1
|
Tomczak W, Gryta M, Woźniak P, Daniluk M. Changes in the Separation Properties of Aged PVDF Ultrafiltration Membranes During Long-Term Treatment of Car Wash Wastewater. MEMBRANES 2025; 15:66. [PMID: 40137018 PMCID: PMC11943878 DOI: 10.3390/membranes15030066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 03/27/2025]
Abstract
Car wash wastewater (CWW) is complex waste that may be effectively treated by the ultrafiltration (UF) process. However, one of the most important challenges in implementing this process on an industrial scale is the fouling phenomenon membrane aging. Indeed, these may lead to a reduction in UF performance possibly associated with a loss in integrity of the fouled/aged membrane. Therefore, the main aim of the current study was to provide a comprehensive investigation on the changes in the separation properties of aged FP100 ultrafiltration membranes made of polyvinylidene fluoride (PVDF) with respect to their application for long-term treatment of CWW. For this purpose, studies were conducted for new membranes and membranes previously used for over 5 years in a pilot plant. As a feed, solutions of dextran, solutions of model organism Escherichia coli and synthetic CWW were used. It has been found that PVDF membranes demonstrated poor stability when in frequent contact with chemicals periodically applied for membrane cleaning. Indeed, the aged membranes were characterised by the increased porosity. However, it is important to note that membranes aging had no significant impact on the permeate quality during the UF process of synthetic CWW. Indeed, the obtained permeate was characterised by the turbidity lower than 0.25 NTU. Likewise, with regard to the separation of E. coli, the aged PVDF membranes ensured the high process efficiency and over 99.99% bacterial retention. In the interest of the growing potential of PVDF membrane in CWW treatment, the results obtained in the current work complement the findings made in this field.
Collapse
Affiliation(s)
- Wirginia Tomczak
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 3 Seminaryjna Street, 85-326 Bydgoszcz, Poland;
| | - Marek Gryta
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland; (M.G.); (P.W.)
| | - Piotr Woźniak
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland; (M.G.); (P.W.)
| | - Monika Daniluk
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 3 Seminaryjna Street, 85-326 Bydgoszcz, Poland;
| |
Collapse
|
2
|
Zhao Y, Cui W, Shen Q, Zhao S, Qiu Y, Chen F, Lin J, Fang C, Zhu L. Zwitterionic nanospheres engineered co-polymer composite membrane for precise protein-protein separation via dynamic self-assembly micelle deposition. Colloids Surf B Biointerfaces 2024; 243:114118. [PMID: 39079187 DOI: 10.1016/j.colsurfb.2024.114118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 09/17/2024]
Abstract
The accurate protein-protein separation is important but technically challenging. Achieving such a precise separation using membrane requires the selective channels with appropriate pore geometry structure and high anti-fouling property. In this study, polyethersulfone-b-poly(sulfobetaine methyl methacrylate) (PES-b-PSBMA) was synthesized and engineered onto polysulfone (PSF) ultrafiltration (UF) membrane to fabricate zwitterionic nanospheres engineered co-polymer (ZN-e-CoP) composite membrane via dynamic self-assembly micelle deposition. On the one hand, self-assembly zwitterionic nanospheres were used as blocks to construct hydrophilic layers with size-dependent sieving channels, endowing ZN-e-CoP composite membranes with enhanced permselectivity and protein-protein separation abilities, meanwhile zwitterionic groups from nanospheres reinforced the structure stability of nanospheres/nanospheres and nanospheres/membrane via multiple intermolecular interactions. On the other hand, zwitterionic nanospheres can induce to produce the hydration layer enveloping themselves by binding water molecules, where hydration layer acts as a protective barrier on the membrane surface, impeding the protein adhesion. Hence, ZN-e-CoP_1a composite membrane exhibited superior separation properties with Lysozyme/Bovine Serum Albumin (BSA) separation factor of 18.1 and 95.4 % rejection against BSA, 10.1 and 2.3 times, respectively, higher these of pristine PSF membrane (1.8 and 42.1 %), without obviously sacrificing water flux. Simultaneously, hydration layer enables the ZN-e-CoP_1a membrane with enhanced anti-fouling performance and durability during the long-term operations. The proposed approach opens new pathways to fabricate excellent anti-fouling membranes for precise protein-protein separation.
