrosorption. Given the importance of generating clean, renewable energy, which may sometimes be combined with water purification, the review also discusses inverse methods of electrochemical energy conversion based on reverse electrosorption, electrowetting, and electrokinetic phenomena. The review concludes with a discussion of technology comparisons, remaining challenges, and potential innovations for the field such as process intensification and technoeconomic optimization.
Collapse
Affiliation(s)
- Mohammad
A. Alkhadra
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Xiao Su
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Matthew E. Suss
- Faculty
of Mechanical Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
- Wolfson
Department of Chemical Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
- Nancy
and Stephen Grand Technion Energy Program, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Huanhuan Tian
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Eric N. Guyes
- Faculty
of Mechanical Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
| | - Amit N. Shocron
- Faculty
of Mechanical Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
| | - Kameron M. Conforti
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - J. Pedro de Souza
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Nayeong Kim
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Michele Tedesco
- European
Centre of Excellence for Sustainable Water Technology, Wetsus, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Khoiruddin Khoiruddin
- Department
of Chemical Engineering, Institut Teknologi
Bandung, Jl. Ganesha no. 10, Bandung, 40132, Indonesia
- Research
Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung 40132, Indonesia
| | - I Gede Wenten
- Department
of Chemical Engineering, Institut Teknologi
Bandung, Jl. Ganesha no. 10, Bandung, 40132, Indonesia
- Research
Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung 40132, Indonesia
| | - Juan G. Santiago
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - T. Alan Hatton
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Martin Z. Bazant
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Mathematics, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Ruan H, Yu L, Yao Y, Li J, Yan J, Liao J, Shen J. Poly(Vinyl Alcohol)-Based Anion Exchange Membranes with Improved Antifouling Potentials and Reduced Swelling Ratios for Electrodialysis Application. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Huimin Ruan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lu Yu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuyang Yao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Junhua Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianlang Yan
- Shaoxing Zhongchang Chemical Co., Ltd., Shaoxing 312000, China
| | - Junbin Liao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiangnan Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
4
|
Qi Z, Zhang S, Liu B, Li M, Mei D. Performance research of PVA (Polyvinyl alcohol) based on HKUST-1 as additive. CHEM LETT 2022. [DOI: 10.1246/cl.220111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ziyi Qi
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Shuhua Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Binyan Liu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Ming Li
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Dajiang Mei
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| |
Collapse
|
5
|
Dammak L, Fouilloux J, Bdiri M, Larchet C, Renard E, Baklouti L, Sarapulova V, Kozmai A, Pismenskaya N. A Review on Ion-Exchange Membrane Fouling during the Electrodialysis Process in the Food Industry, Part 1: Types, Effects, Characterization Methods, Fouling Mechanisms and Interactions. MEMBRANES 2021; 11:789. [PMID: 34677555 PMCID: PMC8539029 DOI: 10.3390/membranes11100789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022]
Abstract
Electrodialysis (ED) was first established for water desalination and is still highly recommended in this field for its high water recovery, long lifetime and acceptable electricity consumption. Today, thanks to technological progress in ED processes and the emergence of new ion-exchange membranes (IEMs), ED has been extended to many other applications in the food industry. This expansion of uses has also generated several problems such as IEMs' lifetime limitation due to different ageing phenomena (because of organic and/or mineral compounds). The current commercial IEMs show excellent performance in ED processes; however, organic foulants such as proteins, surfactants, polyphenols or other natural organic matters can adhere on their surface (especially when using anion-exchange membranes: AEMs) forming a colloid layer or can infiltrate the membrane matrix, which leads to the increase in electrical resistance, resulting in higher energy consumption, lower water recovery, loss of membrane permselectivity and current efficiency as well as lifetime limitation. If these aspects are not sufficiently controlled and mastered, the use and the efficiency of ED processes will be limited since, it will no longer be competitive or profitable compared to other separation methods. In this work we reviewed a significant amount of recent scientific publications, research and reviews studying the phenomena of IEM fouling during the ED process in food industry with a special focus on the last decade. We first classified the different types of fouling according to the most commonly used classifications. Then, the fouling effects, the characterization methods and techniques as well as the different fouling mechanisms and interactions as well as their influence on IEM matrix and fixed groups were presented, analyzed, discussed and illustrated.
Collapse
Affiliation(s)
- Lasâad Dammak
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est Créteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France; (J.F.); (M.B.); (C.L.); (E.R.)
| | - Julie Fouilloux
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est Créteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France; (J.F.); (M.B.); (C.L.); (E.R.)
| | - Myriam Bdiri
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est Créteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France; (J.F.); (M.B.); (C.L.); (E.R.)
| | - Christian Larchet
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est Créteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France; (J.F.); (M.B.); (C.L.); (E.R.)
| | - Estelle Renard
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est Créteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France; (J.F.); (M.B.); (C.L.); (E.R.)
| | - Lassaad Baklouti
- Department of Chemistry, College of Sciences and Arts at Al Rass, Qassim University, Ar Rass 51921, Saudi Arabia;
| | - Veronika Sarapulova
- Department of Physical Chemistry, Kuban State University, 149, Stavropol’skaya Str., 350040 Krasnodar, Russia; (V.S.); (A.K.); (N.P.)
| | - Anton Kozmai
- Department of Physical Chemistry, Kuban State University, 149, Stavropol’skaya Str., 350040 Krasnodar, Russia; (V.S.); (A.K.); (N.P.)