Collapse
Affiliation(s)
- Yifan Zhao
- Chemistry Department, Zhejiang University, Hangzhou 310027, P. R. China
| | - Wenshuo Cui
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Qin Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China; International Research Center for X Polymers, Zhejiang University, Haining 314400, P. R. China.
| | - Shuzhen Zhao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China; International Research Center for X Polymers, Zhejiang University, Haining 314400, P. R. China
| | - Yayu Qiu
- Chemistry Department, Zhejiang University, Hangzhou 310027, P. R. China
| | - Fang Chen
- Chemistry Department, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jiuyang Lin
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, P. R. China
| | - Chuanjie Fang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China; International Research Center for X Polymers, Zhejiang University, Haining 314400, P. R. China.
| | - Liping Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
3
|
Anggraeni VS, Lee HC, Goh PS, Sutrisna PD, Chan EWC, Wong CW. Biodegradable ultrafiltration membrane enhanced with anti-biofouling agent from Anacardium occidentale extract. BIOFOULING 2024; 40:348-365. [PMID: 38836472 DOI: 10.1080/08927014.2024.2357309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/14/2024] [Indexed: 06/06/2024]
Abstract
Our research focuses on developing environmentally friendly biodegradable ultrafiltration (UF) membranes for small-scale water purification in areas lacking infrastructure or during emergencies. To address biofouling challenges without resorting to harmful chemicals, we incorporate bio-based extracts, such as methyl gallate from A. occidentale leaves, a Malaysian ulam herb, known for its quorum sensing inhibition (QSI) properties. The methyl gallate enriched extract was purified by solvent partitioning and integrated into cellulose-based UF membranes (0 to 7.5% w w-1) through phase inversion technique. The resulting membranes exhibited enhanced anti-organic fouling and anti-biofouling properties, with flux recovery ratio (FRR) of 87.84 ± 2.00% against bovine serum albumin and FRRs of 76.67 ± 1.89% and 69.57 ± 1.77% against E. coli and S. aureus, respectively. The CA/MG-5 membrane showed a 224% improvement in pure water flux (PWF) compared to the neat CA membrane. Our innovative approach significantly improves PWF, presenting an environmentally friendly method for biofouling prevention in UF membrane applications.
Collapse
Affiliation(s)
- Vania Septa Anggraeni
- Department of Food Science with Nutrition, Faculty of Applied Sciences, UCSI University, Cheras, Kuala Lumpur, Malaysia
| | - Hoong Chern Lee
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Cheras, Kuala Lumpur, Malaysia
| | - Pei Sean Goh
- Advanced Membranes Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Putu Doddy Sutrisna
- Department of Chemical Engineering, University of Surabaya (UBAYA), Surabaya, Indonesia
| | - Eric Wei Chiang Chan
- Department of Food Science with Nutrition, Faculty of Applied Sciences, UCSI University, Cheras, Kuala Lumpur, Malaysia
| | - Chen Wai Wong
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Li K, Xu W, Wen G, Zhou Z, Han M, Zhang S, Huang T. Aging of polyvinylidene fluoride (PVDF) ultrafiltration membrane due to ozone exposure in water treatment: Evolution of membrane properties and performance. CHEMOSPHERE 2022; 308:136520. [PMID: 36152832 DOI: 10.1016/j.chemosphere.2022.136520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/11/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Pre-ozonation is an effective pretreatment tactic for mitigating fouling of ultrafiltration (UF) membrane in water and wastewater treatment, but the compatibility of polymeric UF membranes with residual ozone remains unclear. In this study, effects of long-term ozone exposure on properties and performance of polyvinylidene fluoride (PVDF) UF membrane reinforced by polyethylene terephthalate (PET) layer were systematically investigated. The exposure intensities were designed to simulate ozone exposure at 0.1 mg/L for 0.5-5 years. Chemical composition analysis suggested that the hydrophilic additives, such as possibly polyvinyl pyrrolidone (PVP), was gradually degraded and released from the membrane, whereas the PVDF matrix exhibited fairly good ozone resistance. Ozonation resulted in increase of pore size and decrease of surface hydrophilicity, which can be attributed to oxidation and dislodgement of hydrophilic additives. Accordingly, long-term ozonation led to moderate changes in performance factors, including increase of membrane permeability by 34%, decrease of retention ability by 21.8%, increase of organic fouling propensity. It is worth noting that membrane tensile strength suffered substantial decrease after ozonation, probably due to ozonation of the PET support layer. Overall, it seems that the PVDF functional layer exhibited good ozone resistance, but the PET support layer was the Achilles' heel of the reinforced PVDF membrane for integrating with pre-ozonation.
Collapse
Affiliation(s)
- Kai Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| | - Weihua Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Zhipeng Zhou
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Min Han
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Shujia Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| |
Collapse
|
5
|
The experimental/theoretical study over the effect of using the POP-NH2 nanostructures into the membrane selective layer on the CO2 permeability and selectivity. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.08.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Waheed H, Mehmood CT, Yang Y, Tan W, Fu S, Xiao Y. Dynamics of biofilms on different polymeric membranes – A comparative study using five physiologically and genetically distinct bacteria. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120000] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
7
|
Effect of pore-forming/hydrophilic additive anchorage on the mesoporous structure and sieving performance of a blended ultrafiltration (UF) membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Oseghe EO, Akpotu SO, Mombeshora ET, Oladipo AO, Ombaka LM, Maria BB, Idris AO, Mamba G, Ndlwana L, Ayanda OS, Ofomaja AE, Nyamori VO, Feleni U, Nkambule TT, Msagati TA, Mamba BB, Bahnemann DW. Multi-dimensional applications of graphitic carbon nitride nanomaterials – A review. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117820] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Shafi QI, Ihsan H, Hao Y, Wu X, Ullah N, Younas M, He B, Rezakazemi M. Multi-ionic electrolytes and E.coli removal from wastewater using chitosan-based in-situ mediated thin film composite nanofiltration membrane. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 294:112996. [PMID: 34126538 DOI: 10.1016/j.jenvman.2021.112996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
This work presents the experimental investigation of flat sheet composite nanofiltration membrane synthesized with chitosan nanoparticles through interfacial polymerization of piperazine with trimesoyl chloride on polyethersulfone/sulfonated polysulfone substrates. The synthesized membrane was tested in wastewater treatment containing inorganic salts and E.Coli. Single binary electrolyte solution of KCl, MgCl2, MgSO4, and Na2SO4, ternary electrolyte solution, containing a combination of MgCl2 and MgSO4, KCl and MgCl2 and quaternary electrolyte solution of KCl, MgCl2, and MgSO4 as feed were treated in crossflow membrane cell for the water flux and species rejection in the permeate under operating pressure up to 0.5 MPa. The rejection of Na1+, K1+, Mg2+, Cl1-, and SO42- was observed to be 81, 28, 87, 96, and 98%, respectively with an average water flux up to 214 ± 10 L m⁻2.hr⁻1 in the permeate for the binary electrolyte solution. Similarly, the rejection for K1+, Mg2+, Cl1- and SO42- was noted to be 33, 94, 97, and 99%, respectively, for ternary electrolyte solution with an average water flux up to 211 ± 10 L m-2.hr-1. The quaternary ion system in the feed resulted in an average water flux up to 198 ± 12 L m⁻2.hr⁻1 with the rejection of K+, Mg+2, Cl- and SO4-2 as 35, 87, 96, and 99%, respectively. The model feed solution of E. coli after passing through the membrane achieved an E. coli rejection (99%) with water flux up to 220 L m-2.hr-1.
Collapse
Affiliation(s)
- Qazi Iqra Shafi
- Department of Chemical Engineering, University of Engineering and Technology, Peshawar, 25120, Pakistan
| | - Haseena Ihsan
- Department of Chemistry, Sharhad University of Information Technology, Peshawar, Pakistan
| | - Yufan Hao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Xin Wu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Nehar Ullah
- Department of Chemical Engineering, University of Engineering and Technology, Peshawar, 25120, Pakistan
| | - Mohammad Younas
- Department of Chemical Engineering, University of Engineering and Technology, Peshawar, 25120, Pakistan.
| | - Benqiao He
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China.
| | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran.
| |
Collapse
|
10
|
Xin C, Wang J, Zhang Y, Liu Y, Jia H, Li L. Application of UV-vis absorption spectrum to test the membrane integrity of Membrane bioreactor (MBR). WATER RESEARCH 2021; 198:117153. [PMID: 33940502 DOI: 10.1016/j.watres.2021.117153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
In this work, UV-vis absorption spectrum of the membrane integrity analysis based on slopes of log-transformed absorbance spectra, differential absorbance spectroscopy (DAS), and absorption coefficient α(254) were studied at different number of breakage fibers and filtration times. Moreover, we analyze the influence of Fe2+ and Ca2+concentration on UV spectrum detection results. Cluster analysis and the change ratio Rs were used to determine the dissolved organic matter (DOM) leakage stages. As a result, the correlation coefficient between slope280-350 value and the number of breakage fibers is 0.901. Seven gaussian bands were successfully model from the DAS, and A4 (312 nm), A5 (339 nm), A6 (367 nm) were chosen to indicate the extent of breakage fiber. Peak 4(A4) is minimally affected by ions concentration. The α(254) could be used as a good indicator for detecting industrial wastewater treatment process which correlation coefficient between the number of breakage fibers is 0.955. The DOM leakage process was divided into three stages which were bulk leakage stage, development stage and stabilization stage. The UV-vis absorption spectrum can effectively detect the membrane integrity more sensitive than particle counter and three analyse methods are suitable for different substance in feed water.