| | - Natalia Pismenskaya
- Department of Physical Chemistry, Kuban State University, 149, Stavropol’skaya Str., 350040 Krasnodar, Russia; (V.S.); (A.K.); (N.P.)
| |
Collapse
|
6
|
Preparation of sulfonated polyimide/polyvinyl alcohol composite membrane for vanadium redox flow battery applications. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-020-03314-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Dong F, Xu S, Wu X, Jin D, Wang P, Wu D, Leng Q. Cross-linked poly(vinyl alcohol)/sulfosuccinic acid (PVA/SSA) as cation exchange membranes for reverse electrodialysis. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
8
|
Pan J, Wei B, Xie H, Feng J, Liao S, Li X, Yu Y. Hexyl-modified series-connected bipyridine and DABCO di-cations functionalized anion exchange membranes for electrodialysis desalination. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Sun Y, Li J, Li M, Ma Z, Wang X, Wang Q, Wang X, Xu D, Gao J, Gao X. Towards improved hydrodynamics of the electrodialysis (ED) cell via computational fluid dynamics and cost estimation model: Effects of spacer parameters. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Zhao J, Chen Q, Ren L, Wang J. Fabrication of hydrophilic cation exchange membrane with improved stability for electrodialysis: An excellent anti-scaling performance. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Sun L, Chen Q, Lu H, Wang J, Zhao J, Li P. Electrodialysis with porous membrane for bioproduct separation: Technology, features, and progress. Food Res Int 2020; 137:109343. [DOI: 10.1016/j.foodres.2020.109343] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 11/26/2022]
|
12
|
A Review on Ion-exchange Membranes Fouling and Antifouling During Electrodialysis Used in Food Industry: Cleanings and Strategies of Prevention. CHEMISTRY AFRICA 2020. [DOI: 10.1007/s42250-020-00178-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
13
|
Liao J, Chen Q, Pan N, Yu X, Gao X, Shen J, Gao C. Amphoteric blend ion-exchange membranes for separating monovalent and bivalent anions in electrodialysis. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116793] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Wang C, Pan N, Jiang Y, Liao J, Sotto A, Ruan H, Gao C, Shen J. A facile approach to prepare crosslinked polysulfone-based anion exchange membranes with enhanced alkali resistance and dimensional stability. RSC Adv 2019; 9:36374-36385. [PMID: 35540625 PMCID: PMC9075031 DOI: 10.1039/c9ra07433c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/10/2019] [Indexed: 11/25/2022] Open
Abstract
Novel anion exchange membranes with enhanced ion exchange capacity, dimensional stability and alkali stability were prepared by a facile synthesis method. Internal crosslinking networks in the resulting membranes were achieved by reacting chloromethylated polysulfone with 4,4′-trimethylene bis(1-methylpiperidine) (BMP), where BMP was used as both a quaternization reagent and crosslinker without requirement of post-functionalization. In order to evaluate the alkali resistance and dimension stability performance of the resulting membranes, the molar ratio of BMP in the resulting membranes was fixed at four different contents: 40%, 60%, 80% and 100%. The obtained membranes were accordingly denoted as CAPSF-N, in which N = 40, 60, 80 and 100, respectively. Due to the dense internal network structure and spatial conformation of the six-membered rings, the resulting CAPSF-N AEMs showed enhanced dimensional structures (at 60 °C, the water uptakes and swelling ratios of CAPSF-N were 8.42% to 14.84% and 2.32% to 5.93%, respectively, whereas those for the commercial AEM Neosepta AMX were 44.23% and 4.22%, respectively). In addition, after soaking in 1 M KOH solution at 60 °C for 15 days, the modified membranes exhibited excellent alkaline stability. The CAPSF-100 membrane showed the highest alkali stability (retained 85% of its original ion exchange capacity and 84% of its original OH− conduction after the alkaline stability test), whereas the non-crosslinked APSF broke into pieces. Additionally, compared to the commercial Neosepta AMX membrane under the same test conditions, the desalination efficiency of CAPSF-100 was enhanced, and the energy consumption was lower. Novel anion exchange membranes with enhanced ion exchange capacity, dimensional stability and alkali stability were prepared by a facile synthesis method.![]()
Collapse
Affiliation(s)
- Chao Wang
- Center for Membrane Separation and Water Science & Technology, Zhejiang University of Technology Hangzhou 310014 China
| | - Nengxiu Pan
- Center for Membrane Separation and Water Science & Technology, Zhejiang University of Technology Hangzhou 310014 China
| | - Yuliang Jiang
- Center for Membrane Separation and Water Science & Technology, Zhejiang University of Technology Hangzhou 310014 China
| | - Junbin Liao
- Center for Membrane Separation and Water Science & Technology, Zhejiang University of Technology Hangzhou 310014 China
| | - Arcadio Sotto
- Rey Juan Carlos University Fuenlabrada, Camino del Molino, s/n Madrid 28942 Spain
| | - Huimin Ruan
- Center for Membrane Separation and Water Science & Technology, Zhejiang University of Technology Hangzhou 310014 China
| | - Congjie Gao
- Center for Membrane Separation and Water Science & Technology, Zhejiang University of Technology Hangzhou 310014 China
| | - Jiangnan Shen
- Center for Membrane Separation and Water Science & Technology, Zhejiang University of Technology Hangzhou 310014 China
| |
Collapse
|
15
|
Hao L, Wang C, Chen Q, Yu X, Liao J, Shen J, Gao C. A facile approach to fabricate composite anion exchange membranes with enhanced ionic conductivity and dimensional stability for electrodialysis. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.115725] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|