Collapse
Affiliation(s)
- Changchun Xin
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, P. R. China; School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Jie Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, P. R. China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, P. R. China.
| | - Yang Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, P. R. China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Yuxiang Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, P. R. China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Hui Jia
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, P. R. China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, P. R. China.
| | - Lan Li
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| |
Collapse
|
11
|
Wang Y, Wang X, Zhou A, Li J, Tian L, Zhang M, Sun W, Ding L. A modified membrane filtration-ultraviolet photocatalytic system for the removal of trace sulfadiazine in drinking water (No. CHEM77354R1). CHEMOSPHERE 2021; 272:129867. [PMID: 33601211 DOI: 10.1016/j.chemosphere.2021.129867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
In this paper, the membrane filtration-photocatalytic coupling process was used to explore the mechanism and removal effect of trace concentrations of sulfadiazine (SD) in drinking water. First, 8 kinds of ultrafiltration membranes were successfully prepared, and their performance was verified by scanning electron microscopy and measurement of the contact angle, membrane pure water flux, porosity and average pore size. The results showed that the best-performing membranes were the PVDF-PP-TiO2-DA (dopamine) (PPT1D)- and PVDF-PP-TiO2-FeCl3 (PPT2Fe)-modified ultrafiltration membranes, in which TiO2 was modified with DA and FeCl3, forming the cooperation of TiO2/DA and TiO2/Fe3+, with removal rates of 91.4% and 92.6% and quasi-first-order rates of 0.0216 min-1 and 0.0214 min-1. At the same time, the effects of the two types of membrane, UV light and water quality characteristics on the removal performance of the membrane filtration-photocatalytic system were discussed. Among them, the PPT1D membrane was more suitable than the other membranes for the degradation of weakly alkaline water containing SD (pH = 7.5), except when NO3- was present, and the water quality characteristics had a significant inhibitory effect on the removal effect. The PPT2Fe membrane was more suitable for the degradation of acidic water containing SD (pH = 3). Additionally, the water quality characteristics had an obvious inhibitory effect on the removal effect, and the accuracy of the water distribution experimental results was verified by using an actual body of water. In the end, the reaction mechanism of the filtration-photocatalytic system was proposed, and it was found that OH played an indispensable role in the removal of SD.
Collapse
Affiliation(s)
- Yonglei Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, 250101, Jinan, PR China.
| | - Xuelin Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, 250101, Jinan, PR China.
| | - Anran Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Chongqing University, Chongqing, 400045, PR China.
| | - Jingjing Li
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, 250101, Jinan, PR China.
| | - Liping Tian
- Weifang Municipal Public Utilities Service Center, 261000, Weifang, PR China.
| | - Mengyu Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, 250101, Jinan, PR China.
| | - Wentao Sun
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, 250101, Jinan, PR China.
| | - Luming Ding
- School of Water Conservancy & Civil Engineering, Shandong Agricultural University, Taian, 271000, PR China.
| |
Collapse
|
12
|
Gu Y, Zhang B, Fu Z, Li J, Yu M, Li L, Li J. Poly (vinyl alcohol) modification of poly(vinylidene fluoride) microfiltration membranes for oil/water emulsion separation via an unconventional radiation method. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118792] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
13
|
Tian H, Wu X, Zhang K. Polydopamine-Assisted Two-Dimensional Molybdenum Disulfide (MoS 2)-Modified PES Tight Ultrafiltration Mixed-Matrix Membranes: Enhanced Dye Separation Performance. MEMBRANES 2021; 11:membranes11020096. [PMID: 33573126 PMCID: PMC7912618 DOI: 10.3390/membranes11020096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 11/25/2022]
Abstract
Tight ultrafiltration (TUF) membranes with high performance have attracted more and more attention in the separation of organic molecules. To improve membrane performance, some methods such as interface polymerization have been applied. However, these approaches have complex operation procedures. In this study, a polydopamine (PDA) modified MoS2 (MoS2@PDA) blending polyethersulfone (PES) membrane with smaller pore size and excellent selectivity was fabricated by a simple phase inversion method. The molecular weight cut-off (MWCO) of as-prepared MoS2@PDA mixed matrix membranes (MMMs) changes, and the effective separation of dye molecules in MoS2@PDA MMMs with different concentrations were obtained. The addition amount of MoS2@PDA increased from 0 to 4.5 wt %, resulting in a series of membranes with the MWCO values of 7402.29, 7007.89, 5803.58, 5589.50, 6632.77, and 6664.55 Da. The MWCO of the membrane M3 (3.0 wt %) was the lowest, the pore size was defined as 2.62 nm, and the pure water flux was 42.0 L m−2 h−1 bar−1. The rejection of Chromotrope 2B (C2B), Reactive Blue 4 (RB4), and Janus Green B (JGB) in aqueous solution with different concentrations of dyes was better than that of unmodified membrane. The separation effect of M3 and M0 on JGB at different pH values was also investigated. The rejection rate of M3 to JGB was higher than M0 at different pH ranges from 3 to 11. The rejection of M3 was 98.17–99.88%. When pH was 11, the rejection of membranes decreased with the extension of separation time. Specifically, at 180 min, the rejection of M0 and M3 dropped to 77.59% and 88.61%, respectively. In addition, the membrane had a very low retention of salt ions, Nacl 1.58%, Na2SO4 10.52%, MgSO4 4.64%, and MgCl2 1.55%, reflecting the potential for separating salts and dyes of MoS2@PDA/PES MMMs.
Collapse
Affiliation(s)
- Huali Tian
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing Wu
- CSIRO Manufacturing, Clayton South, VIC 3169, Australia
| | - Kaisong Zhang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
14
|
Li S, Zhao X, Zhang H. Aging retardation strategy of PVDF membranes: evaluation of free radical scavenging effect of nano-particles. NEW J CHEM 2021. [DOI: 10.1039/d0nj05980c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ESR and spectrophotometry proved that nano-particles can effectively remove free radicals produced by NaClO, and analyzed the mechanism of delaying aging.
Collapse
Affiliation(s)
- Siyi Li
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University
- Tianjin
- China
- School of Environmental Science and Engineering
- Tiangong University
| | - Xuehui Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University
- Tianjin
- China
- School of Environmental Science and Engineering
- Tiangong University
| | - Hongwei Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University
- Tianjin
- China
- School of Environmental Science and Engineering
- Tiangong University
| |
Collapse
|
15
|
Bacteriocin assisted food functional membrane for simultaneous exclusion and inactivation of Alicyclobacillus acidoterrestris in apple juice. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118741] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
A New Method for a Polyethersulfone-Based Dopamine-Graphene (xGnP-DA/PES) Nanocomposite Membrane in Low/Ultra-Low Pressure Reverse Osmosis (L/ULPRO) Desalination. MEMBRANES 2020; 10:membranes10120439. [PMID: 33352893 PMCID: PMC7766060 DOI: 10.3390/membranes10120439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/30/2020] [Accepted: 12/05/2020] [Indexed: 11/16/2022]
Abstract
Herein we present a two-stage phase inversion method for the preparation of nanocomposite membranes for application in ultra-low-pressure reverse osmosis (ULPRO). The membranes containing DA-stabilized xGnP (xGnP-DA-) were then prepared via dry phase inversion at room temperature, varying the drying time, followed by quenching in water. The membranes were characterized for chemical changes utilizing attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). The results indicated the presence of new chemical species and thus, the inclusion of xGnP-DA in the polyethersulfone (PES) membrane matrix. Atomic force microscopy (AFM) showed increasing surface roughness (Ra) with increased drying time. Scanning electron microscopy (SEM) revealed the cross-sectional morphology of the membranes. Water uptake, porosity and pore size were observed to decrease due to this new synthetic approach. Salt rejection using simulated seawater (containing Na, K, Ca, and Mg salts) was found to be up to stable at <99.99% between 1–8 bars operating pressure. After ten fouling and cleaning cycles, flux recoveries of <99.5% were recorded, while the salt rejection was <99.95%. As such, ULPRO membranes can be successfully prepared through altered phase inversion and used for successful desalination of seawater.
Collapse
|
17
|
Liu B, Zhu T, Liu W, Zhou R, Zhou S, Wu R, Deng L, Wang J, Van der Bruggen B. Ultrafiltration pre-oxidation by boron-doped diamond anode for algae-laden water treatment: membrane fouling mitigation, interface characteristics and cake layer organic release. WATER RESEARCH 2020; 187:116435. [PMID: 32977188 DOI: 10.1016/j.watres.2020.116435] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/21/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
In this study, ultrafiltration (UF) pre-oxidation with a boron-doped diamond (BDD) electrode was employed aiming to mitigate membrane fouling during algae-laden water treatment. It was found that BDD anodizing can efficiently alleviate membrane fouling regardless of the filtration membrane material when the oxidation time was over 30 min. This was because that the cake layer fouling resistance was highly mitigated by the pre-oxidation process. The generated small molecular organics after anodic oxidation might increase the potential of pore blockage. The anodizing preferentially oxidized hydrophobic organic and fluorescent substances, which is conducive to reducing membrane fouling and improving production efficiency. Besides, disinfection byproduct precursors and harmful algae derived substances of UF filtrated solution were contained. The algae bodies tend to agglomeration and the zeta potential obviously declined after the pretreatment, which is instrumental in forming a loose cake layer structure. In addition, the interaction force between membrane and foulants also converted to a repulsion force after pre-oxidation, which implies that BDD pre-oxidation was an effective way to mitigate cake layer fouling by reducing foulant-membrane interactions. At last, the secondary organic release of a dynamic formed cake layer was proved to be limited especially for living algae cells.
Collapse
Affiliation(s)
- Bin Liu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, 410082, Changsha, China; Department of Chemical Engineering, Process Engineering for Sustainable Systems (ProcESS), KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Tingting Zhu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, 410082, Changsha, China
| | - Wenkai Liu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, 410082, Changsha, China
| | - Rui Zhou
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, 410082, Changsha, China
| | - Shiqing Zhou
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, 410082, Changsha, China
| | - Ruoxi Wu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, 410082, Changsha, China.
| | - Lin Deng
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, 410082, Changsha, China
| | - Jing Wang
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, China
| | - Bart Van der Bruggen
- Department of Chemical Engineering, Process Engineering for Sustainable Systems (ProcESS), KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| |
Collapse
|
18
|
Zhou A, Wang Y, Sun S, Xin X, Wang M, Zhao Q, Zhu H, Jia R. Removal of sulfadiazine in a modified ultrafiltration membrane (PVDF-PVP-TiO 2-FeCl 3) filtration-photocatalysis system: parameters optimizing and interferences of drinking water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:45605-45617. [PMID: 32803580 DOI: 10.1007/s11356-020-10426-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
The addition of Fe3+ to TiO2 is one of the effective methods to inhibit the recombination of photogenerated electrons and holes and thus improve the photocatalytic activity of TiO2. The effect of PVDF-PVP-TiO2-FeCl3 (PPTFe) membrane filtration-photocatalytic system on the removal of trace concentration of sulfadiazine (SD) in water was evaluated. A two-factor four-level experiment was established to optimize 16 self-made modified membranes. The optimal membrane was then characterized in seven tests (SEM, EDS, membrane pure water flux, contact angle, porosity, mean pore size, ATR-FTIR), resulting in the optimal ratio (PPTFe membrane with 1.2 wt%TiO2 and 0.8 wt%FeCl3). Compared with the original membrane, the pore number, pore size, permeability, and hydrophilicity of the PPTFe membrane were all enhanced. The removal efficiency (92.63%) of SD by PPTFe membrane filtration-photocatalysis system was investigated. The reaction rate (0.0214 min-1) of the removal SD of the system was determined according to the pseudo-first-order kinetic model. The removal performance of membrane type, pH, and water quality parameters (Cl-, SO42-, NO3-, HA) on PPTFe membrane filtration-photocatalytic system were also made a deep inquiry. The results reflected that acidic conditions (pH = 3) were beneficial to SD removal, the presence of Cl-, SO42-, and HA could inhibit SD removal, while the existence of NO3- was unaffected. Furthermore, the removal rate of SD in the actual water body was displayed well in this system. Finally, the possible photocatalytic degradation mechanism was proposed.Graphical abstract.
Collapse
Affiliation(s)
- Anran Zhou
- Shandong (Jinan) Water & Waste Water Monitoring Center, No. 5111, Aotizhong Road, Jinan, 250101, People's Republic of China
- School of Municipal & Environmental Engineering, Shandong Jianzhu University, No. 1000 Fengming Road, li Cheng District, Jinan, 250101, People's Republic of China
| | - Yonglei Wang
- School of Municipal & Environmental Engineering, Shandong Jianzhu University, No. 1000 Fengming Road, li Cheng District, Jinan, 250101, People's Republic of China.
| | - Shaohua Sun
- Shandong (Jinan) Water & Waste Water Monitoring Center, No. 5111, Aotizhong Road, Jinan, 250101, People's Republic of China
| | - Xiaodong Xin
- Shandong (Jinan) Water & Waste Water Monitoring Center, No. 5111, Aotizhong Road, Jinan, 250101, People's Republic of China
| | - Mingquan Wang
- Shandong (Jinan) Water & Waste Water Monitoring Center, No. 5111, Aotizhong Road, Jinan, 250101, People's Republic of China.
| | - Qinghua Zhao
- Shandong (Jinan) Water & Waste Water Monitoring Center, No. 5111, Aotizhong Road, Jinan, 250101, People's Republic of China
| | - Huanhuan Zhu
- College of Hydraulic and Environment Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Ruibao Jia
- Shandong (Jinan) Water & Waste Water Monitoring Center, No. 5111, Aotizhong Road, Jinan, 250101, People's Republic of China.
| |
Collapse
|
19
|
Arabi S, Pellegrin ML, Aguinaldo J, Sadler ME, McCandless R, Sadreddini S, Wong J, Burbano MS, Koduri S, Abella K, Moskal J, Alimoradi S, Azimi Y, Dow A, Tootchi L, Kinser K, Kaushik V, Saldanha V. Membrane processes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1447-1498. [PMID: 32602987 DOI: 10.1002/wer.1385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
This literature review provides a review for publications in 2018 and 2019 and includes information membrane processes findings for municipal and industrial applications. This review is a subsection of the annual Water Environment Federation literature review for Treatment Systems section. The following topics are covered in this literature review: industrial wastewater and membrane. Bioreactor (MBR) configuration, membrane fouling, design, reuse, nutrient removal, operation, anaerobic membrane systems, microconstituents removal, membrane technology advances, and modeling. Other sub-sections of the Treatment Systems section that might relate to this literature review include the following: Biological Fixed-Film Systems, Activated Sludge, and Other Aerobic Suspended Culture Processes, Anaerobic Processes, and Water Reclamation and Reuse. This publication might also have related information on membrane processes: Industrial Wastes, Hazardous Wastes, and Fate and Effects of Pollutants.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph Wong
- Brown and Caldwell, Walnut Creek, California, USA
| | | | | | | | - Jeff Moskal
- Suez Water Technologies & Solutions, Oakville, ON, Canada
| | | | | | - Andrew Dow
- Donohue and Associates, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|
20
|
Han L, Bi H, Xie X, Su S, Mao P, Sun L. Superhydrophobic graphene-coated sponge with microcavities for high efficiency oil-in-water emulsion separation. NANOSCALE 2020; 12:17812-17820. [PMID: 32830837 DOI: 10.1039/d0nr04892e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Materials for emulsion separation with low pressure, high flux and high stability are of great interest in the treatment of oily wastewater. Herein, we report a facile strategy for the fabrication of PDMS and graphene coated melamine sponge (PG-MS), which can efficiently separate oil-in-water emulsions. In PG-MS, melamine sponge (MS) provides a three-dimensional porous structure, graphene constructs hydrophobic microcavities, and PDMS enhances the hydrophobic property of the material, forming a superhydrophobic material. The PG-MS shows high flux (experimentally 10 000 L m-2 h-1, and the effective flux increases with the thickness of the filter layer), high separation efficiency (oil content of the filtered water ∼4.7 mg L-1 can be discharged directly, with oil separation efficiency >99%), low pressure (applied to overcome water's gravity), and high stability (no obvious change in 20 cycles). Our study indicates that PG-MS has a wide range of applications in oil-in-water emulsion separation in industry and environmental sciences.
Collapse
Affiliation(s)
- Longxiang Han
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China.
| | | | | | | | | | | |
Collapse
|
21
|
Femtosecond laser manipulating underoil surface wettability for water removal from oil. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
|
23
|
A unique method for dopamine-cross-linked graphene nanoplatelets within polyethersulfone membranes (GNP-pDA/PES) for enhanced mechanochemical resistance during NF and RO desalination. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109889] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
24
|
The investigation of hydrophilic modification of membrane surface based on the mono-esterification between maleic anhydride and polyethylene glycol: Response surface methodology, reaction kinetics and performance analysis. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Shen C, Bian L, Zhang P, An B, Cui Z, Wang H, Li J. Microstructure evolution of bonded water layer and morphology of grafting membrane with different polyethylene glycol length and their influence on permeability and anti-fouling capacity. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117949] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
26
|
Zhou A, Jia R, Wang Y, Sun S, Xin X, Wang M, Zhao Q, Zhu H. Abatement of sulfadiazine in water under a modified ultrafiltration membrane (PVDF-PVP-TiO2-dopamine) filtration-photocatalysis system. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116099] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
27
|
Design and Construction of Ag@MOFs Immobilized PVDF Ultrafiltration Membranes with Anti-bacterial and Antifouling Properties. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/5456707] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this work, Ag nanoparticle loading Mg(C10H16O4)2(H2O)2(Ag@MOF) composite material was successfully prepared by a facile strategy, and subsequently Ag-MOFs were used to modify the PVDF ultrafiltration membranes to obtain fouling resistance and higher water flux. The as-prepared PVDF membranes were systematically characterized by a series of analytical techniques such as Water Contact Angle (CA), Scanning Electron Microscopy (SEM), and SEM-mapping. Furthermore, the performance of membranes on antibacterial properties, the pure water flux, and fouling resistance was investigated in detail. Those results showed that the membrane modified by Ag@MOFs containing 30% Ag had the higher anti-bacterial performance, and the clear zone could be increased to 10 mm in comparison with that of blank membrane. Meanwhile, the pure water flux of Ag@MOF membranes increased from 85 L/m2 h to 157 L/m2 h, and the maximum membrane flux recovery rate (FRR) of 95.7% was obtained using SA as pollutant, which is attributed to the introduction of Ag@MOF composite material. Based on the above experimental results, it can be found that the Ag-MOF membranes displayed the excellent antibacterial activity, high water flux, and fine fouling resistance. This work provides a facile strategy to fabricate the Ag@MOFs modified membranes, and it shows an excellent anti-bacterial and water flux performance.
Collapse
|
28
|
Zhang L, Jia H, Wang J, Wen H, Li J. Characterization of fouling and concentration polarization in ion exchange membrane by in-situ electrochemical impedance spectroscopy. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117443] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Yu C, Gao B, Wang W, Xu X, Yue Q. Alleviating membrane fouling of modified polysulfone membrane via coagulation pretreatment/ultrafiltration hybrid process. CHEMOSPHERE 2019; 235:58-69. [PMID: 31255766 DOI: 10.1016/j.chemosphere.2019.06.146] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 05/09/2023]
Abstract
In this study, ultrafiltration membrane fouling was alleviated by hydrophilic modification and coagulation pretreatment. A polydopamine (PDA) layer was used as a bridge to introduce the nano titanium dioxide (TiO2) onto the polysulfone (PSf) membranes, forming a hydrophilic modified layer. A relationship model was established between the coagulation efficiencies and floc properties and membrane fouling of the modified PSf membranes during the coagulation/ultrafiltration (C-UF) process. The combination styles of flocculants, poly dimethyldiallylammonium chloride (PDMDAAC) and polyaluminum chloride (PAC) were used in C-UF hybrid process. The characterization results indicated that the hydrophilicity was significantly enhanced in the modified PSf membranes. Scanning electron microscopy (SEM) tests proved that the PDA layer could be tightly bound to TiO2 by coordination bond onto PSf membrane surface. In the acidic conditions, more TiO2 nano-particles were adhered on the PDA particles surface as the pH of (NH4)2TiF6 solution was increased, which resulted in higher hydrophilicity of membranes. In addition, the C-UF tests exhibited that the coagulation efficiency was greatly improved in the PAC/PDMDAAC system, and the PSf membrane modified by PDA/TiO2 in UF tests significantly reduced the membrane fouling, this was partially due to the formation of TiO2 modified coating with higher hydrophilicity.
Collapse
Affiliation(s)
- Chenghui Yu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266000, Shandong, PR China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266000, Shandong, PR China.
| | - Wenyu Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266000, Shandong, PR China
| | - Xing Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266000, Shandong, PR China
| | - Qinyan Yue
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266000, Shandong, PR China
| |
Collapse
|
30
|
Jia H, Feng F, Wang J, Ngo HH, Guo W, Zhang H. On line monitoring local fouling behavior of membrane filtration process by in situ hydrodynamic and electrical measurements. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Yang S, Yin K, Wu J, Wu Z, Chu D, He J, Duan JA. Ultrafast nano-structuring of superwetting Ti foam with robust antifouling and stability towards efficient oil-in-water emulsion separation. NANOSCALE 2019; 11:17607-17614. [PMID: 31329193 DOI: 10.1039/c9nr04381k] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Massive discharging of oily wastewater has a serious impact on the ecological environment and human health. However, the rapid development of an efficient separation membrane exhibiting anti-fouling and long-term stability for highly emulsified oily wastewater separation remains a challenge. Herein, a superwettable porous Ti foam was fabricated via a facile and ultrafast strategy of femtosecond laser direct writing. The obtained surface possessed numerous nanoparticle-covered nanoripple structures with intriguing superhydrophilicity and underwater superoleophobicity. Further, the laser-treated foam possessed high porosity and exhibited an excellent performance separating oil-in-water emulsions. A high permeation flux up to ∼1900 L m-1 h-1 was achieved, with a separation efficiency of >99% under a negative pressure (-5 kPa). Moreover, the as-prepared foam exhibited outstanding properties of anti-oil fouling and stability, indicating robust reusability for long-term separation application. This work may provide an efficient and low-cost route for overcoming future large-scale oily wastewater separation issues.
Collapse
Affiliation(s)
- Shuai Yang
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, China.
| | | | | | | | | | | | | |
Collapse
|
32
|
Xin C, Wang J, Jia H, Wen H, Li J. Hollow fiber membrane integrity warning device based on laser extinction particles detection technology. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.05.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Wang M, Huang Y, Chen Y, Yan X, Xu W, Lang W. Poly(vinylidene fluoride) membranes fabricated by vapor‐induced phase separation (VIPS) for the adsorption removal of VB12 from aqueous solution. J Appl Polym Sci 2019. [DOI: 10.1002/app.48179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Miao Wang
- The Education Ministry Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials ScienceShanghai Normal University, 100 Guilin Road Shanghai 200234 China
| | - Yuan‐Wei Huang
- The Education Ministry Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials ScienceShanghai Normal University, 100 Guilin Road Shanghai 200234 China
| | - Yan Chen
- The Education Ministry Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials ScienceShanghai Normal University, 100 Guilin Road Shanghai 200234 China
| | - Xi Yan
- The Education Ministry Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials ScienceShanghai Normal University, 100 Guilin Road Shanghai 200234 China
| | - Wen‐Yan Xu
- The Education Ministry Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials ScienceShanghai Normal University, 100 Guilin Road Shanghai 200234 China
| | - Wan‐Zhong Lang
- The Education Ministry Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials ScienceShanghai Normal University, 100 Guilin Road Shanghai 200234 China
| |
Collapse
|
34
|
Biofouling-resistant nanocellulose layer in hierarchical polymeric membranes: Synthesis, characterization and performance. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.02.059] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|